
Palestine Journal of Mathematics

Vol. 12(2)(2023) , 30–53 © Palestine Polytechnic University-PPU 2023

On Conformable First and Second Painlevé Equations

Basema Asaad AlTayyan

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Keywords and phrases: Fractional derivative, Conformable calculus , Conformable Painlevé equations, Generalized
Painlevé test.

Abstract In this paper, a generalization of the Painlevé test is constructed to investigate the
sufficient condition of the generalized Painlevé property (GPP ). The analysis is successfully
extended to investigate theGPP of the 2α− order (0 < α ≤ 1) conformable ordinary differential
equations. Thenceforward, applying the analysis to the conformable first and second Painlevé
equations (CPI and CPII) complete the study of GPP of these equations. This procedure
parameterizes general solutions of the CPI and CPII in terms of the relevant serieses and shows
that the general solutions are α−meromorphic in z to its critical points. In particular, it is shown
that a special choice of the parameter in the CPII admits a special solution in term of Airy
function. In addition, some properties of CPI and CPII are discussed.

1 Introduction

Fractional calculus (FC) is regarded as a generalization of the classical differentiation and in-
tegration for arbitrary non-integer (real or complex) order. FC is almost as old as the classical
calculus and goes back to times when Leibniz and Newton invented differential calculus. After
1974, the interest in studing the fractional calculus has been rapidly growing. Fractional deriva-
tives and integrals have many uses and they themselves have arisen from certain requirements in
applications. Some of known fractional derivatives are conformable, Riemann-Liouville, mod-
ified Riemann-Liouville, Caputo, Hadmard, Erdélyi-Kober, Riesz, Grünwald-Letnikov, Mar-
chaud, and others; see [1]–[9]. The first work devoted exclusively to the subject of conformable
calculus was published in 2014 by Khalil, Alhorani, Yousef, and Sababheh [9]. Unlike other
definitions, this definition prominently compatible with the classical derivative and it seems to
satisfy all the requirements of the standard derivative. The importance of the conformable deriva-
tive lies in satisfying the product and quotient formulas. Moreover, it has a simple formula for
the chain rule. After Khalil’s definition, abundant articles have devoted entirely the conformable
calculus for its effectiveness on other mathematical disciplines [10]–[40].

The classification of Painlevé equations originated by Painlevé [41], Gambier [42] and Fuchs
[43] around the beginning of the twentieth century, while they were studying problems posed by
Picard [44]. A differential equation is said to have the Painlevé property if its solutions have no
movable branch points; that is, the locations of multi-valued singularities of any of the solutions
are independent of the particular solution chosen and so are dependent only on the equation.
Painlevé, Gambier and their colleagues showed that, within the Möbius transformation, there
were fifty canonical equations of the form w′′ = F (z, w,w′) with this property. Among all
these equations, six of them are irreducible and can not be solved by known functions; thus
they define new functions known as Painlevé transcendents and denoted by PI , PII , ..., PV I .
The other forty-four equations are either integrable in terms of previously known functions or
reducible to one of the six Painlevé transcendents [45, 46]. Although the Painlevé equations
were discovered from strictly mathematical considerations, they have frequently appeared in
many physical problems, and possess rich internal structure. The Painlevé equations play an
important role for completely integrable partial differential equations (PDE) [46].

The Painlevé test plays a significant role in the analysis of nonlinear differential equations.
It is the most widely used and the most successful technique for detecting integrable differential
equations [47]–[50]. The test has been applied to many differential equations and, for those pass-
ing the Painlevé test, the indicators of integrability such as the existence of enough conservation
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laws, the Lax pair, the Daraboux transform, the Bäcklund transform can always be found. How-
ever, despite the overwhelming evidence that the integrability of a differential equation should
be a closely related to the behavior of its solution near movable singularities, the rigorous study
of such a relation has been lacking [51].

It is worth mentioning that this approach is not studied yet with fractional differential equa-
tions. The main object of this paper is to develop the method of the analysis of the generalized
Painlevé test to investigate the generalized Painlevé Property. This method which utilizes the
development of the Painlevé test is applied successfully to to the conformable first and second
Painlevé equations (CPI and CPII ). The CPII can be obtained as the similarity reduction of the
conformable Korteweg-de Vries (CKdV ) and modified Korteweg-de Vries (CmKdV ) equa-
tions [40]. Furthermore, for a certain choice of the parameter, CPII admits a one-parameter
family of solutions in terms of Airy function. Also, PI and CPI can be obtained from CPII
by the process of contraction. Moreover, many properties which the conformable fractional
Painlevé equations possess are illustrated as: Isomonodromy Problems, Generalized Hirota Bi-
linear Form, Hamiltonian Structure, Generalized Bäcklund Transform, and others.

2 Conformable Calculus

We begin by recalling a brief introduction on the basic definitions and theorems in the con-
formable calculus that we shall frequently use throughout the paper.

Definition 2.1. [9] Given a function f : [0,∞)→ R, the conformable derivative of order α of f
is defined by

Dα[f(z)] = lim
ε→0

f(z + εz1−α)− f(z)
ε

, (2.1)

for all z > 0, α ∈ (0, 1]. If Dα[f(z)] exists for z in some interval (0, a), a > 0, and
limz→0+ Dα[f(z)] exists, then Dα[f(0)] = limz→0+ Dα[f(z)].

If, in addition, f is differentiable, then Dαf(z) = z1−α df(z)
dz .

Definition 2.2. [9] Iα[f(z)] = I[zα−1f(z)] =
∫ z

0
f(ζ)
ζ1−α dζ, where the integral is the usual Rie-

mann improper integral, and α ∈ (0, 1].

Theorem 2.3.[9] Let α ∈ (0, 1] and f, g be α-differentiable at a point z > 0, then

(i) Dα[af(z) + bg(z)] = a[Dαf(z)] + b[Dαg(z)], for all a, b ∈ R.

(ii) If f(z) = zk, then Dα[f(z)] = kzk−α, for all k ∈ R.
In particular:

• If f(z) = zα

α , then Dα[f(z)] = 1.
• If f is the constant function defined by f(z) = c, then Dα[f(z)] = 0.

(iii) Dα[f(z)g(z)] = f(z)Dα[g(z)] + g(z)Dα[f(z)].

(iv) Dα

[
f(z)
g(z)

]
= g(z)Dα[f(z)]−f(z)Dα[g(z)]

[g(z)]2
.

Lemma 2.4.[15] Let 0 < α ≤ 1, f be α-differentiable at g(z) > 0, and g be α-differentiable at
z > 0, then Dα[(fog)(z)] = Dα[f(g(z))]Dα[g(z)][g(z)]α−1.

Corollary 2.5.[22] Let 0 < α ≤ 1, f be differentiable at g(z), and g be α-differentiable at z > 0,
then Dα[(fog)(z)] = [f ′(g(z))]Dα[g(z)].

Definition 2.6.[15] Let f be a function with n variables z1, ..., zn, and the conformable partial
derivative of f of order 0 < α ≤ 1 in zi is defined as follows

∂α

∂ziα
f(z1, ..., zn) = lim

ε→0

f(z1, ..., zi−1, zi + εz1−α
i , zi+1, ..., zn)− f(z1, ..., zn)

ε
.
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Theorem 2.7.[15] The Clairaut’s theorem for partial derivatives of conformable fractional orders.
Assume that f(t, s) is function for which ∂α

∂tα

[
∂β

∂sβ
f(t, s)

]
and ∂β

∂sβ

[
∂α

∂tα f(t, s)
]

exist and are

continuous over the domain D ⊂ R2 then

∂α

∂tα

[
∂β

∂sβ
f(t, s)

]
=

∂β

∂sβ

[
∂α

∂tα
f(t, s)

]
.

In the remainder of this section we propose usefulness concepts which have been used in our
study. We refer to the literatures [29]-[36] for basic structures of these concepts.

Definition 2.8. Let α ∈ (0, 1] and z, z0 ∈ [0, ∞). An α−power series about z0 is an infinite
series of the form

∞∑
n=0

an

(
zα

α
−
zα0
α

)n
, an ∈ R,

which converges for all z in the domain such that |z − z0| < δ (δ > 0) and diverges otherwise,
where δ is called the radius of convergent of the given series.

Definition 2.9. Let α ∈ (0, 1] and z, z0 ∈ [0, ∞). If f is an infinitely α−differentiable at z0,
then the α−Taylor series for the function f at z0 is

f(z) =
∞∑
n=0

1
n!
Dn
αf(z0)

(
zα

α
−
zα0
α

)n
,

for all |z−z0| < δ (δ > 0), δ is the radius of convergent of the given series, andDn
αf(z0) denotes

the sequential α−derivatives on f(z) determined at the point z0; that is,

D2
αf(z) = Dα (Dαf(z)) , Dn

αf(z) = Dα

(
D(n−1)
α f(z)

)
, n = 3, 4, · · · .

Definition 2.10. Let α ∈ (0, 1] and z, z0 ∈ [0, ∞). A complex valid function f(z) is said to be
an α−analytic function at a point z0 if f(z) possesses a convergent α−power series

f(z) =
∞∑
n=0

an

(
zα

α
−
zα0
α

)n
, an ∈ R,

for all |z − z0| < δ (δ > 0), δ is the radius of convergent of the given series.

Remark 2.11. A function f(z) is an α−analytic (or an α−holomorghic) if it is an α−analytic at
each point in the domain.

Remark 2.12. Every α−analytic is an infinitely α−differentiable.

Remark 2.13. f(z) is an α−analytic function if and only if f(z) possesses an α−Taylor expan-
sion.

3 Generalized Painlevé Test

(Throughout this paper, we let dnα

dxnα , for n = 1, 2, ..., α ∈ (0, 1] denote the conformable
derivatives.)
In this section we will construct the theory of generalized Painlevé test. We begin by proposing
rigorously some basic concepts in the generalized Painlevé property.

Definition 3.1. The generalized Painlevé property:
A conformable ordinary differential equation (CODE) in the complex domain is said to be of
generalized Painlevé type (or has the generalized Painlevé property) if the only movable singu-
larities of its solutions are poles.
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Theorem 3.2.A necessary condition that an nα−order conformable ordinary differential equa-
tion of the form

dnαw(z)

dznα
= F

(
z, w, ...,

d(n−1)αw

dz(n−1)α

)
, 0 < α ≤ 1, (3.1)

where F is rational in w, ..., and d(n−1)αw
dz(n−1)α and α−analytic in z, has the generalized Painlevé

property;that is, w has a Laurent expansion about z0 of the form

w(z) =

(
zα

α
−
zα0
α

)m ∞∑
j=0

aj

(
zα

α
−
zα0
α

)j
, (3.2)

with (n− 1) arbitrary expansion coefficients, besides the pole position which is arbitrary.

Theorem 3.3.Let fj(w1, w2, ..., wm, z), (j = 1, 2, ...,m) be analytic functions of the variables
w1, w2, ..., wm with w1 = w0

1, w2 = w0
2, ..., wm = w0

m for z = z0. Then there exists one and only
one system of functions wj(z) = wj , (j = 1, 2, ...,m) α−analytic at the point z = z0, and sat-
isfying the system of conformable ordinary differential equations dαwj

dzα = fj(w1, w2, ..., wm, z)

with the conditions wj(z0) = w0
j , where j = 1, 2, ...,m.

The generalized Painlevé test to the following form of 2α−order conformable ordinary dif-
ferential equation

d2αw

dz2α = F

(
w,

dαw

dzα
, z

)
, (3.3)

where F is α−analytic in z, and rational in w and dαw
dzα will be treated.

The key step to derive the sufficient condition for equation (3.3) to be possessing the generalized
Painlevé property (GPP ) is the creation of a series solution around z0 (z0 arbitrary point) of the
form

w(z) = β
(
zα

α −
zα0
α

)k
+
∑l−1
j=1 ak+j

(
zα

α −
zα0
α

)k+j
+ c1

(
zα

α −
zα0
α

)k+l
+
∑∞
j=l+1 ak+j

(
zα

α −
zα0
α

)k+j
.

(3.4)

The computation of the α−derivative for w(z) is given by

dαw
dzα = βk

(
zα

α −
zα0
α

)k−1
+
∑l−1
j=1(k + j)ak+j

(
zα

α −
zα0
α

)k+j−1
+

(k + l)c1

(
zα

α −
zα0
α

)k+l−1
+
∑∞
j=l+1(k + j)ak+j

(
zα

α −
zα0
α

)k+j−1
.

(3.5)

It is of some interest to set
w(z) = v(z)k, (3.6)

from which we obtain

v(z) = εkw(z)
1
k , with εk =

{
±1, for k even;
0, for k odd.

(3.7)

Also, it is convenient to write dαw
dzα as

dαw

dzα
=
∞∑
j=0

bj+k−1(z)v(z)
j+k−1. (3.8)

With the help of equation (3.7) equation (3.8) becomes

dαw

dzα
= bk−1ε

k−1
k w1− 1

k + bkε
k
kw + bk+1ε

k+1
k w1+ 1

k + · · · (3.9)
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Using equation (3.4) and neglecting terms of O
[(

zα

α −
zα0
α

)k+l+1
]

, then equation (3.9) can be

written as

dαw
dzα = bk−1ε

k−1
k

{
β
(
zα

α −
zα0
α

)k
+
∑l−1
j=1 ak+j

(
zα

α −
zα0
α

)k+j
+ c1

(
zα

α −
zα0
α

)k+l}1− 1
k

+ bkε
k
k

{
β
(
zα

α −
zα0
α

)k
+
∑l−1
j=1 ak+j

(
zα

α −
zα0
α

)k+j
+ c1

(
zα

α −
zα0
α

)k+l}
+ bk+1ε

k+1
k

{
β
(
zα

α −
zα0
α

)k
+
∑l−1
j=1 ak+j

(
zα

α −
zα0
α

)k+j
+ c1

(
zα

α −
zα0
α

)k+l}1+ 1
k

+O

[(
zα

α −
zα0
α

)k+l+1
]
.

(3.10)
We can simplify equation (3.5) at once in the suitable form

dαw(z)
dzα = βk

(
zα

α −
zα0
α

)k−1
+ (k + 1)ak+1

(
zα

α −
zα0
α

)k
+ (k + 2)ak+2

(
zα

α −
zα0
α

)k+1

+ · · ·+ (k + l − 1)ak+l−1

(
zα

α −
zα0
α

)k+l−2
+ (k + l)c1

(
zα

α −
zα0
α

)k+l−1

+O

[(
zα

α −
zα0
α

)k+l]
.

(3.11)
The comparison between the two equations (3.10) and (3.11) allows to solve for the coefficients
bk−1, bk, · · · , bk+l−1, henceforward, we can exhibit an expansion of the form

dαw(z)

dzα
=

l∑
j=0

bk+j−1(z)v(z)
k+j−1 +O

[(
zα

α
−
zα0
α

)k+l]
. (3.12)

Next, consider the transformation

w(z) = v(z)k, (3.13a)

dαw(z)

dzα
= bk−1(z)v(z)

k−1 + bk(z)v(z)
k + · · ·+ u(z)v(z)k+l−1, (3.13b)

the α derivative of w(z) is given by

dαw

dzα
=
dw

dv

dαv

dzα
,

which can be written as
dαv

dzα
=

1
k
v1−k d

αw

dzα
. (3.14)

Hence,
dαv

dzα
=

1
k

[
bk−1 + bkv + · · ·+ uvl

]
. (3.15)

Consequently, equation (3.3) can be converted to be as

d2αw

dz2α =
dα

dzα
[
bk−1v

k−1 + bkv
k + · · ·+ uvk+l−1] , (3.16)

which simplifies at once to the form

d2αw
dz2α = dαbk−1

dzα vk−1 + (k − 1)bk−1v
k−2 dαv

dzα + dαbk
dzα v

k + (k)bkvk−1 dαv
dzα

+ · · ·+ dαu
dzα v

k+l−1 + (k + l − 1)uvk+l−2 dαv
dzα .

(3.17)

Substitution of d
αv
dzα from equation (3.15) into equation (3.17), leads to

d2αw
dz2α = dαbk−1

dzα vk−1 +
(
k−1
k

)
bk−1v

k−2
[
bk−1 + bkv + · · ·+ uvl

]
+ dαbk

dzα v
k + bkv

k−1
[
bk−1 + bkv + · · ·+ uvl

]
+ · · ·

+ dαu
dzα v

k+l−1 + (k+l−1)
k uvk+l−2

[
bk−1 + bkv + · · ·+ uvl

]
.

(3.18)
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However, d
2αw
dz2α must satisfy the equation

d2αw

dz2α = F

(
w,

dαw

dzα
, z

)
= F

(
vk, bk−1v

k−1 + bkv
k + · · ·+ uvk+l−1, z

)
. (3.19)

Now, by equating the right hand sides of the two equations (3.18) and (3.19), one can achieve
the following relation

dαu
dzα = v1−k−lF

(
vk, bk−1v

k−1 + bkv
k + · · ·+ uvk+l−1, z

)
−
[
bk−1 + bkv + · · ·+ uvl

] [
(1− 1

k )bk−1v
−1−l + bkv

−l + · · ·+ u(1 + l−1
k )v−1

]
−
[
dαbk−1
dzα v−l + · · ·+ dαbk+l−2

dzα v−1
]
.

Finally, we can conclude that the given 2α−order conformable ordinary differential equation
(3.3) is equivalent to the system of α−order conformable ordinary differential equations (3.15)
and (3.20). If the right hand sides of equations (3.15) and (3.20) are α−analytic functions of
the variables u, and v with the initial values u(z0) = u0, v(z0) = v0, hence, the conditions
of Thr 3 will be obtained, and so, in the neighborhood of z0 there exists one and only one
system of α−analytical functions v = v(z) and u = u(z) which satisfy the second order system
of differential equations with the initial conditions u(z0) = u0, v(z0) = v0. Henceforth, the
given 2α−order conformable ordinary differential equation has an α−analytic solution in the
neighborhood of z0, and so, the 2α−order conformable ordinary differential equation has the
generalized Painlevé property (GPP ).

4 Conformable First and Second Painlevé Equations and the Generalized
Painlevé Test

This section is an application to the methodology which has been developed in Section 3. The
application will be treated each of the conformable first and second Painlevé equations.

4.1 Conformable First Painlevé Equation

Consider the following conformable first Painlevé equation (CPI)

d2αw

dz2α = 6w2 +
zα

α
. (4.1)

The essence of the generalized Painlevé test is to establish the α−analytic structure of w(z) with
respect to z in the entire complex z−plane.

Claim: The only algebraic singularities of equation (4.1) are movable double poles. In
addition, equation (4.1) has a unique α−holomorphic solution w(z, z0, w0,

dαw0
dzα ) in some neigh-

borhood of z = z0 with w(z0) = w0, and dαw
dzα (z0) =

dαw0
dzα .

According to the theory of the generalized Painlevé test, the algorithm is constructed from
three steps.

(i) Finding the dominant behavior:
For this aim we consider

w ∼ σ
(
zα

α
−
zα0
α

)k
, (4.2)

from which we will obtain

d2αw

dz2α = σk(k − 1)
(
zα

α
−
zα0
α

)k−2

. (4.3)



36 Basema Asaad AlTayyan

Direct substitution of w and d2αw
dz2α into equation (4.1), gives

σk(k − 1)
(
zα

α
−
zα0
α

)k−2

∼ 6σ2
(
zα

α
−
zα0
α

)2k

+
zα

α
, (4.4)

Equation (4.4) can be rewritten in an alternative form as

σk(k − 1)
(
zα

α
−
zα0
α

)k−2

∼ 6σ2
(
zα

α
−
zα0
α

)2k

+

(
zα

α
−
zα0
α

)
+
zα0
α
. (4.5)

Next, we need to calculate the possible values of k for which there is a balance between
two or more than two terms in the equation, here we find k = −2. A successful ansatz for
the dominant behavior is

d2αw

dz2α ∼ 6w2. (4.6)

Substitution of equation (4.2) into equation (4.6), gives

σ(1− σ) = 0,

this implies σ = 0 or σ = 1, we neglect σ = 0 and take σ = 1.

(ii) Finding the resonances:
The next step in the algorithm is to determine the resonances, for this purpose we need to
define w(z) as follows:

w = σ

(
zα

α
−
zα0
α

)−2

+ ρ

(
zα

α
−
zα0
α

)r−2

. (4.7)

Using the definition of w equation (4.7) into the dominant equation (4.6), leads to

6σ
(
zα

α −
zα0
α

)−4
+ (r − 2)(r − 3)ρ

(
zα

α −
zα0
α

)r−4
∼ 6σ2

(
zα

α −
zα0
α

)−4
+

12σρ
(
zα

α −
zα0
α

)r−4
+ 6ρ2

(
zα

α −
zα0
α

)2r−4
,

(4.8)

from which one can achieve

(r − 2)(r − 3)ρ = 12σρ. (4.9)

For ρ 6= 0 and σ = 1, (r + 1)(r − 6) = 0, thus, the resonances are r = −1, 6.

(iii) Finding the constant of integration: The key step for finding the constant of integration
is by assuming w to be in the form

w(z) =
∞∑
j=0

aj

(
zα

α
−
zα0
α

)j−2

. (4.10)

One can obtain,

dαw

dzα
=
∞∑
j=0

(j − 2)aj
(
zα

α
−
zα0
α

)j−3

, (4.11a)

d2αw

dz2α =
∞∑
j=0

(j − 2)(j − 3)aj
(
zα

α
−
zα0
α

)j−4

, (4.11b)

w2 =
∞∑
j=0

j∑
k=0

aj−kak

(
zα

α
−
zα0
α

)j−4

. (4.11c)
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Direct Substitution of equations (4.11) into equation (4.1), and collecting similar terms,
leads to
∞∑
j=0

[
(j − 2)(j − 3)aj − 6

j∑
k=0

aj−kak

](
zα

α
−
zα0
α

)j−4

−
(
zα

α
−
zα0
α

)
−
zα0
α

= 0. (4.12)

Equating the coefficients of the various powers of
(
zα

α −
zα0
α

)
to zero, one can obtain the

coefficients a′js for (j ≥ 0).
Henceforward, equation (4.10) becomes as

w(z) =
(
zα

α −
zα0
α

)−2
− 1

10
zα0
α

(
zα

α −
zα0
α

)2
− 1

6

(
zα

α −
zα0
α

)3

+ c
(
zα

α −
zα0
α

)4
+
∑∞
j=8 aj

(
zα

α −
zα0
α

)j−2
,

(4.13)

with z0 and c are arbitrary constants, and the coefficients aj , for j ≥ 8, are uniquely given
by the relation

aj =
6

(j + 1)(j − 6)

j−8∑
k=0

ak+2aj−k−6, j ≥ 8. (4.14)

The resulting series (4.13) is a convergent series in a neighborhood of z0.
It is more convenient to rewrite equation (4.13) in the following alternative form

w(z) =
(
zα

α −
zα0
α

)−2
− 1

10
zα

α

(
zα

α −
zα0
α

)2
− 1

15

(
zα

α −
zα0
α

)3

+ c
(
zα

α −
zα0
α

)4
+O

[(
zα

α −
zα0
α

)5
]
.

(4.15)

The α−derivative for w(z) is given by

dαw
dzα = −2

(
zα

α −
zα0
α

)−3
− 1

10

(
zα

α −
zα0
α

)2
− 1

5
zα

α ( z
α

α −
zα0
α )

− 1
5

(
zα

α −
zα0
α

)2
+ 4c

(
zα

α −
zα0
α

)3
+O

[(
zα

α −
zα0
α

)4
]
.

(4.16)

The requirement for studying asymptotically of w ∼ σ
(
zα

α −
zα0
α

)−2
, is in considering a

transformation
w = v−2, (4.17)

such that, v vanishes at z0 and dαv
dzα is finite. Furthermore, we need to show that v(z) is

α−analytic at z0 from its CODE . Thus, w has a branch point of order −2 at the point z0.
It follows immediately that

v = εw
−1

2 with ε = ±1. (4.18)

Moreover, we need to define the given formal expansion

dαw

dzα
=
∞∑
j=0

bj−3v
j−3. (4.19)

Corresponding to the relation (4.18), equation (4.19) can be expressed as

dαw

dzα
= b−3εw

3
2 + b−2w + b−1εw

1
2 + b0 + b1εw

−1
2 + b2w

−1 + b3w
−3

2 + · · · (4.20)

Substituting equation (4.15) into equation (4.20) and neglecting terms of O
[(

zα

α −
zα0
α

)5
]

,

gives

dαw
dzα = b−3ε

(
zα

α −
zα0
α

)−3
Y

3
2 + b−2

(
zα

α −
zα0
α

)−2
Y + b−1ε

(
zα

α −
zα0
α

)−1
Y

1
2

+ b0 + b1ε
(
zα

α −
zα0
α

)
Y

−1
2 + b2

(
zα

α −
zα0
α

)2
Y −1 + b3ε

(
zα

α −
zα0
α

)3
Y

−3
2

+ · · · ,

(4.21)
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where

Y = 1 +

[
−1
10

zα

α

(
zα

α
−
zα0
α

)4

− 1
15

(
zα

α
−
zα0
α

)5

+ c

(
zα

α
−
zα0
α

)6
]
. (4.22)

Using the expansion

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 + · · · , − 1 < x ≤ 1, (4.23)

and collecting similar terms, equation (4.21) reduces to

dαw
dzα = b−3ε

(
zα

α −
zα0
α

)−3
+ b−2

(
zα

α −
zα0
α

)−2
+ b−1ε

(
zα

α −
zα0
α

)−1
+ b0

+
[−3

20 b−3
zα

α + b1
]
ε
(
zα

α −
zα0
α

)
+
[−1

10 b−3ε− 1
10
zα

α b−2 + b2
] (

zα

α −
zα0
α

)2

+
[ 3

2b−3c− 1
15b−2 − 1

20b−1 + b3
]
ε
(
zα

α −
zα0
α

)3
+O

[(
zα

α −
zα0
α

)4
]
.

(4.24)

In order to find the values of b′js, we need to compare between the two equations (4.16) and
(4.24), henceforth, the following values of the b′js will be obtained

b−3 = −2ε, b−2 = 0, b−1 = 0, b0 = 0, b1 =
−1
2
ε
zα

α
, b2 =

−1
2
, b3 = 7εc, · · · (4.25)

Thus,
dαw

dzα
= −2εv−3 − 1

2
ε
zα

α
v − 1

2
v2 + 7εcv3 + · · · (4.26)

Next, we will use the two transformation formulas:

w(z) = v(z)−2, (4.27a)

dαw(z)

dzα
= −2εv(z)−3 − 1

2
ε
zα

α
v(z)− 1

2
v(z)2 + εu(z)v(z)3. (4.27b)

Hence, we get
dαw

dzα
= −2v−3 d

αv

dzα
. (4.28)

Equation (4.28) can be reduced to
dαv

dzα
=
−1
2
v3 d

αw

dzα
. (4.29)

Substituting equation (4.27b) into equation (4.29), gives
dαv

dzα
= ε+

1
4
ε
zα

α
v4 +

1
4
v5 − 1

2
εuv6. (4.30)

The α−differentiation of equation (4.27b), leads to

d2αw

dz2α = 6εv−4 d
αv

dzα
− 1

2
εv − 1

2
ε
zα

α

dαv

dzα
− v d

αv

dzα
+ εv3 d

αu

dzα
+ 3εuv2 d

αv

dzα
. (4.31)

With the help of equation (4.30), equation (4.31) becomes as follows

d2αw
dz2α = 6v−4 + zα

α −
1
8

(
zα

α

)2
v4 − 3

8ε
zα

α v
5 + zα

α uv
6 − 1

4v
6 + 5

4εuv
7

− 3
2u

2v8 + εv3 dαu
dzα .

(4.32)

Finally, the original differential equation (4.1) and first equation (4.27a), implies

d2αw

dz2α = 6v−4 +
zα

α
. (4.33)

Thus, the comparison between the two equations (4.32) and (4.33), leads to

dαu

dzα
= ε

(
zα

α

)2

v +
3
8
zα

α
v2 − εz

α

α
uv3 +

1
4
εv3 − 5

4
uv4 +

3
2
εu2v5. (4.34)

In summary, it is apparently from the structure of the two equations (4.30) and (4.33) that
this system of equations has a unique solution which is α−analytic in the neighborhood
of z0 and satisfies the initial conditions u(z0) = u0, v(z0) = 0. So we can say that CPI
equation (4.1) possess the generalized Painlevé property (GPP ).
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4.2 Conformable Second Painlevé Equation

In order to study the generalized Painlevé property of the conformable second Painlevé CPII

d2αw

dz2α = 2w3 +
zα

α
w + γ, (4.35)

we apply the methodology which is derived in Section 3.

Claim: The only algebraic singularities of equation (4.35) are movable poles of order one.
Furthermore, there is a unique solution w(z, z0, w0,

dαw0
dzα ) satisfies equation (4.35). This solution

is α−holomorphic in some neighborhood of z = z0, where it takes on the value w0 while its
derivatives equals dαw0

dzα .

(i) Dominant behavior:
Coinciding with the computation of the dominant behavior, we need to define

w ∼ σ
(
zα

α
−
zα0
α

)k
, (4.36)

and this yields
d2αw

dz2α = σk(k − 1)
(
zα

α
−
zα0
α

)k−2

. (4.37)

Using equations (4.36) and (4.37) to substitute w and d2αw
dz2α in (4.35), gives

σk(k − 1)
(
zα

α
−
zα0
α

)k−2

∼ 2σ3
(
zα

α
−
zα0
α

)3k

+ σ
zα

α

(
zα

α
−
zα0
α

)k
+ γ. (4.38)

Equation (4.38) simplifies at once to the form

σk(k − 1)
(
zα

α −
zα0
α

)k−2
∼ 2σ3

(
zα

α −
zα0
α

)3k
+ σ

(
zα

α −
zα0
α

)k+1

+ σ
zα0
α

(
zα

α −
zα0
α

)k
+ γ.

(4.39)

For which two or more than two terms in the equation may be balancing the value of k must
be k = −1, hence, the dominant equation will be given by

d2αw

dz2α ∼ 2w3. (4.40)

Substituting from (4.36) into (4.40), as a result we will obtain

σ(1− σ2) = 0,

and so, σ = 0 or σ = ε, we neglect σ = 0 and take σ = ε with ε = ±1.

(ii) Resonances:
To find the Resonances, it is convenient to write w in the form

w = σ

(
zα

α
−
zα0
α

)−1

+ ρ

(
zα

α
−
zα0
α

)r−1

. (4.41)

Employing w in the dominant equation (4.40), the relevant equation will be given by

2σ
(
zα

α −
zα0
α

)−3
+ (r − 1)(r − 2)ρ

(
zα

α −
zα0
α

)r−3
∼ 2σ3

(
zα

α −
zα0
α

)−3
+

6σ2ρ
(
zα

α −
zα0
α

)r−3
+ 6σρ2

(
zα

α −
zα0
α

)2r−3
+ 2ρ3

(
zα

α −
zα0
α

)3r−3
.

(4.42)

Consequently,
(r − 1)(r − 2)ρ = 6σ2ρ, (4.43)

if ρ 6= 0, and for σ = ε, we get (r + 1)(r − 4) = 0, and so, the resonances are r = −1, 4.
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(iii) Constant of integration:
In order to provide a constant of integration, we suppose there is a series solution around
an arbitrary point z0 in the complex z−plane of the form

w(z) =
∞∑
j=0

aj

(
zα

α
−
zα0
α

)j−1

. (4.44)

From which we will obtain

dαw

dzα
=
∞∑
j=0

(j − 1)aj
(
zα

α
−
zα0
α

)j−2

, (4.45a)

d2αw

dz2α =
∞∑
j=0

(j − 1)(j − 2)aj(
zα

α
−
zα0
α
)j−3, (4.45b)

w2 =
∞∑
j=0

j∑
k=0

aj−kak

(
zα

α
−
zα0
α

)j−2

, (4.45c)

w3 =
∞∑
j=0

j∑
l=0

l∑
k=0

aj−lal−kak

(
zα

α
−
zα0
α

)j−3

, (4.45d)

zα

α
w =

∞∑
j=0

aj

(
zα

α
−
zα0
α

)j
+
zα

α

(
zα

α
−
zα0
α

)j−1

. (4.45e)

The substitution of equations (4.45) into equation (4.35) with some simplification, gives

∑∞
j=0

[
(j − 1)(j − 2)aj − 2

∑j
l=0
∑l
k=0 aj−lal−kak

] (
zα

α −
zα0
α

)j−3

−
∑∞
j=3 aj−3

(
zα

α −
zα0
α

)j−3
− zα0

α

∑∞
j=2 aj−2

(
zα

α −
zα0
α

)j−3
+ γ = 0.

(4.46)

The conventionally treatment of equation (4.46) leads to compute the coefficients a′js.
Henceforth, the formal expansion of w(z) near z = z0 can be given by

w(z) = ε
(
zα

α −
zα0
α

)−1
− 1

6ε
zα0
α

(
zα

α −
zα0
α

)
− 1

4(ε+ γ)
(
zα

α −
zα0
α

)2

+ c
(
zα

α −
zα0
α

)3
+O

[(
zα

α −
zα0
α

)4
]
.

(4.47)

It is of some interest to rewrite equation (4.47) in an equivalent form as:

w(z) = ε
(
zα

α −
zα0
α

)−1
− 1

6ε
zα

α

(
zα

α −
zα0
α

)
− 1

12(ε+ 3γ)
(
zα

α −
zα0
α

)2

+ c
(
zα

α −
zα0
α

)3
+O

[(
zα

α −
zα0
α

)4
]
.

(4.48)

However, the α−derivative for w(z) is given by

dαw
dzα = −ε

(
zα

α −
zα0
α

)−2
− 1

6ε
(
zα

α −
zα0
α

)
− 1

6ε
zα

α −
1
6(ε+ 3γ)

(
zα

α −
zα0
α

)
+ 3c

(
zα

α −
zα0
α

)2
+O

[(
zα

α −
zα0
α

)3
]
.

(4.49)

Now, to prove that w ∼ σ
(
zα

α −
zα0
α

)−1
is a asymptotic, we define a new variable

w = v−1, (4.50)

from which one can obtain
v = w−1, (4.51)
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by construction, v vanishes at z0, whereas, d
αv
dzα is finite.

Now, we need to show that v(z) is α−analytic at z0 from its CODE, and so, it follows from
v = w−1 that w has a branch point of order −1 at z0.
First step, we have to set

dαw

dzα
=
∞∑
j=0

bj−2v
j−2. (4.52)

It follows immediately that:

dαw

dzα
= b−2w

2 + b−1w + b0 + b1w
−1 + b2w

−2 + · · · (4.53)

The successive application of w equation (4.48) into equation (4.53) with neglecting terms

of O
[(

zα

α −
zα0
α

)4
]

, leads to

dαw
dzα = b−2

(
zα

α −
zα0
α

)−2
Y 2 + b−1ε

(
zα

α −
zα0
α

)−1
Y + b0

+ b1ε
(
zα

α −
zα0
α

)
Y −1 + b2

(
zα

α −
zα0
α

)2
Y −2 + · · · ,

(4.54)

where

Y = 1 +

[
−1
6
zα

α

(
zα

α
−
zα0
α

)2

− 1
12
ε(3γ + ε)(

zα

α
−
zα0
α
)3 + cε

(
zα

α
−
zα0
α

)4
]
. (4.55)

With the help of the expansion (4.23), and by usual simplifications equation, (4.54) can be
reduced to the relation

dαw
dzα = b−2

[(
zα

α −
zα0
α

)−2
− 1

3
zα

α −
1
6ε(3γ + ε)

(
zα

α −
zα0
α

)
+ 2cε

(
zα

α −
zα0
α

)2
]

+ b−1

[
ε
(
zα

α −
zα0
α

)−1
− 1

6ε
zα

α

(
zα

α −
zα0
α

)
− 1

12(3γ + ε)
(
zα

α −
zα0
α

)2
]

+ b0 + b1ε
(
zα

α −
zα0
α

)
+ b2

(
zα

α −
zα0
α

)2
+O

[(
zα

α −
zα0
α

)3
]
.

(4.56)

Corresponding to the two equations (4.49) and (4.56), the values of the b′js will be given
as:

b−2 = −ε, b−1 = 0, b0 =
−1
2
ε
zα

α
, b1 =

−1
2
− γε, b2 = 5c, · · · (4.57)

In this case, d
αw
dzα equation (4.52) reads

dαw

dzα
= −εv−2 − 1

2
ε
zα

α
−
(

1
2
+ γε

)
v + 5cv2 + · · · (4.58)

As a next step, we will use the two transformation formulas:

w(z) = v(z)−1, (4.59a)

dαw

dzα
= −εv−2 − 1

2
ε
zα

α
−
(

1
2
+ γε

)
v + u(z)v(z)2. (4.59b)

The α−derivative of equation (4.59a), gives

dαw

dzα
= −v−2 d

αv

dzα
, (4.60)

from which we can obtain
dαv

dzα
= −v2 d

αw

dzα
. (4.61)

Using the definition of d
αw
dzα given in equation (4.59b), then dαv

dzα has the expression

dαv

dzα
= ε+

1
2
ε
zα

α
v2 +

(
1
2
+ γε

)
v3 − uv4. (4.62)
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The α−derivative of equation (4.59b), leads to

d2αw

dz2α = 2εv−3 d
αv

dzα
− 1

2
ε−

(
1
2
+ γε

)
dαv

dzα
+ v2 d

αu

dzα
+ 2uv

dαv

dzα
. (4.63)

Direct substitution of d
αv
dzα equation (4.62) into equation (4.63), yields

d2αw
dz2α = 2v−3 + zα

α v
−1 + 2ε

( 1
2 + γε

)
− 2εuv − 1

2ε− ( 1
2 + γε)ε

− 1
2ε
( 1

2 + γε
)
zα

α v
2 −

( 1
2 + γε

)2
v3 −

( 1
2 + γε

)
uv4 + v2 dαu

dzα

+ 2εuv + ε z
α

α uv
3 + 2

( 1
2 + γε

)
v4 − 2u2v5.

(4.64)

Now, the CPII equation (4.35) and equation (4.59a), implies that

d2αw

dz2α = 2v−3 +
zα

α
v−1 + γ. (4.65)

In this case, the two equations (4.64) and (4.65), give

dαu
dzα = ε

2

( 1
2 + γε

)
zα

α +
( 1

2 + γε
)2
v +

( 1
2 + γε

)
uv2

−ε z
α

α uv − 2
( 1

2 + γε
)
v2 + 2u2v3.

(4.66)

It follows that the system of equations (4.62) and (4.66) has an unique solution which is
α−analytic in the neighborhood of z0 and satisfies the initial conditions u(z0) = u0, v(z0) =
0. This can be shown that equation (4.35) is possessing the generalized Painlevé property.

In the reminder of this subsection, we will study some special cases.
For an example, from equation (4.66) if we set u = 0, we will have γ = −1

2 ε, henceforth,
equation (4.62) becomes as follows:

dαv

dzα
= ε+

1
2
ε
zα

α
v2, (4.67)

the resulting equation is the so-called a conformable Ricatti equation (CRicatti), which is given
in [40]. Equation (4.67) can be linearized by the transformation

v =
−2α
εzαϕ

dαϕ

dzα
, (4.68)

to the given 2α−order conformable linear differential equation

d2αϕ

dz2α −
α

zα
dαϕ

dzα
+

1
2
zα

α
ϕ = 0. (4.69)

Solving this linear equation is equivalent to solve the CPII with γ = −1
2 ε.

On the other hand, the successive application of the transformation
w = v−1 into equation (4.67), leads to

dαw

dzα
= −εw2 − 1

2
ε
zα

α
, (4.70)

which is also a CRicatti equation. By the transformation w = ε
φ
dαφ
dzα , equation (4.70) can be

transform to the given conformable fractional Airy (CAiry) equation

d2αφ

dz2α +
1
2
zα

α
φ = 0, (4.71)

when α = 1 equation (4.71) is the classical version of Airy equation given in [52].
Coinciding with the theory of conformable Fourier (C−Fourier) transform

[
Φ($) =

∫∞
−∞ φ(z)e−i$

zα

α zα−1dz
]

in [16], the successive application into equation (4.71) leads to the following first order ordinary
differential equation

(i$)2
Φ +

1
2
i
d

d$
Φ = 0. (4.72)
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By the usual computations of equation (4.72), One can achieve

Φ($) = ce
−2

3 i$
3
, (4.73)

where c is a constant of integration. Now, applying the inverseC−Fourier transform
[
φ(z) = 1

2π

∫∞
−∞Φ($)ei$

zα

α d$
]

in [16], we obtain

φ(z) =
c

π

∫ ∞
−∞

ei(
−2

3 $
3+$ zα

α )d$. (4.74)

It is convenient to use the change of variables y = −1
3√2

zα

α and k = − 3
√

2$ transforms (4.74) into

ϕ(y) =
−c
3
√

2

{
1

2π

∫ ∞
−∞

ei(
k3
3 +ky)dk

}
. (4.75)

Apparently, the quantity in curly brackets behaves as Airy function (Ai(y)) [52].

5 Some Properties of Conformable Painlevé Equations

Here we would like to present an additional aspect to the introduction Of the conformable
Painlevé equations.

5.1 Isomonodromy Problems Of CPI and CPII

Conformable Painlevé equations are expressed as the compatibility condition of Lax pairs that
can be used to study asymptotics and connection formulae.

Isomonodromy Problems Of CPI

CPI can be considered as the isomonodromic condition (the compatibility condition) for the
linear system

∂αY (z, t)

∂zα
=

(
A4

(
zα

α

)4

+A2

(
zα

α

)2

+A1
zα

α
+A0 +A−1

(
zα

α

)−1
)
Y (z, t), (5.1a)

∂βY (z, t)

∂tβ
=

(
B1
zα

α
+B−1

(
zα

α

)−1
)
Y (z, t), (5.1b)

where Ai, i = 4, 2, 1, 0,−1, and Bj , j = 1,−1 are matrices whose entries depend on the
solution u(t) of CPI equation (4.1), and

A4 = −4iσ3, A2 = 4uσ2, A1 = 2uβt σ1, A0 = −i
(

2u2 +
tβ

β

)
(σ3 − iσ2), A−1 = −

1
2
σ1,

(5.2a)

B1 = −iσ3, B−1 = iu(σ3 − iσ2).
(5.2b)

The Pauli matrices σj , j = 1, 2, 3 are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.3)

The compatibility condition of equations (5.1a) and (5.1b) is

∂β

∂tβ
∂αY (z, t)

∂zα
=

∂α

∂zα
∂βY (z, t)

∂tβ
, (5.4)
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and this yields the condition:

∂βA

∂tβ
− ∂αB

∂zα
+ [A, B] = 0, (5.5)

where the commutator [A, B] is given by

[A, B] = AB −BA. (5.6)

By using A = A4
(
zα

α

)4
+A2

(
zα

α

)2
+A1

zα

α +A0 +A−1
(
zα

α

)−1
, and

B = B1
zα

α +B−1
(
zα

α

)−1
, equation (5.5) gives

[A4, B1] = [A0, B−1] = 0, [A4, B−1] + [A2, B1] = 0, −B−1 + [A−1, B−1] = 0,
∂βA2
∂tβ

+ [A1, B1] = 0, ∂βA1
∂tβ

+ [A2, B−1] + [A0, B−1] = 0,
∂βA0
∂tβ
−B1 + [A1, B−1] + [A−1, B1] = 0.

(5.7)

Substituting Ai, i = 4, 2, 1, 0,−1 and Bj , j = 1,−1, from equations (5.2) into equations
(5.7) yields the CPI .

Isomonodromy Problems Of CPII

The CPII can be written as the compatibility condition of the following linear system of equa-
tions:

∂αΦ(y, τ)

∂yα
=

(
B1
τβ

β
+B0

)
Φ(y, τ), (5.8a)

∂βΦ(y, τ)

∂τβ
=

(
A2

(
τβ

β

)2

+A1
τβ

β
+A0 +A−1

(
τβ

β

)−1)
Φ(y, τ), (5.8b)

where Ai, i = 2, 1, 0,−1, and Bj , j = 1, 0 are matrices whose entries depend on the solution
w(y) of CPII equation (4.35), and

A2 = −4iσ3, A1 = 4wσ1, A0 = −i
(

2w2 +
yα

α

)
σ3 − 2

dα

dyα
w, A−1 = −γσ1, (5.9a)

B1 = −iσ3, B0 = wσ1, (5.9b)

The compatibility condition of equations (5.8a) and (5.8b) is given by

∂β

∂τβ
∂αΦ(y, τ)

∂yα
=

∂α

∂yα
∂βΦ(y, τ)

∂τβ
, (5.10)

which yields the condition
∂βB

∂τβ
− ∂αA

∂yα
+ [B, A] = 0, (5.11)

Using A = A2

(
τβ

β

)2
+A1

τβ

β +A0 +A−1

(
τβ

β

)−1
, B = B1

τβ

β +B0, equation (5.11) gives

[B1, A2] = 0, [B0, A−1] = 0, [B1, A1] + [B0, A2] = 0,
∂αA1
∂yα = [B1, A0] + [B0, A1],
∂αA0
∂yα = B1 + [B1, A−1] + [B0, A0].

(5.12)

Substituting Ai, i = 2, 1, 0,−1, and Bj , j = 1, 0, from equations (5.9) into equations (5.12)
yields the CPII .
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The matrices A and B which are given by equations (5.9) are derived from the Lax pair of
CmKdV equation

(
∂βu
∂tβ
− 6u2 ∂αu

∂xα + ∂3αu
∂x3α = 0

)
,

∂βψ(x, t)

∂tβ
=

 −4i
(
kβ

β

)3
− 2ik

β

β u
2 4

(
kβ

β

)2
u+ 2ik

β

β u
α
x − uαxx + 2u3

4
(
kβ

β

)2
u− 2ik

β

β u
α
x − uαxx + 2u3 4i

(
kβ

β

)3
+ 2ik

β

β u
2

ψ(x, t),

(5.13a)

∂αψ(x, t)

∂xα
=

(
−ik

β

β u

u ik
β

β

)
ψ(x, t).

(5.13b)

Through the scaling reduction

z = xt
−β
3α , u(x, t) = v(z)t

−β
3 , λ = kt

1
3 , ψ(x, t) = Ψ(z, λ), (5.14)

equations (5.13) is converted to

∂βΨ(z,λ)
∂tβ

=

[
−12i
β σ3

(
λβ

β

)2
+ 12

β vσ1
λβ

β +−i
(

6
β v

2 + zα

α

)
σ3 − 6

β v
α
z σ2

]
Ψ(z, λ)

+
[
−3
β v

α
zz +

6
β v

3 + zα

α v
]
σ1

(
λβ

β

)−1
Ψ(z, λ),

(5.15)

∂αΨ(z, λ)

∂zα
=

(
−iλ

β

β
σ3 + vσ1

)
Ψ(z, λ). (5.16)

Thenceforward, the scale

y =

(
β

3

) 1
3α

z, v =

(
β

3

) 1
3

w, λ =

(
β

3

) 1
3β

τ, Ψ(z, λ) = Y (y, τ), (5.17)

converts the Lax pair equations (5.13) to the Lax pair of CPII equations (5.8) and (5.9).

5.2 The Generalized Hirota Bilinear Form

The fundamental idea behind Hirota’s direct method is changing into new variables in which
the solutions have the simplest form. In this part we discuss how the Painlevé equations can be
written in terms of entire function, and so, in the generalized Hirota bilinear form

The Generalized Hirota Bilinear Form of CPI

Let us introduce the transformation

y = − d2α

dz2α (logϕ(z)) =
−ϕd2αϕ+ (dαϕ)2

ϕ2 , (5.18)

where dα = dα

dzα , and d2α = d2α

dz2α Henceforth,

d2αy

dz2α =
−12ϕ(dαϕ)2d2αϕ+ 3ϕ2(d2αϕ)2 + 4ϕ2dαϕd3αϕ− ϕ3d4αϕ+ 6(dαϕ)4

ϕ4 , (5.19a)

y2 =
ϕ2(d2αϕ)2 − 2ϕd2αϕ(dαϕ)2 + (dαϕ)4

ϕ4 . (5.19b)

The substitution of equations (5.19) into CPI equation (4.1), gives

ϕd4αϕ− 4dαϕd3αϕ+ 3(d2αϕ)2 +
zα

α
ϕ2 = 0. (5.20)
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Now, equation (5.20) can be written in the form

1
2
D4α
z (ϕ.ϕ) +

zα

α
ϕ2 = 0. (5.21)

Hence, equation (5.21) can be rewritten in an equivalent form[
D4α
z + 2

zα

α

]
ϕ.ϕ = 0, (5.22)

which is called the generalized Hirota bilinear representation of CPI . The generalized Hirota
operator D4α

z (ϕ.ϕ) is given by

D4α
z (ϕ.ϕ) =

[
dα

dzα1
− dα

dzα2

]4
|z1=z2=z(ϕ.ϕ)

= 2ϕd
4αϕ
dz4α − 8d

αϕ
dzα

d3αϕ
dz3α + 6

(
d2αϕ
dz2α

)2
.

(5.23)

The Generalized Hirota Bilinear Form of CPII

Let us introduce the transformation

w(z) = dα

dzα

{
ln
[
F (z)
G(z)

]}
= dαF (z)

F (z) −
dαG(z)
G(z) .

(5.24)

From which we will have

d2αw

dz2α =
G3[−3FdαFd2αF + F 2d3αF + 2(dαF )3] + F 3[3GdαGd2αG−G2d3αG− 2(dαG)3]

F 3G3 ,

(5.25a)

w3 =
G3(dαF )3 − 3FG2(dαF )2dαG+ 3F 2GdαF (dαG)2 − F 3(dαG)3

F 3G3 .

(5.25b)

The substitution from equations (5.25) into CPII equation (4.35) with some simplifications,
leads to

Gd3αF − 3d2αFdαG+ 3dαFd2αG− Fd3G− zα

α (GdαF − FdαG)− γFG =
3(GdαF−FdαG)

FG

[
Gd2αF − 2dαFdαG+ Fd2αG

]
.

(5.26)

If we use a separate function λ(z), then equation (5.26) can be written in a decoupling form as:

Gd2αF − 2dαFdαG+ Fd2αG = −λ(z)FG,

(5.27a)

Gd3αF − 3d2αFdαG+ 3dαFd2αG− Fd3G =

[
zα

α
− 3λ(z)

] [
GdαF − Fd3αG

]
+ γFG.

(5.27b)

By using the generalized Hirota Dα
z operator

Dα
z (F .G) =

(
dα

dzα1
− dα

dzα2

)
[F (z1)G(z2)] |z1=z2=z = GdαF − FdαG,

equations (5.27a) and (5.27b) can be written in a condensed form as follows:

[D2α
z + λ(z)](F .G) = 0, (5.28a){

D3α
z −

[
zα

α
− 3λ(z)

]
Dα
z − γ

}
(F .G) = 0. (5.28b)
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The generalized Hirota operators D2α
z and D3α

z are given by

D2α
z (F .G) =

[
dα

dzα1
− dα

dzα2

]2
|z1=z2=z(F .G)

= Gd2αF − 2dαFdαG+ Fd2αG,
(5.29)

D3α
z (F .G) =

[
dα

dzα1
− dα

dzα2

]3
|z1=z2=z(F .G)

= Gd3αF − 3d2αFdαG+ 3dαFd2αG− Fd3G.
(5.30)

5.3 Hamiltonian Structure

Conformable Painlevé equations can be written as a Hamiltonian system.

Hamiltonian Structure of CPI

CPI can be written as the Hamiltonian system

dαq

dzα
=
∂HI

∂p
= p, (5.31a)

dαp

dzα
= −∂HI

∂p
= 6q2 +

zα

α
, (5.31b)

where HI(q, p) is the Hamiltonian defined by

HI =
1
2
p2 − 2q3 − zα

α
q. (5.32)

If we eliminate p from the equations (5.31) then it is easily to show that q satisfies CPI , and p
is defined by first equation of (5.31). However, the elimination of q from the equations (5.31),
leads to

q = ±1
6

(
dαp

dzα
− zα

α

) 1
2

, (5.33)

from which we will obtain

d2αp

dz2α = 1± 12p
(
dαp

dzα
− zα

α

) 1
2

. (5.34)

Therefore, if q satisfies CPI , then p which is given by equation (5.31a) satisfies equation (5.34),
and conversely, if p satisfies equation (5.34), then q which is given by equation (5.33) satisfies
CPI .

Hamiltonian Structure of CPII

CPII can be written as the Hamiltonian system

dαq

dzα
=
∂HII

∂p
= p− q2 − 1

2
zα

α
, (5.35a)

dαp

dzα
= −∂HII

∂p
= 2pq + γ +

1
2
, (5.35b)

where HII(q, p, γ) is the Hamiltonian defined by

HII =
1
2
p2 −

(
q2 +

1
2
zα

α

)
p−

(
γ +

1
2

)
q. (5.36)

Eliminating p from equations (5.35) then q satisfies CPII , detail as follows: The α−derivative
of equation (5.35), gives

d2αq

dz2α =
dαp

dzα
− 2q

dαq

dzα
− 1

2
. (5.37)
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Substituting dαp
dzα from equation (5.35b) into equation (5.37), leads to

d2αq

dz2α = 2qp+ γ − 2q
dαq

dzα
, (5.38)

For q to be satisfying CPII , one can find

p =
dαq

dzα
+ q2 +

1
2
zα

α
. (5.39)

Whereas, the elimination of q from equations (5.35), leads to

q =
1
2
p−1

[
dαp

dzα
− γ − 1

2

]
. (5.40)

Henceforth, one can obtain

p
d2αp

dz2α =
1
2

(
dαp

dzα

)2

+ 2p3 − zα

α
p2 − 1

2

(
γ +

1
2

)2

, (5.41)

the resulting equation is the conformable P34 (CP34) which is given in [40]. Furthermore, if q
satisfies CPII , then p which is given by equation (5.39) satisfies (CP34), and conversely, if p
satisfies (CP34), then q which is given by equation (5.40) satisfies CPII . Thus, there is one-to-
one correspondence between solutions of CPII and (CP34).

5.4 The generalized Bäcklund transformations

The generalized Bäcklund transformations map solutions of a given conformable Painlevé equa-
tion to solutions of the same Painlevé equation, but with different values of the parameters.

• The generalized Bäcklund transformations for CPII are given by

(i) Suppose that w(z;−γ) is a solution of the given CPII

d2α

dz2αw(z;−γ) = 2w3 +
zα

α
w − γ, (5.42)

then
d2α

dz2αw(z;−γ) = −
[
2(−w)3 + zα

α (−w) + γ
]

= − d2α

dz2α (−w(z; γ)) .
(5.43)

Thus, w(z;−γ) = −w(z; γ).
(ii) Also, if w(z; γ) is a solution of the CPII equation then

w(z; γ ± 1) = −w(z; γ)− 2γ ± 1

2w2(z; γ)± 2d
αw(z;γ)
dzα + zα

α

(5.44)

are also solutions of CPII with the parameter γ ± 1 and provided that

2w2(z; γ)± 2
dαw(z; γ)
dzα

+
zα

α
6= 0.

• CPII possess hierarchies of rational and algebraic solutions for special values of the pa-
rameters, as we illustrate here.

(i) For every γ = n ∈ Z there exists a unique solution of CPII ; that is, for w(z; γ) is a
solution of CPII with γ = n ∈ Z, then Bäcklund transformation (5.44) becomes as:

w(z;n+ 1) = −w(z;n)− 2n+ 1

2w2(z;n) + 2d
αw(z;n)
dzα + zα

α

, (5.45)

generates a hierarchy of rational solutions of CPII from the "seed solution" w(z; 0) =
0. For instance
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when n = 0, w(z; 1) = −
(
zα

α

)−1
,

when n = 1, w(z; 2) =
(
zα

α

)−1 − 3( z
α

α )2

4+( z
α

α )3 .

(ii) For every γ = n+ 1
2 with n ∈ Z, there exists a unique one-parameter family of classical

solutions of CPII generates from the "seed solution" w(z; 1
2) =

1
φ
dαφ
dzα , where φ is the

solution of CAiry equation (4.71). By Bäcklund transformation (5.44) each of which
is rationally written in terms of CAiry functions.

(iii) For all other values of α, the solution of CPII is nonclassical (transcendental).

• The following special Bäckland transformation of CPII

W

(
ζ;

1
2
ε

)
= 2

−1
3 εw−1(z; 0)

dα

dzα
w(z; 0), (5.46a)

w2(z; 0) = 2
−1

3

{
W 2

(
ζ;

1
2
ε

)
− ε d

α

dζα
W

(
ζ;

1
2
ε

)
+

1
2
ζα

α

}
, (5.46b)

where ζ = (−2)
1

3α z, ε = ±1, maps between solutions for γ = 0 and solutions for γ = 1
2ε,

the detail as follows

dαW
dζα = −(2)−1

3 εw−2
(
dαw
dzα

)2 dαz
dζα z

α−1 + 2
−1

3 εw−1 d2αw
dz2α

dαz
dζα z

α−1

= (−2)
−2

3 εw−2
(
dαw
dzα

)2 − (−2)
−2

3 εw−1 d2αw
dz2α

= εW 2 + (−2)
1
3 εw2 − (−2)

−2
3 ε z

α

α ,

(5.47)

and
d2αW

dζ2α = 2εW
dαW

dζα
+ 2(−2)

1
3 εw

dαw

dzα
dαz

dζα
zα−1 − (−2)−1ε, (5.48)

which simplifies at once to the form

d2αW

dζ2α = 2W 3 +
ζα

α
W +

1
2
ε. (5.49)

Conversely, by solving equation (5.46a) for d
αw
dzα

dαw

dzα
= 2

1
3 εwW, (5.50)

one can actually differentiate equation (5.50) once to be as

d2αw

dz2α = 2
1
3 ε
dαw

dzα
W + 2

1
3 εw

dαW

dζα
dαζ

dα
ζα−1. (5.51)

Solving equation (5.46b) for dαW
dζα , then substituting the result and equation (5.50) into

equation (5.51), leads to
d2αw

dz2α = 2w3 +
zα

α
w. (5.52)

Briefly we can say that, the combination of Bäcklund transformation equation (5.44) with
the transformation (5.46) provides a relation between two CPII equations whose parame-
ters γ are either integers or half odd-integers. In other word, there is a mapping between
the rational solutions of CPII , which arise when γ = n for n ∈ Z, and the one-parameter
CAiry function solutions, which arise when γ = n+ 1

2 for n ∈ Z.

• CPII has associated Affine Weyl group. An affine Weyl group is essentially a group of
translations and reflections on a lattice. For the Painlevé equations, this lattice is in the
parameter space [46].
Whereas, the composition of two Bäcklund transformations is a Bäcklund transformation,
the affine Weyl group W =< S, T+ > of generalized Bäcklund transformations is gener-
ated by
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a reflection S : w(z;−γ) = −w(z; γ) , γ ∈ C,
and
a translation T± : w(z; γ ± 1) = −w(z; γ)− 2γ±1

2w2(z;γ)±2 d
αw(z;γ)
dzα + zα

α

,

with

S2 = T+T− = T−T+ = I

where I is the identity transformation.

5.5 Some Other Properties to the Solutions of CPII

In this part, many properties which CPII possess are studied.

• Generic solution of CPII equation (4.47) are α−meromorphic functions. These generic
solutions have an infinity set of simple poles accumulating at the essential singularity at
z =∞.

• CPII admits the finite group of order 6 of scalings

w = ελ2αφ, z = λζ, γ = εµ, with λ3 = 1, and ε2 = 1. (5.53)

This immediately yields the set of equations

d2αw

dz2α = ε
d2αφ

dζ2α , (5.54a)

w3 = εφ3, (5.54b)

zα

α
w = ε

ζα

α
φ. (5.54c)

Henceforth, the substitution of equations (5.54) into CPII , leads to

d2αw

dz2α − 2w3 − zα

α
w − γ = ε

[
d2αφ

dζ2α − 2φ3 − ζα

α
φ− µ

]
, (5.55)

that is, w is a solution of CPII if and only if φ is a solution of CPII .

• CPII can be obtained by the scaling reduction

z = xt
−β
3α , ψ = t

−β
3 w(z) (5.56)

of the conformable modified Korteweg-de Vries (CmKdV ) equation

∂βψ

∂tβ
− 6ψ2 ∂

αψ

∂xα
+
∂3αψ

∂x3α = 0, (5.57)

where 0 < β, α ≤ 1, and β, α are parameters describing the order of the conformable time
and space derivatives, respectively. Then after integrating once, w(z) satisfies CPII with γ
the arbitrary constant of integration [40].
Also, CPII can be reduced by the similarity reduction

ζ = xt
−β
3α , ψ = t

−2β
3 Ψ(ζ) (5.58)

of the conformable Korteweg-de Vries (CKdV ) equation

∂βψ

∂tβ
+ 6ψ

∂αψ

∂xα
+
∂3αψ

∂x3α = 0, (5.59)

henceforth, the scale ω =
(
β
3

) 1
3α
ζ, Ψ(ζ) = ω =

(
β
3

) 2
3
W (ω) transformed equation (5.59)

to
d3αW

dω3α + 6W
dαW

dωα
− ωα

α

dαW

dωα
− 2W = 0. (5.60)
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There exist a one-to-one correspondence between solutions of equation (5.60) and those of
CPII , given by

W = −d
αw

dωα
− w2, w =

dαW
dωα + γ

2W − ωα

α

, (5.61)

for further detail see [40].

• Under the scale w = εy + 1
ε5 ,

zα

α = ε2x− 6
ε10 , γ = 4

ε15 , CFPII can be converted to

d2y

dx2 = 6y2 + x+ ε6(2y3 + xy). (5.62)

Letting ε→ 0 in equation (5.62), we find

d2y

dx2 = 6y2 + x, (5.63)

apparently, equation (5.63) is the classical first Painlevé equation (PI ).

Also, it is of some interest to examine the transformation

w = εy +
1
ε5 ,

zα

α
= ε2x

α

α
− 6
ε10 , γ =

4
ε15

into CPII . Here we obtain

d2αy

dx2α = 6y2 +
xα

α
+ ε6

(
2y3 +

xα

α
y

)
. (5.64)

Letting ε→ 0, gives
d2αy

dx2α = 6y2 +
xα

α
. (5.65)

The resulting equation is the conformable first Painlevé equation CPI .

6 Conclusion

We proposed a generalization of Painlevé test for conformable fractional ordinary differential
equations, and introduced a sufficient condition of the generalized Painlevé property. The differ-
ential equations are considered to be in the form

dnαw(z)

dznα
= F

(
z, w, ...,

d(n−1)αw

dz(n−1)α

)
, 0 < α ≤ 1

where F is α−analytic in z and rational in other arguments. The analysis is successfully applied
to investigate the generalized Painlevé property of CPI , also to CPII equations. Furthermore,
we gave exact solution to (CPI and CPII) in terms of the Laurent series and shows that the
general solution is α−meromorphic in z to its critical points. Moreover, we show that for a
particular choice of the parameter in the CPII admit a special solution in terms of Airy function.

PI can be obtained from CPII by the process of contraction. In a similar way, it was possible
to obtain the associated transformation for CPI from the transformation for CPII .

An introduction to some of the fascinating properties which (CPI and CPII) possess are
given. The isomondromy problems, Hirota Bilinear Form, Hamiltonian Structure, Bäcklund
transformations and others are discussed.

It is interesting to apply the analysis to other conformable Painlevé equations. In addition,
there are several very important open problems related to the area of conformable Painlevé equa-
tions.
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