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Abstract In this paper, a decoding procedure for cyclic codes of odd length over the ring
Fp + vFp is presented. Also a decoding method for cyclic codes over ring R is proposed when
R ' R1 × R2 × · · · × Rt and decoding of cyclic codes over Ri is available. Since any finite
principal ideal ring is isomorphic to a finite product of chain rings, we can decode cyclic codes
over finite principal ideal ring, when decoding of cyclic codes over chain rings is given

1 Introduction

A class of constacyclic codes over Fp + vFp, where p is a odd prime number, where studied by
Zhu et al. in [7]. They introduced a Gray map from the ring Fp + vFp to F 2

p and proved that
the image of a (1 − 2v)-constacyclic code of length n over Fp + vFp under this Gray map is
a distance-invariant linear cyclic code of length 2n over Fp. Recently quadratic residue codes
over Fp + vFp have been considered by Kaya et al. in [6]. The main purpose of this article is
presentation of a decoding procedure for cyclic codes over finite ring R, where R is isomorphic
to a finite product of chain rings. Specially we present a method for decoding cyclic codes of odd
length over the ring Fp+vFp, with v2 = v. The rest of this paper is organized as follows. Section
2 recalls some basic definitions and notations that are used in the sequel of this paper. A decoding
procedure for cyclic codes over the ring Fp + vFp is presented in section 3. A decoding method
for cyclic codes over finite ring R, when R is isomorphic to a finite product of local rings is
proposed in section 4.

2 Preliminaries

In this paper, we assume that all rings are commutative with identity. A finite ring R is called a
chain ring if its ideals ordered by inclusion. Examples of finite chain rings are Galois rings and
the ring Zps of integer modulo ps.Obviously a finite chain ring is a local ring. It is easy to see
that a ring is finite chain ring if and only if its maximal ideal is a principal ideal. Let m = 〈a〉 be
a unique maximal ideal of finite chain ring R, where a is a nilpotent element of R. The smallest
positive integer t such that at = 0 is called the nilpotency index of a. A ring R is called principal
ideal ring if each ideal of R is a principal ideal.

Theorem 2.1. (see [4], Proposition 2.7) Let R be a finite commutative ring. Then the following
conditions are equivalent:

(i)R is a principal ideal ring.
(ii)R is isomorphic to a finite product of chain rings

Moreover, the decomposition in (ii) is unique up to the order of factors. 2
.

A linear code C of length n over a ring R is an R-submodule of Rn. Linear code C is
said to be cyclic if for every codeword c = (c0, c1, . . . , cn−1) ∈ C its cyclic-shift σ(c) =
(cn−1, c0, . . . , cn−2) ∈ C, negacyclic if γ(c) = (−cn−1, c0, . . . , cn−2) ∈ C and λ-constacyclic
if τ(c) = (λcn−1, c0, . . . , cn−2) ∈ C, where λ is a unite in R. Let R ' R1 ×R2 × · · ·Rt, then
R ' e1R1 ⊕ e2R2 ⊕ · · · ⊕ etRt, where for i = 1, 2, . . . , t idempotent ei is a t-tuple such that
the i-th component is equal to 1 and all other components are zero. Let I be an ideal of the ring
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R, the canonical homomorphism π : R → R
I is defined by π(x) = x + I . For each positive

integer n this homomorphism can be extended to ψ : Rn → (RI )
n by

ψ(x1, x2, . . . , xn) = (x1 + I, x2 + I, . . . , xn + I)

Let R be a finite local ring with unique maximal ideal m. Since m is nilpotent, the smallest
s ≥ 1 such that ms = 0 is called the index of nilpotency. Clear that each finite ring has finitely
many maximal ideals. Suppose m1,m2, . . . ,mt are maximal ideals of finite ring R and for i =
1, 2, . . . , t the index of nilpotency of mi is si. We denote the quotient ring R

mi
si

by Ri. Since
m1

s1 ,m2
s2 , . . .mt

st are relatively prime in pairs, we have

Π
t
i=1mi

si = ∩ti=1mi
si = 0

Therefore the Chinese Remainder Theorem implies that the canonical map

ψ : R→ Π
t
i=1Ri

is defined by:
ψ(x) = (x+m1

s1 , x+m2
s2 , . . . , x+mt

st)

is a ring isomorphism. For i = 1, 2, . . . , t, the canonical map ψi : Rn → Ri
n is a homomor-

phism. Let C be a code of length n over R. Then for i = 1, 2, . . . , t, ψi(C) ⊂ Ri
n is denoted by

Ci. The extended map ψ : Rn → Πi=1Ri
n is defined by ψ(x) = (ψ1(x), ψ2(x), . . .

, ψt(x)) is aR-module isomorphism, thenC ' C1×C2×· · ·×Ct.Conversely for i = 1, 2, . . . , t, let
Ci be a code of length n over Ri. Then C = CRT (C1, C2, . . . , Ct) is defined by

C = {ψ−1(x1, x2, . . . , xt) : xi ∈ Ci , i = 1, 2, . . . , t}

is a code over the ring R. With the above notation the code C is called Chinese product of codes
C1, C2, . . . , Ct.

3 Decoding of cyclic codes over Fp + vFp

The main purpose of this section is to give a decoding algorithm for cyclic codes over the ring
Fp + vFp. Throughout this section Rp will denote the ring Fp + vFp and Rp,n denote the ring
Rp[x]
〈xn−1〉 . It is easy to see that both Rp

〈v〉 and Rp

〈1−v〉 are isomorphic to Fp. From the Chinese Re-
mainder Theorem, we have Rp ' Fp × Fp. From the ideals of Rp, we can see that they do not
form a chain. For instance, two ideals 〈v〉 and 〈1 − v〉 are not comparable. Since Rp is a finite
semi-local ring, the polynomial factorization over this ring is not unique. So Hensel Lemma is
not valid. Instead of Hensel lift the Chinese Remainder Theorem has an essential role in the study
of codes over this ring.

Let p be an odd prime number and λ = 1 − 2v be a unit in Rp. We see that any element
c ∈ Rp

n can be written as:
c = a+ vb = (a+ b)v + a(1− v), where a, b ∈ Fp

n

So for each code C over Rp two codes C1−v and Cv are defined as:

C1−v = {a ∈ Fp
n | ∃b ∈ Fp

n : va+ (1− v)b ∈ C}

Cv = {b ∈ Fp
n | ∃a ∈ Fp

n : va+ (1− v)b ∈ C}.

From definition of C1−v and Cv, we have C = vC1−v ⊕ (1− v)Cv. In other word any code C
over Rp can be characterized by its associated codes C1−v and Cv.

Theorem 3.1. (see [6], Proposition 2.6) Let ψ : Rp,n → Sp,n be defined as

ψ(c(x)) = c((1− 2v)x).

If n is odd, then ψ is a ring isomorphism, where Sp,n = Rp[x]
〈xn−(1−2v)〉 . 2
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From now on we assume that the length of all codes over the ring Rp is an odd number. From
Theorem 3.1, we have the following Theorem.

Theorem 3.2. (see [7], Theorem 4.2, 4.3)Let C = vC1−v ⊕ (1− v)Cv be a linear code of length
n over Rp. Then C is a cyclic code of length n over Rp if and only if C1−v and Cv are cyclic
codes of length n over Fp. Also C = 〈vg1(x), (1 − v)g2(x)〉, where g1(x), g2(x) are the monic
generator polynomials of C1−v and Cv, respectively. Moreover for any cyclic code of length
n over Rp, there is a unique polynomial g(x) such that C = 〈g(x)〉 and g(x) |xn − 1, where
g(x) = vg1(x) + (1− v)g2(x). 2

The Gray map ϕ : Rp → F 2
p , is given in [7] as:

ϕ(a+ vb) = (−b, 2a+ b) = (−b,−b+ 2(a+ b)).

This map can be extended to Rp
n in a natural way. From definition of Lee weight and Gray

map ϕ, we have wL(c) = wH(ϕ(c)) for any c ∈ Rp
n. Now let C be a cyclic code of length n

over Rp, c = a + vb ∈ C and C̄ = C1−v ⊕ Cv. Then b ∈ C̄. If C1−v ⊆ Cv, then C̄ = Cv.So
|C| = |C1−v||C̄|. Therefore the code ϕ(C) can be seen as equivalent to a 〈u,u+v〉 code with
codes C̄ and C1−v.Suppose C1−v ⊆ Cv, from the definition of the Gray map ϕ, the vector
space structure of Rp and p > 2 it is easy to see that any codeword in ϕ(C) can be written as
the interleaved version of c1 and c1 + c2, where c1 ∈ C̄ and c2 ∈ C1−v. So code ϕ(C) can be
obtained from the C̄ and C1−v through a 〈u,u+v〉 construction.

Theorem 3.3. Let C = 〈vg1(x), (1 − v)g2(x)〉 be a cyclic code of length n over Rp, where
g2(x) | g1(x) |xn− 1. Let Z2 = {αi, αi+1, . . . , αi+t1−1} be t1 consecutive roots of the polynomial
g2(x) and let Z1 = {αj , αj+1, . . . , αj+t1+t2−1} be t1 + t2 consecutive roots of the polynomial
g1(x), where α ∈ GF (pn) is a primitive element. Then the following inequality does hold.

dL(C) ≥ min{2(t1 + 1), t1 + t2 + 1}.

Proof. Since the code ϕ(C) is equivalent to 〈u,u+v〉 constructed code from two codes C̄ and
C1−v. We have

dL(C) = dH(ϕ(C)) = min{2dH(C̄), dH(C1−v)}.

But C̄ = 〈g2(x) and C1−v = 〈g1(x)〉, thus dL(C) ≥ min{2(t1 + 1), t1 + t2 + 1}. 2

Now let w(x) = w1(x) + vw2(x) = c(x) + e(x) be a received word, where e(x) is the
error polynomial which has Lee weight ν ≤ t, where t = bdL(C)−1

2 c. Suppose that the errors
occur in the unknown coordinates k1, k2, . . . , kl.So e(x) = ek1x

k1 + ek2x
k2 + · · ·+ ekl

xkl ,where
eki ∈ Rp for i = 1, 2, . . . , l.The error-locator polynomial σ(z) corresponding to error in position
k1, k2, . . . , kl is defined as:
σ(z) = 1+σ1z+σ2z

2 + · · ·+σlz
l = (1−αk1z)(1−αk2z) · · · (1−αk−lz). Note that in contrast

the binary case the degree of polynomial σ(z) need not to be equal to the Lee weight of error. But
the degree of polynomial σ(z) depend on the type of error. By using of the vector representation
of Rp over Fp, e(x) can be written as follows:

e(x) = (ek1,0 + vek1,1)x
k1 + · · ·+ (ekl,0 + vekl,1)x

kl (3.1)

where eki,j ∈ Fp, for i = 1, 2, . . . , l; j = 0, 1. In this case, apart from finding the com-
ponent error locator polynomials we need to evaluate the component error magnitudes. From
equation (3.1), we have e(x) = e1(x) + ve2(x), where e1(x), e2(x), é(x) and ê(x) are defined as
following:

e1(x) = ek1,0x
k1 + ek2,0x

k2 + · · ·+ ekl,0x
kl (3.2)

e2(x) = ek1,1x
k1 + ek2,1x

k2 + · · ·+ ekt,1x
kl (3.3)

é(x) = (ek1,0 + ek1,1)x
k1 + (ek2,0 + ek2,1)x

k2 + · · ·+ (ekt,0 + ekt,1)x
kl (3.4)
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ê(x) = (2ek1,0 + ek1,1)x
k1 + · · ·+ (2ekt,0 + ekt,1)x

kl (3.5)

The following two Theorems are essential for decoding procedure. The proof of this Theorem
is based on the property of Gray map ϕ and triangle inequality for Hamming distance.

Theorem 3.4. Let e(x) = e1(x) + ve2(x) be an error polynomial. Let wL(e(x)) ≤ t, then we
have

(i)wH(é(x)) ≤ t.
(ii) Either wH(e2(x)) ≤ bt/2c or wH(ê(x)) ≤ bt/2c. 2

With assumption of Theorem 3.3 if c(x) = c1(x) + vc2(x) ∈ C, then c1(αh) = 0, for h =
i, i + 1, . . . , i + t1 − 1 and (c1 + c2)(αr) = 0, for r = j, j + 1, . . . , j + t1 + t2 − 1. Then
w(αh) = e(αh), for h = i, i+ 1, . . . , i+ t1 − 1. So

w1(α
h) = e1(α

h), w2(α
h) = e2(α

h)

also
(w1 + w2)(α

r) = é(αr), r = j, j + 1, . . . , j + t1 + t2 − 1.

Now let ẃ(x) = w1(x) + w2(x) and Śr = ẃ(αr), r = j, j + 1, . . . , j + t1 + t2 − 1. Also let

ŵ(x) = 2w1(x) + w2(x), Ŝh = ŵ(αh) = ê(αh), h = i, i+ 1, . . . , i+ t1 − 1

The decoding algorithm organized in four steps.

(i) Calculating syndromes from the received vector:
Compute t1 + t2 syndromes of Ś = {Śr : j ≤ r ≤ j + t1 + t2 − 1}, t1 syndromes of

S2 = {S2,h : i ≤ h ≤ i+ t1 − 1} and t1 syndromes of Ŝ = {Ŝh : i ≤ h ≤ i+ t1 − 1} by using
of the following equations:

Śr = ẃ(αr) = é(αr) , j ≤ r ≤ j + t1 + t2 − 1. (3.6)

S2,h = w2(α
h) = e2(α

h) , i ≤ h ≤ i+ t1 − 1. (3.7)

Ŝh = ŵ(αh) = ê(αh) , i ≤ h ≤ i+ t1 − 1. (3.8)

(ii) Computation of error locator polynomials:
Let Ś(z) =

∑j+t1+t2−1
r=j Śr z

r. Let σ́(z) be the error locator polynomial corresponding to
é. Similar to the procedure of Sugiama (see [5], Section 5.4) for decoding of cyclic codes over
finite fields there exists a polynomial ώ(z) such that

Ś(z)σ́(z) ≡ ώ(z) (mod zt1+t2), deg(ώ(z)) < deg(σ́(z)). (3.9)

So the error locator polynomial σ́(z) can be obtained by solving above equation overGF (pn).
Let S2(z) =

∑i+t1−1
h=i S2,hz

h, there is a polynomial ω2(z) such that

S2(z)σ2(z) ≡ ω2(z)(mod z
t1), deg(ω2(z)) < deg(σ2(z)). (3.10)

Also let Ŝ(z) =
∑i+t1−1

h=i Ŝh z
h, thus there exists a polynomial ω̂(z) such that

Ŝ(z)σ̂(z) ≡ ω̂(z)(mod zt1), deg(ω̂(z)) < deg(σ̂(z)), (3.11)

where σ2(z) is the error locator polynomial corresponding to e2 and σ̂(z) is the error locator
polynomial corresponding to ê. The error locator polynomials σ2(z) and σ̂(z) can be obtained by
solving above key equation over GF (pn) and help of Matlab software.
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(iii) Computation of error locations and the error magnitudes:

Let Ṕ be the inverse of the roots of σ́(z).As in the case of decoding of cyclic codes over
finite fields let É be the set of error magnitudes corresponding to é.Similarly P2, P̂ , E2 and Ê
can be defined. Then, according to the determination of error locations we can obtain the error
magnitudes.

(iv) Computation of error polynomial:
By using of Theorem 3.4, either the error polynomial e2(x) and or ê(x) can be decoded in

the code C̄ and é can be decoded in the code C1−v. Since at least any two of e2(x), ê(x), and
é(x) will be determined, we can decode the error polynomial e(x) by using of equation e2(x) =
2é(x)− ê(x).
Theorem 3.5. It is possible to completely decode an error e(x) if wL(e(x)) ≤ t, where

t =

{
b 2t1+1

2 c t1 < t2

b t1+t2
2 c t1 ≥ t2

Proof. If t1 < t2, then Theorem 3.3 implies that dL(C) ≥ 2(t1 + 1). Recall that the degree of
syndrome polynomial Ś(z) is t1 + t2 and Ś(z) is a polynomial over field Fp, so the solution of
(3.9) is guaranteed only if the degree of error locator polynomials σ́(z) is less than or equal to
b t1+t2

2 c. Now from Theorem 3.4, we have

wH(é(x)) ≤ b2t1 + 1
2
c ≤ b t1 + t2

2
c.

Thus é(x) can be decoded in code C1−v, which is a code over Fp with Hamming distance more
than or equal to t1 + t2 + 1. Similarly the degree of syndrome polynomial S2(z) is t1, so the
solution of (3.10) is guaranteed only if the degree of error locator polynomials σ2(z) is less than

or equal to b t1
2 c. From Theorem 3.4, we have wH(e2(x)) ≤ b

b 2t1+1
2 c
2 c ≤ b t1

2 c or wH(ê(x)) ≤
b t1

2 c.Hence e2(x) or ê(x) can be decoded in code C̄, which is a code over Fp with Hamming
distance more than or equal to t1 + 1. If t1 ≥ t2, similar calculations show that it is possible to
find error polynomial e(x). 2

Example 1: Let C = 〈vg1(x), (1 − v)g2(x)〉 be a cyclic code of length 13 over the ring
R3 and α be a primitive element of order 13 in GF (33) = F3(x)

〈x3+x2+2〉 . Let g2 = f1f2 and g1 =

f1f2f4, where f0(x) = x+2, f1(x) = x3+x2+2, f2(x) = x3+2x2+2x+2, f4(x) = x3+2x+2
and f7(x) = x3 + x2 + x+ 2. The sets of consecutive roots of polynomials g2(x) and g1(x) are
given as follows:
Z2 = {α, α2, α3} and Z1 = {α, α2, α3, α4, α5, α6}.
Since t1 = 3 and t1 + t2 = 6, Theorem 3.3 implies that the minimum Lee distance of the code
is more than or equal to 7. In the following Table the decoding procedure is described. Note that
ẃ(x), ŵ(x) can be decoded in codes C1−v and C̄, respectively by using of Peterson-Gorenstein-
Zierler algorithm (see,[5], Section 5.4.1).

Table 2

w(x) 2x+ 2vx2

Ŝ {2α7, 2α, 2α8}
σ̂(x) α5x3 + α7x+ 1
σ́(x) α3x+ 1
Ṕ {α−7}
É {2}
é(x) 2x7

é(x) x7 + 2x2 + 2
e2(x) 2x2 + 2

2
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4 Decoding of cyclic codes over principal ideal rings

In this section a decoding method for cyclic codes over a finite principal ideal ring with assump-
tion that decoding of cyclic codes over its components is available is given. Let R be a finite
principal ideal ring, from Theorem 1,R ' R1 ×R2 . . .×Rt ' e1R1 ⊕ e2R2 ⊕ . . .⊕ etRt, where
each Ri is a chain ring. Let S be a finite chain ring with unique maximal ideal m = 〈a〉, where
a is a nilpotent element with nilpotency index t. and k be the residue field S

m . Since every finite
field has prime power order, then |k| = pl for some prime number p and a integer l ≥ 1 and
|R| = plt.Also n is a positive integer which is not divisible by p, then xn − 1 factors uniquely
into pairwise coprime monic irreducible polynomials in S[x].

We assume that finite ring R is isomorphic to a finite product of local rings,i.e, R ' R1 ×
R2 × . . . × Rt, where each Ri is a local ring. Let n be a positive integer, the map ψ : Rn →
R1

n ×R2
n × · · · ×Rt

n is defined as:

ψ(r0, r1, . . . , rn−1) = (s1, s2, . . . , st),

where rj = (aj1, aj2, . . . , ajt) for j = 0, 1, . . . , n − 1. Also s1 = (a01, a11, . . . , an−1,1) ∈
R1

n, s2 = (a02, a12, . . . , an−1,2) ∈ R2
n, . . . , st = (a0t, a1t, . . . , an−1,t) ∈ Rt

n. Clearly ψ is
an isomorphism of abelian groups. Let C be a linear code of length n over R, then

ψ(C) = C1 × C2 × · · · × Ct,

where Ci is a linear code of length n over Ri for i = 1, 2, . . . t. Let c ∈ C be transmitted
through a noisy channel and w = c+ e = (w0, w1, . . . , wn−1) ∈ Rn be a received word, then cj
can be written as cj =

∑t
i=1 eiaji for j = 0, 1, . . . , n− 1. So

c(x) =
t∑

i=1

eia0i + (
t∑

i=1

eia1i)x+ · · ·+ (
t∑

i=1

eian−1,i)x
n−1

= e1(
n−1∑
j=0

aj1x
j) + e2(

n−1∑
j=0

aj2x
j) + · · ·+ et(

n−1∑
j=0

ajtx
j).

Let ći =
∑n−1

j=0 ajix
j for i = 1, 2, . . . , t. So c(x) = (ć1, ć2, . . . , ćt), then by linearity of

each Ci, we have ći ∈ Ci.Let w = (w0, w1, . . . , wn−1), where wj = (bj1, bj2, . . . , bjt) for
j = 0, 1, . . . , n− 1. So

ψ(w) = (b01, b11, . . . , bn−1,1, b02, b12, . . . , bn−1,2, . . . , b0t, b1t, . . . , bn−1,t).

Therefore ψ(w) = (ẃ1, ẃ2, . . . , ẃt), where ẃ1 = (b01, b11, . . . , bn−1,1) ∈ R1
n,

ẃ2 = (b02, b12, . . . , bn−1,2) ∈ R2
n, . . . , ẃt = (b0t, b1t, . . . , bn−1,t) ∈ Rt

n.Similarly ψ(e) =
(é1, é2, . . . , ét). So ẃi − éi = ći ∈ Ci. Then ẃi will be decoded in the code Ci.

Theorem 4.1. Let R ' e1R1⊕ e2R2⊕ . . .⊕ etRt is a principal ideal ring, where Ri a chain ring
for i = 1, 2, . . . , t. Let Ci be a linear code over Ri and C = CRT (C1, C2, . . . , Ct), then C is a
cyclic code over R if and only if Ci is a cyclic code over Ri.
Proof.Clrarly C ' e1C1⊕ e2C2⊕· · ·⊕ etCt.For i = 1, 2, . . . , t, let Ci be a cyclic code of length
n over Ri and c = (c0, c1, . . . , cn−1) ∈ C. For k = 0, 1, 2, . . . , n−1, ck = e1c1,k + e2c2,k + · · ·+
etct,k. Since (ci,n−1, ci,0, . . . , ci,n−2) ∈ Ci for i = 0, 1, 2, . . . , n− 1, then
e1(c1,n−1, c1,0, . . . , c1,n−2)+· · ·+et(ct,n−1, ct,0, . . . , ct,n−2) ∈ e1R1⊕e2R2⊕· · ·⊕etRt.Therefore
(e1c1,n−1 +e2c2,n−1 + . . .+etct,n−1, e1c1,0 +e2c2,0 + ...+etct,0, . . . , e1c1,n−2 +e2c2,n−2 + · · ·+
etct,n−2) ∈ C. So σ(c0, c1, . . . , cn−1) ∈ C, this implies that C is a cyclic code. The proof of
converse is obvious.2

Theorem 4.2. ([1], Theorem 3.6) Let R be a finite chain ring and n be an integer which is not
divisible by the characteristic of the residue field R

m . Then R[x]
〈xn−1〉 is a principal ideal ring. 2
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Theorem 4.3. Let R ' e1R1 ⊕ e2R2 ⊕ . . .⊕ etRt be a principal ideal ring, where Ri is a chain
ring with maximal ideal mi, for i = 1, 2, . . . , t. Suppose Ci is a linear code of length n over
Ri and n is not divisible by the characteristic of the residue field Ri

mi
, for i = 1, 2, . . . , t, then

CRT (C1, C2, . . . , Ct) = 〈e1f1(x), e2f2(x), . . . , etft(x)〉,
where Ci = 〈fi(x)〉.
Proof. Let e1c1(x) + e2c2(x) + · · ·+ etct(x),where ci(x) ∈ Ci = 〈fi(x)〉 for i = 1, 2, . . . , t. So
ci(x) = fi(x)hi(x) for some hi(x) ∈ R[x]. Therefore c(x) = e1f1(x)h1(x) + e2f2(x)h2(x) +
· · ·+etft(x)ht(x) this implies that c(x) ∈ 〈e1f1(x), e2f2(x), . . . , etft(x)〉. Conversely let c(x) ∈
〈e1f1(x), e2f2(x), . . . , etft(x)〉, then c(x) = e1f1(x)r1(x) + e2f2(x)r2(x) + · · ·+ etft(x)rt(x),
where ri ∈ R[x] for i = 1, 2, . . . , t. As there is si(x) ∈ Ri(x), such that eisi(x) = eiri(x), then
si(x)fi(x) ∈ Ci.Therefore c(x) = e1f1(x)s1(x) + e2f2(x)s2(x) + · · ·+ etft(x)st(x) ∈ e1C1 ⊕
e2C2 ⊕ . . .⊕ etCt. 2

Corollary 4.4. In the last theorem C = 〈e1f1(x) + e2f2(x) + . . .+ etft(x)〉.

Theorem 4.5. ([2], Lemma 2.5) For i = 1, 2, . . . , s, let Ci be a code of length n, over Ri. Then
dH(CRT (C1, . . . , Cs)) = min{dH(Ci)}. 2

With the above notation, we have the following theorem.

Theorem 4.6. Let C = CRT (C1, C2, . . . , Ct) be a cyclic code of length n over the principal
ideal ring R and w(x) = e1w1(x) + e2w2(x) + · · ·+ etwt(x) be a received word with an error
e(x). If wH(e(x)) ≤ b(dH(C)− 1)/2c, then wi(x) can be decoded in code Ci for i = 1, 2, . . . , t.
2

Let β be a 11-th root of unity in Galois fieldGF (35).The Golay codeG11 is a cyclic code with
generator f1(x) = Πi∈Q(x − βi),where Q = {j2(mod 11) : j = 1, 2, . . . , 10}.The Golay code
G11 is a [11, 6, 5] code. So it is a perfect two correcting code. Let c ∈ C and w(x) = c(x) + e(x)
be a received word with an error e(x), the syndromes Si of the received word w(x) is defined as
Si = w(βi) = e(βi) for i ∈ Q.

Theorem 4.7. ([4],proposition 1) Let C be the Golay code G11, then
a) A received word has no error if and only if S1 = 0.
b) A received word has one error if and only if S22

1 = 1.
c) If S22

1 = 1, then the error in the received word has value S11
1 and location i, with 0 ≤ i ≤ 10,

where βi = S12
1 . 2

Example 2: Suppose C = CRT (G11, C2) is cyclic code of length 11 overZ6, where C2 =

〈f1(x)〉, f1(x) =
x11−1
x−1 , so dH(C) = 5.

Let w = (00, 00, 00, 00, 10, 00, 00, 00, 00, 00, 01) be received word, then ẃ1, ẃ2 will be de-
coded in ternary Golay code G11 and binary code C2, respectively. By using of Table 1 in
[4],S1 = ẃ1(β) = α88 6= 0. Also using of algorithm 1 in [4] implies that the error is σ11,1(z) =

1−S1
12z = 1−(α88)12z = 1−α88z. By the Chien search this polynomial has one root, therefore

the received codeword has value S1
11 = (α88)11 = 1, and location i with 0 ≤ i ≤ 10, where

αi = S1
12.Then αi = α88 = β4, so é1(x) = x4. It is easy to see that é2(x) = x10. So

é = (00, 00, 00, 00, 10, 00, 00, 00, 00, 00, 01). 2
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