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Abstract We introduce and study a new class of operators that we call disjoint weak Banach-
Saks operators. We establish some characterizations of this class of operators by different types
of convergence (norm convergence, unbounded order convergence, unbounded norm conver-
gence and unbounded absolute weak convergence) as well as by the positive weakly null se-
quences. Consequently, we give a new characterization of the disjoint weak Banach-Saks prop-
erty by the positive disjoint weakly null sequences. Furthermore, we study the relationship
between this class and other classes of operators.

1 Introduction

In [7], Y. Deng et al. introduced the disjoint weak Banach-Saks property (abb. DWBSP) in the
Banach lattice. Recall that a Banach lattice E has the disjoint weak Banach-Saks property, if
every disjoint weakly null sequence in E has a subsequence whose Cesàro sequence is norm
convergent in E, as examples of such Banach lattices we have `1 and Lp(c0) (see [7]).

In this paper, we introduce the so-called disjoint weak Banach-Saks operator from a Banach
lattice E into a Banach space X . Our definition is based on the disjoint weak Banach-Saks
property. Mainly, in the Proposition 3.10 we establish some characterizations of this class of
operators by different types of convergence and in the Proposition 3.12 we give a characteri-
zation of this class of operators by positive weakly null sequences. Consequently, we give a
new characterization of the disjoint weak Banach-Saks property. Also, we give a generalization
of Proposition 6.9 [9] and of Proposition 6.15 [9]. Furthermore, we study the relationship be-
tween this class of operators and that of weak Banach-Saks operators (resp. almost Banach-Saks
operators, order weakly compact operators and weakly compact operators).

2 Preliminaries and Notations

To state our results, we need to fix some notations and recall some definitions. A Banach lattice
is a Banach space (E, ||.||) such that E is a vector lattice and its norm satisfies the following
property: for each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. If E is a Banach lattice, its
topological dual E′, endowed with the dual norm, is also a Banach lattice. A Banach lattice E
is order continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, the sequence
(xα) converges to 0 for the norm ‖.‖, where the notation xα ↓ 0 means that the sequence (xα)
is decreasing, its infimum exists and inf(xα) = 0. In a vector lattice E, two elements x and y
are said to be disjoint (in symbols x ⊥ y) whenever |x| ∧ |y| = 0 holds. For each x, y ∈ E with
x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤ y} is called an order interval. A subset of E is said to
be order bounded if it is included in some order interval. Recall that a nonzero element x of a
vector lattice E is discrete if the order ideal generated by x equals the subspace generated by x.
The vector lattice E is discrete, if it admits a complete disjoint system of discrete elements. In a
Banach lattice every order bounded disjoint sequence converges weakly to zero (see [1]).

An order continuous Banach lattice E is said to have the subsequence splitting property if for
any norm bounded sequence (xn) there exist a subsequence (xnk) of (xn) and two sequences
(yk) and (zk) such that xnk = yk+zk, (yk) is almost order bounded, (zk) is pairwise disjoint and
yk ⊥ zk for all k (see [9]). A vector lattice E is said to be σ−laterally complete, if the supremum



342 M. Berka, O. Aboutafail and J. H’michane

of every disjoint sequence ofE+ exists inE. A Banach lattice is said to have weakly sequentially
continuous lattice operations whenever xn

w−→ 0 implies |xn|
w−→ 0. A Banach space is said

to have the Schur property, whenever every weakly convergent sequence is norm convergent. A
Banach space X has the weak Banach-Saks property if every weakly null sequence (xn) in X
has a subsequence (xnk) whose Cesàro sequence ( 1

m

∑m
k=1 xnk) is norm convergent to zero.

A subset A of a Banach lattice E is said to be almost order bounded if for any ε > 0 there
exists u ∈ E+ such that A ⊂ [−u, u] + εBE . We know from [10] that A ⊂ [−u, u] + εBE if and
only if supx∈A ‖(|x|−u)+‖ ≤ ε if and only if supx∈A ‖|x|− |u| ∧ |x|‖ ≤ ε. Note that every norm
convergent sequence is almost order bounded.

A net (xα) of a vector lattice E is said to be uo-converge (abb. uo-converge) to x if (|xα −
x| ∧ u) converges in order to zero for every u ∈ E+; we write xα

uo−→ x. We mention that order
convergence implies uo-convergence and they coincide for order bounded nets. We note that
every disjoint net is uo-null (see [9]).

A net (xα) of a Banach lattice E is said to be unbounded norm convergent (abb. un-
convergent) to x if (|xα − x| ∧ u) converges to zero for every u ∈ E+; we write xα

un−→ x.
The example 2.6 of [7] shows that a disjoint sequence need not to be un-null.

A net (xα) of a Banach lattice E is said to be unbounded absolute weakly convergent (abb.
uaw-convergent) to x if (|xα − x| ∧ u) converges weakly to zero for every u ∈ E+; we write
xα

uaw−→ x. Every absolute weakly convergent net is uaw-convergent. But the converse is not
true in general. The absolute weakly convergence coincides with uaw-convergence for the order
bounded nets (see [15]). We note that every disjoint net is uaw-null (see [15, Lemma 2]).

We will use the term operator T : E −→ F between two Banach lattices to mean a bounded
linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. The operator T is regular if
T = T1−T2 where T1 and T2 are positive operators from E into F . Note that each positive linear
mapping on a Banach lattice is continuous. If an operator T : E −→ F between two Banach
lattices is positive, then its adjoint T ′ : F ′ −→ E′ is likewise positive, where T ′ is defined by
T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E.

An operator T : E −→ F between two Riesz spaces is said to preserve disjointness whenever
x ⊥ y in E implies Tx ⊥ Ty in F (see [1]).

A positive linear mapping S is disjointness preserving if and only if S is a Riesz homomor-
phism (see [6]).

An operator T : E −→ Y is called M-weakly compact, if (T (xn)) is norm-null for every
bounded disjoint sequence (xn) in E (see [1]).

An operator T from a Banach lattice E into a Banach space X is said to be almost disjoint
Banach-Saks, if for every bounded disjoint sequence (xn) ofE, (T (xn)) has a Cesàro convergent
subsequence in X (see [11]).

An operator T : E −→ Y from a Banach lattice to a Banach space is said to be order weakly
compact if for every order bounded disjoint sequence (xn) of E, we have ‖T (xn)‖ −→ 0 ([1,
Theorem 5.57 (Dodds)]).

An operator T : X −→ Y between two Banach spaces is said to be weakly compact, if
for every norm bounded sequence (xn) of X the sequence (T (xn)) has a weakly convergent
subsequence in Y (see [1]).

In the rest of this paper X , Y will denote Banach spaces, and E, F will denote Banach
lattices.

3 Main results

We start by the following definition.

Definition 3.1. An operator T : E −→ Y is said to be disjoint weak Banach-Saks (abb; DWBS),
if for each disjoint weakly null sequence (xn) of E, (T (xn)) has a subsequence whose Cesàro
sequence is norm convergent in Y .

It is clear that E has the disjoint weak Banach-Saks property if, and only if, the identity
operator IdE of E is disjoint weak Banach-Saks. Also, we observe that this class of operators
contains M-weakly compact operators.

We have the following characterisation of the positive disjoint weak Banach-Saks operator.
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Theorem 3.2. Let T : E −→ F be a positive operator. The following assertions are equivalent:

(1) T is a disjoint weak Banach-Saks operator.

(2) For each disjoint weakly null sequence (xn) ⊂ E+, (T (xn)) has a subsequence whose
Cesàro sequence is norm convergent in F .

Proof. (1) =⇒ (2) Is evident.
(2) =⇒ (1) Let (xn) be a disjoint weakly null sequence of E. It follows from [14, Remark 1]
that (|xn|) is a disjoint sequence of E+ such that |xn| −→ 0 for the topology σ(E,E′). From
the assertion (2), there exists (|xnk |) which is a subsequence of (|xn|) such that (T (|xnk |)) is
Cesàro norm convergent. Now, by the inequality:

|T (xn)| ≤ T (|xn|) for each n,

we obtain

| 1
m

m∑
k=1

T (xnk)| ≤
1
m

m∑
k=1

|T (xnk)| ≤
1
m

m∑
k=1

T (|xnk |)

and since ‖ 1
m

∑m
k=1 T (|xnk |)‖ −→ 0, then ‖ 1

m

∑m
k=1 T (xnk)‖ −→ 0. Thus, (T (xn)) has a

Cesàro norm convergent subsequence in F , and hence T is a positive disjoint weak Banach-Saks
operator.

As a consequence of the last Theorem, we obtain the following characterization of the disjoint
weak Banach-Saks property.

Corollary 3.3. The following assertions are equivalent:

(1) E has the disjoint weak Banach-Saks property.

(2) Every disjoint weakly null sequence (xn) ⊂ E+ has a subsequence whose Cesàro sequence
is norm convergent.

If E is order continuous, we obtain the following characterizations of positive disjoint weak
Banach-Saks operator.

Proposition 3.4. Let T : E −→ F be a positive operator such that E is order continuous. The
following assertions are equivalent:

(1) T is a disjoint weak Banach-Saks operator.

(2) For each weakly null and uo-null sequence (xn) ⊂ E+, (T (xn)) has a subsequence whose
Cesàro sequence is norm convergent in F .

(3) For each weakly null sequence (xn) ⊂ E+, (T (xn)) has a subsequence whose Cesàro
sequence is norm convergent in F .

Proof. (1) =⇒ (2) Let (xn) be a weakly null and uo-null sequence of E+. Since E is order
continuous, then by [9, Corollary 3.6] there exist a subsequence (xnk) of (xn) and a disjoint
sequence (dk) of E such that ‖xnk − dk‖ −→ 0. As (xn) is a weakly null sequence of E, then it
follows from the proof of [7, Theorem 3.2] that (dk) is a weakly null sequence of E. Thus, every
subsequence of (dk) is disjoint and weakly null. Hence, the assertion (1) yields that (T (dk)) has
a subsequence whose Cesàro sequence is norm convergent in F .

(2) =⇒ (1) It follows from the fact that every disjoint sequence is uo-null ([9, Corollary 3.6
]).

(2) =⇒ (3) Let (xn) be a weakly null sequence of E+. Since E is order continuous, then it
follows from [9, Proposition 4.5] and [9, Proposition 4.7 ] that xnk

uo−→ 0 for some subsequence
(xnk). Hence, the assertion (2) yields that (T (xnk)) has a subsequence whose Cesàro sequence
is norm convergent in F .

(3) =⇒ (2) It is Obvious.

Proposition 3.5. We have the following assertions:
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(1) If T : E −→ X is a disjoint weak Banach-Saks operator, then for each operator S : X −→
Y the composed operator S ◦ T is disjoint weak Banach-Saks.

(2) If T : F −→ Y is a disjoint weak Banach-Saks operator and S : E −→ F is a disjointness
preserving operator, then the composed operator T ◦ S is disjoint weak Banach-Saks.

Proof. (1) Let (xn) be a disjoint weakly null sequence of E. Since T is a disjoint weakly
Banach-Saks operator, then there exists (xnk) which is a subsequence of (xn) such that the
Cesàro sequence of (T (xnk)) converges to 0. As

‖ 1
m

m∑
k=1

S ◦ T (xnk)‖ ≤ ‖S‖‖
1
m

m∑
k=1

T (xnk)‖,

then the Cesàro sequence of (S ◦ T (xnk)) converges to 0. Thus S ◦ T is a disjoint weak
Banach-Saks operator.

(2) Let (xn) be a disjoint weakly null sequence of E. Since S is a disjointness preserving
operator, then (S(xn)) is a disjoint sequence, and hence (S(xn)) is a disjoint weakly null
sequence in F . As T is a disjoint weak Banach-Saks operator, then (T ◦S(xn)) is a Cesàro
norm convergent subsequence in Y . Therefore, T ◦ S is a disjoint weak Banach-Saks oper-
ator.

As consequences of the above proposition, we obtain the following results:

Corollary 3.6. The following statements are equivalent:

(1) For each Y , every operator T : E −→ Y is disjoint weak Banach-Saks.

(2) E has the disjoint weak Banach-Saks property.

Corollary 3.7. The following statements are equivalent:

(1) For each E, every disjointness preserving operator T : E −→ F is disjoint weak Banach-
Saks.

(2) F has the disjoint weak Banach-Saks property.

In the following result, we prove that the class of disjoint weak Banach-Saks operators satis-
fies the domination problem.

Theorem 3.8. Let S, T : E −→ F be two operators with 0 ≤ S ≤ T . If T is a disjoint weak
Banach-Saks operator, then S is also a disjoint weak Banach-Saks operator.

Proof. Let S, T : E −→ F be two operators such that 0 ≤ S ≤ T : E −→ F . We suppose that
T is a disjoint weak Banach-Saks operator. Let (xn) be a disjoint weakly null sequence of E, it
follows from [14, Remark 1] that (|xn|) is a disjoint weakly null sequence. Since T is disjoint
weak Banach-Saks, then there exists (|xnk |) a subsequence of (|xn|) such that (T (|xnk |)) is
Cesàro norm convergent. On the other hand, we have 0 ≤ S ≤ T implies that

|S(xn)| ≤ S(|xn|) ≤ T (|xn|),

this shows that ‖ 1
m

m∑
k=1

S(xnk)‖ ≤ ‖
1
m

m∑
k=1

|S(xnk)|‖ ≤ ‖
1
m

m∑
k=1

T (|xnk |)‖,

and hence (S(xnk)) is Cesàro norm convergent. Therefore, S is a disjoint weak Banach-Saks
operator.

We note that there exist Banach lattices E and F and an operator T : E −→ F which is
disjoint weak Banach-Saks and such that its modulus |T | does not exist. We consider from [3]
the operator T : L1[0, 1] −→ c0 defined by:

T : L1[0, 1] −→ c0

f 7−→ (
∫ 1

0 f(x)r1dx,
∫ 1

0 f(x)r2dx, ....)
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where (rn) is the sequence of Rademacher functions on [0, 1]. It is clear that T is disjoint weak
Banach-Saks

(
L1[0, 1] has the disjoint weak Banach-Saks property

)
, but from the remark page

361 of [3] the modulus of T does not exist.

Proposition 3.9. Let T : E −→ F be an order bounded disjointness preserving operator such
that F is Dedekind-complete. Then, T is disjoint weak Banach-Saks if, and only if, |T | is disjoint
weak Banach-Saks.

Proof. Let T : E −→ F be an order bounded disjointness preserving operator. By [5, Theorem
2.2], we have

|T |(|x|) = |T (x)| = ||T |(x)| ∀x ∈ E

and hence

‖ 1
m

m∑
k=1

|T |(xnk)‖ = ‖|T |(
1
m

m∑
k=1

xnk)‖ = ‖|T (
1
m

m∑
k=1

xnk)|‖ = ‖
1
m

m∑
k=1

T (xnk)‖, for each (xn) of E;

as desired.

Proposition 3.10. If E is order continuous, then for every operator T : E −→ Y the following
assertions are equivalent:

(1) T is disjoint weak Banach-Saks.

(2) For each weakly null sequence (xn) of E such that xn
un−→ 0, (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent in Y .

(3) For each weakly null sequence (xn) of E such that xn
uaw−→ 0, (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent in Y .

(4) For each weakly null sequence (xn) of E such that xn
uo−→ 0, (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent in Y .

Proof. (1) =⇒ (2) Let (xn) be a weakly null sequence of E such that xn
un−→ 0. It follows from

[7, Theorem 3.2 ] that there exist (xnk) a subsequence of (xn) and a disjoint sequence (dk) of
E such that ‖xnk − dk‖ −→ 0. So, ‖T (xnk) − T (dk)‖ −→ 0 in Y . Since (xn) is a weakly null
sequence of E, then it follows from the proof of [7, Theorem 3.2 ] that (dk) is a weakly null
sequence of E. As T is a disjoint weak Banach-Saks operator, the assumption (1) yields that
(T (dk)) has a subsequence whose Cesàro sequence is norm convergent in Y . Hence, (T (xnk))
has a subsequence whose Cesàro sequence is norm convergent in Y .

(2) =⇒ (3) Let (xn) be a weakly null sequence of E such that xn
uaw−→ 0. Since E is order

continuous, then it follows from [15, Theorem 4] that xn
un−→ 0. Therefore, the assertion (2)

yields that (T (xn)) has a subsequence whose Cesàro sequence is norm convergent in Y .
(3) =⇒ (4) Let (xn) be a weakly null sequence of E such that xn

uo−→ 0. Since E is order
continuous, then it follows from [7, Propostion 2.5] and [15, Theorem 4] that xn

uaw−→ 0. Hence,
by the assertion (3), we infer that (T (xn)) has a subsequence whose Cesàro sequence is norm
convergent in Y .

(4) =⇒ (1) Let (xn) be a disjoint weakly null sequence of E. By [9, Corollary 3.6], we have
that xn

uo−→ 0 and hence it follows from the assertion (4) that (T (xn)) has a subsequence whose
Cesàro sequence is norm convergent in Y . Thus, T is a disjoint weak Banach-Saks operator.

Proposition 3.11. If F is order continuous, then for every operator T : E −→ F the following
assertions are equivalent:

(1) T is disjoint weak Banach-Saks.

(2) For each disjoint weakly null sequence (xn) ofE, (T (xn)) has a subsequence whose Cesàro
sequence is almost order bounded.

(3) For each disjoint weakly null sequence (xn) of E+, (T (xn)) has a subsequence whose
Cesàro sequence is almost order bounded.
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Proof. (1) =⇒ (2) =⇒ (3) Are obvious.
(3) =⇒ (2) Let (xn) be a disjoint weakly null sequence of E. Then, it follows from Wnuk

[14, Remark 1] that (|xn|) is a disjoint sequence of E+ such that |xn|
w−→0. We have xn =

x+n−x−n and |xn| = x+n+x
−
n . It is easy from the inequality 0 ≤ x+n ≤ |xn| (resp, 0 ≤ x−n ≤ |xn|),

to prove that (x+n ) (resp, (x−n )) is a disjoint weakly null sequence of E+. So, every subsequence
of (x+n ) is disjoint weakly null in E+. The assumption (3) yields that every subsequence of
(T (x+n )) has a further subsequence whose Cesàro sequence is almost order bounded in F . Since
F is order continuous, then by [9, Lemma 6.3] there exist a subsequence (T (x+

φ(n))) of (T (x+n))
and a vector y ∈ F such that the Cesàro sequence of any subsequence of (T (x+

φ(n))) converges
uo and in norm to y = 0. As a result, the Cesàro sequence of any subsequence of (T (x+

φ(n)))

is almost order bounded in F . On the other hand, (x−
φ(n)) is a disjoint weakly null sequence

of E+. Then, it follows from the assertion (3) that the sequence (T (x−
φ(n))) has a subsequence

(T (x−
ψ(φ(n)))) whose Cesàro sequence is almost order bounded in F . As it was shown above,

the Cesàro sequence of any subsequence of (T (x+
φ(n))) is almost order bounded in F ; hence the

Cesàro sequence of (T (x+
ψ(φ(n)))) is almost order bounded. Therefore, the Cesàro sequence of

the subsequence T (xψ(φ(n))) = T (x+
ψ(φ(n))) − T (x−

ψ(φ(n))) of the sequence (T (xn)) is almost
order bounded in F , where φ and ψ are increasing mappings from N into N.

(2) =⇒ (1) Let (xn) be a disjoint weakly null sequence of E. Since any subsequence (xnk)
of (xn) is also a disjoint weakly null sequence of E, the assertion (2) yields that (T (xnk)) has
a subsequence whose Cesàro sequence is almost order bounded. In particular, any subsequence
of (T (xn)) has a further subsequence whose Cesàro sequence is almost order bounded. As F is
order continuous, then it follows from [9, Lemma 6.3] that there exist a subsequence (T (xnk))
of (T (xn)) and a vector y ∈ F such that the Cesàro sequence of any subsequence of (T (xnk))
converges uo- and in norm to y = 0.

Whenever E and F are order continuous, we obtain the following characterizations.

Proposition 3.12. LetE and F be order continuous. For an operator T : E −→ F , the following
assertions are equivalent:

(1) T is disjoint weak Banach-Saks.

(2) For each weakly and uo-null sequence (xn) of E+, (T (xn)) has a subsequence whose
Cesàro sequence is almost order bounded in F .

(3) For each weakly null sequence (xn) of E+, (T (xn)) has a subsequence whose Cesàro
sequence is almost order bounded in F .

Proof. (1) =⇒ (2) Let (xn) be a weakly null and uo-null sequence of E+. Since E is order
continuous, then by [9, Lemma 6.7 ] there exist a subsequence (xnk) of (xn) and a disjoint
sequence (dk) of E such that ‖xnk −dk‖ −→ 0. Since (xn) is a weakly null sequence of E, then
it follows from the proof [7, Theorem 3.2 ] that (dk) is a weakly null sequence of E. Hence,
every subsequence of (dk) is disjoint and weakly null. As T is disjoint weak Banach-Saks, then it
follows from the Proposition 3.11 that every subsequence of (T (dk)) has a further subsequence
whose Cesàro sequence is almost order bounded in F . Since F is order continuous, then it
follows from [9, Lemma 6.3] that (T (dk)) has a subsequence whose Cesàro sequence is norm
convergent in F . Therefore, (T (xnk)) has a subsequence whose Cesàro sequence is almost order
bounded in F .

(2) =⇒ (1) Let (xn) be a disjoint weakly null sequence of E+. By [9, Corollary 3.6], we
have that xn

uo−→ 0 and hence it follows from the assertion (2) that (T (xn)) has a subsequence
whose Cesàro sequence is almost order bounded in F . As F is order continuous, then it follows
from the Proposition 3.11 that T is disjoint weak Banach-Saks.

(2) =⇒ (3) Let (xn) be a weakly null sequence of E+. Since E is order continuous, then
it follows from [9, Proposition 4.5 ] and [9, Proposition 4.7] that there exists a subsequence
(xnk) of (xn) such that xnk

uo−→ 0. Therefore, by assertion (2) we conclude that (T (xnk)) has a
subsequence whose Cesàro sequence is almost order bounded in F .

(3) =⇒ (2) It is obvious.
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As a consequence of the Proposition 3.4, the Proposition 3.11 and the Proposition 3.12; we
obtain Proposition 6.9 [9].

Corollary 3.13. ([9, Proposition 6.9])
Let E be order continuous. Then, the following assertions are equivalent:

(1) E has the disjoint weak Banach-Saks property.

(2) Every disjoint weakly null sequence (xn) of E has a subsequence whose Cesàro sequence
is almost order bounded.

(3) Every disjoint weakly null sequence (xn) of E+ has a subsequence whose Cesàro sequence
is almost order bounded.

(4) Every weakly and uo-null sequence (xn) of E has a subsequence whose Cesàro sequence
is norm convergent.

(5) Every weakly and uo-null sequence (xn) of E+ has a subsequence whose Cesàro sequence
is almost order bounded.

(6) Every weakly null sequence (xn) of E+ has a subsequence whose Cesàro sequence is norm
convergent.

(7) Every weakly null sequence (xn) of E+ has a subsequence whose Cesàro sequence is al-
most order bounded.

We denote by LDWBS(E, Y ) the space of all disjoint weak Banach-Saks operators from E
into Y .

Proposition 3.14. LDWBS(E, Y ) is a closed subset of the space of all operators from E into Y .

Proof. Let (Tm) be a sequence of disjoint weak Banach-Saks operators which is norm con-
vergent to the operator T . We will show that T is also a disjoint weak Banach-Saks operator.
For this, let (xn) be a disjoint weakly null sequence of E, then it follows that (Tm(xn)) has
a subsequence (Tm(xnk)) whose Cesàro sequence is norm convergent in Y . Thus, we have

lim
n−→∞

1
n

∑n
k=1 Tm(xnk) = 0. On the other hand, (Tm) is norm convergent to the operator T .

So, given any ε > 0, there is an m0 ∈ N such that ‖Tm − T‖ ≤ ε
2M for each m > m0, where

M = supn ‖xn‖. Let m > m0, for sufficiently large n we have ‖ 1
n

∑n
k=1 Tm(xnk)‖ ≤

ε
2 .

Therefore, by the inequality

‖T (xn)‖ ≤ ‖(T − Tm)(xn)‖+ ‖Tm(xn)‖

≤ M.
ε

2M
+ ‖Tm(xn)‖

we obtain that

‖ 1
n

n∑
k=1

T (xnk)‖ ≤
ε

2
+ ‖ 1

n

n∑
k=1

Tm(xnk)‖

≤ ε

2
+
ε

2
= ε.

Hence we find that lim
n−→∞

1
n

∑n
k=1 T (xnk) = 0. Therefore, T ∈ LDWBS(E, Y ).

Proposition 3.15. If F is order continuous, then LDWBS(E,F ) is a closed vector subspace of
the space of all operators from E into F .

Proof. Let T, S ∈ LDWBS(E,F ). Is T+S ∈ LDWBS(E,F )? Let (xn) be a disjoint weakly null
sequence ofE+, then every subsequence of (xn) is disjoint weakly null ofE+. Since T is disjoint
weak Banach-Saks operator, then it follows from the Proposition 3.11 that every subsequence of
(T (xn)) has a further subsequence whose Cesàro sequence is almost order bounded in F . As F
is order continuous, then from [9, Lemma 6.3] there exists a subsequence (T (xφ(n))) of (T (xn))
and a vector y ∈ F such that the Cesàro sequence of any subsequence of (T (xφ(n))) converges
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uo-and in norm to y = 0, and hence is almost order bounded in F . On the other hand, S is disjoint
weak Banach-Saks operator. It follows from the Proposition 3.11 that the sequence (S(xφ(n)))
has a subsequence (S(xψ(φ(n)))) whose Cesàro sequence is almost order bounded in F . As, it
was mentioned above, the Cesàro sequence of any subsequence of (T (xφ(n))) is almost order
bounded in F ; hence the Cesàro sequence of (T (xψ(φ(n)))) is almost order bounded. Therefore,
the Cesàro sequence of the subsequence (T + S)(xψ(φ(n))) = T (xψ(φ(n))) + S(xψ(φ(n))) of the
sequence (T + S)(xn) is almost order bounded in F . Where φ and ψ are increasing mappings
from N to N

As a consequence of the Proposition 3.15, we obtain the following result.

Corollary 3.16. Let T : E −→ F be an operator such that F is order continuous. If the modulus
of T exists and is disjoint weak Banach-Saks, then T is disjoint weak Banach-Saks.

Proof. The proof is the same as that of the second part of [3, Proposition 2.1].

Lemma 3.17. Let (xα) be a net inE such that xα
uaw−→ 0. Then, there exist an increasing sequence

of indices (αk) and a disjoint sequence (dk) such that xαk − dk
w−→ 0.

Proof. The proof of this lemma is the same as that of [7, Theorem 3.2]. It suffices to replace the
norm in the inequality ‖xαk ∧ xαi‖ ≤ 1

2k+1 by a positive linear functional in order to replace the
norm convergence by the weak convergence.

Proposition 3.18. If Y has the Schur property, then for every operator T : E −→ Y the following
statements are equivalent:

(1) T is disjoint weak Banach-Saks.

(2) For each weakly null sequence (xn) of E such that xn
uaw−→ 0, (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent.

Proof. (1) =⇒ (2) Let (xn) be a weakly null sequence of E such that xn
uaw−→ 0. Then it follows

from the Lemma 3.17 that there exist (xnk) a subsequence of (xn) and a disjoint sequence (dk)

of E such that xnk − dk
w−→ 0. As (xnk) is weakly null in E, then (dk) is weakly null in E.

Since T is a disjoint weak Banach-Saks operator, then (T (dk)) has a Cesàro norm convergent
subsequence (T (dφ(k))) which is also weakly convergent. Since xnφ(k) − dφ(k)

w−→ 0, then
(T (xnk)) has a Cesàro weakly convergent subsequence (T (xnφ(k))) in Y . On the other hand, Y
has the Schur property, implies that (T (xnk)) has a Cesàro convergent subsequence (T (xnφ(k))).

(2) =⇒ (1) Let (xn) be a disjoint weakly null sequence of E. Then it follows from [15,
Lemma 2] that xn

uaw−→ 0. Therefore, (T (xn)) has a Cesàro convergent subsequence in Y .

As consequence of the Proposition 3.11 and the Proposition 3.18, we obtain the following
results.

Corollary 3.19. If the lattice operations of E are weakly sequentially continuous and F has the
Schur property, then for every operator T : E −→ F the following statements are equivalent:

(1) T is disjoint weak Banach-Saks.

(2) For each weakly null sequence (xn) of E such that xn
uaw−→ 0, (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent.

(3) For each weakly null sequence (xn) of E, (T (xn)) has a subsequence whose Cesàro se-
quence is norm convergent.

(4) For each weakly null sequence (xn) of E+, (T (xn)) has a subsequence whose Cesàro
sequence is norm convergent.

Proof. (1)⇐⇒ (2) It follows from the Proposition 3.18.
(2) =⇒ (3) Let (xn) be a weakly null sequence of E. Since the lattice operations of E are

weak sequentially continuous, then it follows from [8, Theorem 2.1] that xn
uaw−→ 0. Hence, by

(2) we conclude that (T (xn)) has a subsequence whose Cesàro sequence is norm convergent in
Y .
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(3) =⇒ (2) and (3) =⇒ (4) Are obvious.
(4) =⇒ (3) The proof is the same as that of the implication ((3) =⇒ (2)) of the Proposition

3.11.

Corollary 3.20. Let T : E −→ F be a positive operator such that F has the Schur property. The
following assertions are equivalent:

(1) T is a disjoint weak Banach-Saks operator.

(2) For each weakly null sequence (xn) ⊂ E+, (T (xn)) has a subsequence whose Cesàro
sequence is norm convergent in F .

Proof. (1) =⇒ (2) Let (xn) be a weakly null sequence of E+, then |xn|
w−→ 0 and hence it

follows from [15] that xn
uaw−→ 0. Therefore, by Proposition 3.18 (T (xn)) has a subsequence

whose Cesàro sequence is norm convergent in F .
(2) =⇒ (1) It follows from the Theorem 3.2.

Note that a weak Banach-Saks operator is disjoint weak Banach-Saks. But the converse is not
true in general. In fact, the Banach lattice E = Lp(c0) = Lp([0, 1]; c0), where 0 < p < 1, has the
disjoint weak Banach-Saks property ([9, example 6.10]) but fails to have the weak Banach-Saks
property. Thus, IdE the identity operator of E is a disjoint weak Banach-Saks operator which is
not weak Banach-Saks.

In the following result, we give sufficient conditions on E and Y under which each disjoint
weak Banach-Saks operator from E into Y is weak Banach-Saks.

Theorem 3.21. Each disjoint weak Banach-Saks operator T : E −→ Y is weak Banach-Saks, if
one of the following assertions is valid:

(1) E has the subsequence splitting property.

(2) E is order continuous and atomic.

(3) E and E′ are order continuous.

(4) The lattice operations of E are weakly sequentially continuous and Y is a Banach lattice
with the Schur property.

Proof. 1) Let (xn) be a weakly null sequence of E. Since E has the subsequence splitting
property, by passing to a subsequence we may assume that xn = yn + zn, where (yn) is almost
order bounded and (zn) is disjoint. Since E is order continuous, then by passing to a further
subsequence, we may assume that every subsequence of (yn) and therefore of (T (yn)) is Cesàro
norm convergent ([9, lemma 6.3]). As (xn) is a weakly null sequence, then (zn) is also a weakly
null sequence. Since T is a disjoint weak Banach-Saks operator, then (T (zn)) has a Cesàro norm
convergent subsequence (T (znk)). We put T (xnk) = T (ynk) + T (znk) = T (ynk + znk), where
(ynk) is a subsequence of (yn). We have (T (xnk)) is a Cesàro norm convergent subsequence of
(T (xn)). Therefore, T is a weak Banach-Saks operator.

2) It follows from [9, Lemma 6.7] and [9, Lemma 6.14].
3) Let (xn) be a weakly null sequence of E. Since both E and E′ are order continuous, then

it follows from [13, Theorem 5] that (xn) is uo-null sequence of E. As T is a disjoint weak
Banach-Saks operator, then by the Proposition 3.10 we infer that (T (xn)) has a Cesàro norm
convergent subsequence in Y . Thus, T is weak Banach-Saks.

4) It follows from the Corollary 3.19.

Note that an almost Banach-Saks operator is disjoint weak Banach-Saks. But the converse is
not true in general. In fact, the identity operator Id`1 : `1 −→ `1 is disjoint weak Banach-Saks(
because `1 has the disjoint weak Banach-Saks property

)
, but it follows from [11] that Id`1 is

not almost Banach-Saks.
In the following result, we give necessary and sufficient conditions on E and Y under which

each disjoint weak Banach-Saks operator from E into Y is almost Banach-Saks.

Theorem 3.22. The following assertions are equivalent:

(1) Each disjoint weak Banach-Saks operator T : E −→ Y is almost Banach-Saks.
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(2) One of the following assertions is valid:

(a) E′ is order continuous;

(b) Y has the Banach-Saks property.

Proof. (1) =⇒ (2) Assume that neither the norm of E′ is order continuous nor Y has the
Banach-Saks property. Then, by [12, Theorem 2.4.14 ] and [12, Proposition 2.3.11] E contains
a complemented copy of `1 and there exists a positive projection P : E −→ `1. On the other
hand, since Y does not have the Banach-Saks property then there exists (yn) a norm bounded
sequence of Y with no Cesàro convergent subsequence.

We consider the following operator:

S : `1 −→ Y

(λn) 7−→
∑∞
n=1 λnyn

S is well defined.
Now, we consider the composed operator T = S ◦ P . Since `1 has the weak Banach-Saks

property, then both S and P are weak Banach-Saks operators. Thus, T is weak Banch-Saks
and hence T is disjoint weak Banach-Saks. To finish the proof, we have to claim that T is
not an almost Banach-Saks operator. Otherwise, since the injection ı : `1 −→ E is a lattice
homomorphism then it follows from [11, Propostion 3.2] that T ◦ ı is an almost Banach-Saks
operator. But by taking (en) the unit basis of `1 as a norm bounded disjoint sequence, we have
T ◦ ı(en) = yn with no Cesàro convergent subsequence, which is a contradiction.

(2)(a) =⇒ (1) Let T : E −→ Y be a disjoint weak Banach-Saks operator and let (xn) be
a norm bounded disjoint sequence in E. Since E′ is order continuous, then by [12, Theorem
2.4.14] the sequence (xn) is also weakly null and so (T (xn)) has a subsequence whose Cesàro
sequence is norm convergent in Y . Hence, the operator T is almost Banach-Saks.

(2)(b) =⇒ (1) It is obvious.

As consequences of the Theorem 3.22, we have the following results.

Corollary 3.23. The following assertions are equivalent:

(1) Each disjoint weak Banach-Saks operator T : E −→ E is almost Banach-Saks.

(2) E′ is order continuous.

Corollary 3.24. ([9, Proposition 6.15]) A Banach lattice E with the DWBSP has the DBSP if,
and only if, it contains no lattice copy of `1.

Recall from [1, Theorem 5.57] that an operator T : E −→ Y is order weakly compact if and
only if for every order bounded disjoint sequence (xn) of E, we have ‖T (xn)‖ −→ 0.

Theorem 3.25. If either E is σ-laterally complete or AM-space with unit, then every o-weakly
compact operator from E into Y is disjoint weak Banach-Saks.

Proof. Let T : E −→ Y be an order weakly compact operator and let (xn) be a disjoint weakly
null sequence in E. Since E is σ-laterally complete (resp, E is AM-space with unit), then (xn)
is order bounded and hence (T (xn)) is norm-null. Therefore, (T (xn)) has a Cesàro convergent
subsequence.

We note that a disjoint weak Banach-Saks operator is not necessarily o-weakly compact. In
fact, the identity operator Id`∞ : `∞ −→ `∞ is disjoint weak Banach-Saks

(
because `∞ has

the disjoint weak Banach-Saks property
)

but it is not o-weakly compact(because `∞ is not order
continuous).

By the same proof of [2, Theorem 2.2], we can investegate the following result.

Theorem 3.26. If E has the disjoint weak Banach-Saks property, then the following assertions
are equivalent:

(1) Each order bounded operator from E into F is order weakly compact.



ON THE DISJOINT WEAK BANACH-SAKS OPERATORS 351

(2) Each order bounded disjoint weak Banach-Saks operator T : E −→ F is order weakly
compact.

(3) One of the following assertions is valid:

(a) E is order continuous;

(b) F is order continuous.

We note that the identity operator Idc0 of the Banach lattice c0 is a disjoint weak Banach-
Saks operator which is not weakly compact. Conversely, weakly compact operators are not in
general disjoint weak Banach-Saks. In fact, the identity operator of the Baerstein space

(
see [4]

)
is weakly compact but fails to be disjoint weak Banach-Saks.

Theorem 3.27. If either E′ has the positive Schur property or Y has the Schur property, then
every weakly compact operator from E into Y is disjoint weak Banach-Saks.

Proof. • Let T : E −→ Y be a weakly compact operator. If E′ has the positive Schur
property, then it follows from [11, Proposition 3.18] that T is almost Banach-Saks and
hence T is disjoint weak Banach-Saks.

• Let (xn) be a weakly disjoint sequence in E and T : E −→ Y be a weakly compact
operator. It follows from [1] that (T (xn)) has a weakly null convergent subsequence in Y .
Since Y has the Schur property, then (T (xn)) has a norm null convergent subsequence.
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