On (m, n)-class \mathbf{Q} and (m, n)-class \mathbf{Q}^{*} operators

P. RAMYA, T. PRASAD and E. SHINE LAL
Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 47B20 ; Secondary 47B38.
Keywords and phrases: (m, n) paranormal operators, (m, n)-class Q operators, (m, n)-class Q^{*} operators, composition operators.

Abstract For a positive real number m and an integer $n \geq 1$, an operator $T \in \mathcal{B}(\mathcal{H})$ is (m, n)-class \mathcal{Q} operator if $\|T x\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right)$ for every $x \in \mathcal{H}$ and (m, n) class \mathcal{Q}^{*} operator if $\left\|T^{*} x\right\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right)$ for every $x \in \mathcal{H}$. In this paper we study some properties of (m, n)-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} operators. Also we characterize (m, n)-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} composition operators on L^{2} space.

1 Introduction

Let \mathcal{H} be a complex separable Hilbert space and $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if $T T^{*} \leq T^{*} T$, and paranomal if $\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|$ for all $x \in \mathcal{H}$ [4]. Hyponormal operators are paranormal [4]. $T \in \mathcal{B}(\mathcal{H})$ is said to be Class \mathcal{Q} if $T^{* 2} T^{2}-2 T^{*} T+I \geq 0$ [2]. Class \mathcal{Q} operators properly includes the paranormal operators [2]. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be Class \mathcal{Q}^{*} if $T^{* 2} T^{2}-2 T T^{*}+I \geq 0$ [12]. For a positive real number m and an integer $n \geq 1, T \in \mathcal{B}(\mathcal{H})$ is (m, n)-paranomal if $\|T x\|^{n+1} \leq m\left\|T^{n+1} x\right\|\|x\|^{n}$ for all $x \in \mathcal{H}$ and $(m, n)^{*}$-paranomal if $\left\|T^{*} x\right\|^{n+1} \leq m\left\|T^{n+1} x\right\|\|x\|^{n}$ for all $x \in \mathcal{H}$ [3]. An operator $T \in$ is said to be a normaloid if $\|T\|=\sup \{|\lambda|: \lambda \in \sigma(T)\}$, where $\sigma(T)$ denotes the spectrum of T. It is well-known that every class \mathcal{Q} operators are not necessarily normaloid.

Let (X, \mathcal{A}, μ) be a σ-finite measure space. A transformation T is said to be measurable if $T^{-1}(B) \in \mathcal{A}$, for every $B \in \mathcal{A}$. If T is a nonsingular measurable transformation on (X, \mathcal{A}, μ) and the Randon- Nikodym derivative $\frac{d \mu T^{-1}}{d \mu}$ denoted by h is essentially bounded, then the composition operator C_{T} on $L^{2}(\mu)$ is defined by $C_{T} f=f \circ T, f \in L^{2}(\mu)$ [11]. Let $L^{\infty}(\mu)$ denote the space of all essentially bounded complex valued measurable functions on X. For $\pi \in L^{\infty}(\mu)$, the multiplication operator M_{π} on $L^{2}(\mu)$ is given by $M_{\pi} f=\pi f, f \in L^{2}(\mu)$. The weighted composition operator W on $L^{2}(X, \mathcal{A}, \mu)$ induced by T and a complex valued measurable function π is given by

$$
W=\pi(f \circ T)
$$

for $f \in L^{2}(\mu)$. Let π_{k} denote $\pi(\pi \circ T)\left(\pi \circ T^{2}\right) \cdots\left(\pi \circ T^{k-1}\right)$. Then, $W^{k}(f)=\pi_{k}(f \circ T)^{k}$ [9]. More details on general properties of (measure based) composition operators can be found in $[8,11]$. The conditional expectation operator $E\left(.\left.\right|_{T^{-1}(\mathcal{A})}\right)=E(f)$ is defined for each nonnegative function $f \in L^{p}(\mu), 1 \leq p<\infty$ and is uniquely determined by the conditions
(i) $E(f)$ is $T^{-1}(\mathcal{A})$ measurable
(ii) If B is any $T^{-1}(\mathcal{A})$ measurable set for which $\int_{B} f d \mu$ converges then $\int_{B} f d \mu=\int_{B} E(f) d \mu$.

We refer the reader to $[1,6,7,10]$ for more details on the properties of conditional expectation.
In this paper we initiate the study of (m, n)-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} operators. The classes (m, n)-class \mathcal{Q} and (m, n) - class \mathcal{Q}^{*} are extension of class \mathbf{Q} and class \mathbf{Q}^{*} operators, respectively. We study some properties and give examples of these classes of operators. Moreover, (m, n)-class \mathcal{Q} and (m, n) - class \mathcal{Q}^{*} composition operators on L^{2}-space are characterized.

$2(m, n)$-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} operators

Throughout this paper, let m be a positive real number and $n \geq 1$ be an integer. In this section we give some basic properties of (m, n)-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} operators.

An operator $T \in \mathcal{B}(\mathcal{H})$ is (m, n)-paranomal if and only if

$$
m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) a^{n} T^{*} T+m^{\frac{2}{n+1}} n a^{n+1} I \geq 0
$$

for each $a>0$ [3].
For $T \in \mathcal{B}(\mathcal{H})$, we define

$$
\mathcal{Q}_{(m, n)}=m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) T^{*} T+m^{\frac{2}{n+1}} n I
$$

Definition 2.1. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be (m, n)-class \mathcal{Q} if $\mathcal{Q}_{(m, n)} \geq 0$. That is, T is a (m,n)-class \mathcal{Q} if

$$
\|T x\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right)
$$

for every $x \in \mathcal{H}$.
If $m=n=1$, then (m, n)-class \mathcal{Q} and class \mathcal{Q} coincides.
Example 2.2. Let $T: l^{2}(\mathbb{N}) \rightarrow l^{2}(\mathbb{N})$ be defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)
$$

Then, $T^{*}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{2}, x_{3}, x_{4} \cdots\right)$.
Also,

$$
T^{*} T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, x_{2}, x_{3}, \cdots\right)
$$

and

$$
T^{* n+1} T^{n+1}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, x_{2}, x_{3}, \cdots\right)
$$

Hence,

$$
\begin{aligned}
\mathcal{Q}_{(m, n)} & =m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) T^{*} T+m^{\frac{2}{n+1}} n I \\
& =\left(m^{\frac{2}{n+1}}-1\right)(1+n) I \geq 0, \text { for all } m \geq 1
\end{aligned}
$$

If $m \geq 1$, then T is (m, n)-class \mathcal{Q}.
Theorem 2.3. Let $T \in \mathcal{B}(\mathcal{H})$. T is (m, n)-paranormal if and only if λT is (m, n)-class \mathcal{Q} operator, for each $\lambda>0$.

Proof. By definition, $\lambda T(m, n)$-class \mathcal{Q}

$$
\begin{aligned}
& \Leftrightarrow m^{\frac{2}{n+1}}|\lambda|^{2(n+1)} T^{* n+1} T^{n+1}-(n+1)|\lambda|^{2} T^{*} T+m^{\frac{2}{n+1}} n I \geq 0, \forall \lambda>0 \\
& \Leftrightarrow m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1)\left(\frac{1}{\lambda^{2}}\right)^{n} T^{*} T+m^{\frac{2}{n+1}} n\left(\frac{1}{\lambda^{2}}\right)^{n+1} I \geq 0, \forall \lambda>0 \\
& \Leftrightarrow m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) a^{n} T^{*} T+m^{\frac{2}{n+1}} n a^{n+1} I \geq 0, a>0 \\
& \Leftrightarrow T \text { is }(\mathrm{m}, \mathrm{n}) \text {-paranormal. }
\end{aligned}
$$

Now we prove that the part of (m, n)-class \mathcal{Q} is again (m, n)-class \mathcal{Q}.
Theorem 2.4. Let $T \in \mathcal{B}(\mathcal{H})$ be a (m, n)-class \mathcal{Q} operator and \mathcal{M} be a closed subspace of \mathcal{H} which is invariant under T. Then $\left.T\right|_{\mathcal{M}}$ is a (m, n)-class \mathcal{Q} operator.

Proof. Let $x \in \mathcal{M}$. Then

$$
\begin{aligned}
\left\|\left.T\right|_{\mathcal{M}} x\right\|^{2} & =\|T x\|^{2} \\
& \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right) \\
& =\frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{n+1} x\right\|^{2}+n\|x\|^{2}\right) .
\end{aligned}
$$

Thus, $\left.T\right|_{\mathcal{M}}$ is a (m, n)-class \mathcal{Q} operator.
Theorem 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ and $c=\frac{n+1}{m^{\frac{2}{n+1}} n}$. If $\sqrt{c} T$ is a contraction, then T is a (m, n)-class \mathcal{Q} operator.

Proof. Since $\sqrt{c} T$ is a contraction, we have $-c T^{*} T+I \geq 0$. Hence

$$
\frac{1}{n} T^{* n+1} T^{n+1}-c T^{*} T+I \geq 0
$$

Thus, T is a (m, n)-class \mathcal{Q} operator.
Theorem 2.6. Let $T \in \mathcal{B}(\mathcal{H})$ be a weighted shift operator with non zero weights $\left\{\alpha_{k}\right\}, k=$ $1,2, \cdots$. Then T is a (m, n)-class \mathcal{Q} operator if and only if

$$
\frac{n+1}{m^{\frac{2}{n+1}}}\left(\left|\alpha_{k}\right|^{2}\right) \leq\left|\alpha_{k}\right|^{2}\left|\alpha_{k+1}\right|^{2} \cdots\left|\alpha_{k+n}\right|^{2}+n, \forall k \in \mathbb{N} .
$$

Proof. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis of \mathcal{H}. Since $T e_{k}=\alpha_{k} e_{k+1}$,
we have $T^{n+1} e_{k}=\alpha_{k} \alpha_{k+1} \cdots \alpha_{k+n} e_{k+n+1}$.
Now,

$$
\begin{aligned}
T \text { is }(m, n) \text {-class } \mathcal{Q} & \Leftrightarrow\|T x\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right), \forall x \in \mathcal{H} \\
& \Leftrightarrow\left\|T e_{k}\right\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} e_{k}\right\|^{2}+n\left\|e_{k}\right\|^{2}\right), \forall k \in \mathbb{N} . \\
& \Leftrightarrow \frac{n+1}{m^{\frac{2}{n+1}}}\left|\alpha_{k}\right|^{2} \leq\left|\alpha_{k}\right|^{2}\left|\alpha_{k+1}\right|^{2} \ldots .\left|\alpha_{k+n}\right|^{2}+n, \forall k \in \mathbb{N} .
\end{aligned}
$$

Let $T \in \mathcal{B}(\mathcal{H})$ be a weighted shift operator with non zero weights $\left\{\alpha_{k}\right\}, k=1,2, \cdots$. It is evident that T is (m, n) -paranormal if and only if

$$
\begin{equation*}
\left|\alpha_{k}\right|^{n+1} \leq m\left|\alpha_{k}\right|\left|\alpha_{k+1}\right| \cdots\left|\alpha_{k+n}\right|, \forall k \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

From Theorem 2.3, every (m, n)-paranormal operator is (m, n)-class \mathcal{Q} operator. The following example show that the reverse inclusion may not hold.
Example 2.7. Let $T: l^{2}(\mathbb{N}) \rightarrow l^{2}(\mathbb{N})$ be defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, \frac{1}{2} x_{1}, \frac{1}{4} x_{2}, \frac{1}{4} x_{3}, \cdots\right)
$$

By Theorem 2.6, T is a $\left(\frac{1}{3}, 3\right)$-class \mathcal{Q} operator. If $k=4$, then equation (2.1) does not holds. Hence, T is not ($\frac{1}{3}, 3$)-paranormal operator.

It is well known that every paranormal operators are normaloid and the set of all (m, n)-class \mathcal{Q} operators includes paranormal operators. But every (m, n)-class \mathcal{Q} operators need not be a normaloid. For example, let $T=\left(\begin{array}{ll}0 & 0 \\ \lambda & 0\end{array}\right)$. If $|\lambda|^{2} \leq \frac{m}{2}$, then T is $(m, 1)$-class \mathcal{Q} but not normaloid.

Theorem 2.8. Let $T \in \mathcal{B}(\mathcal{H})$ be a (m, n)-class \mathcal{Q} operator and an isometric operator $A \in \mathcal{B}(\mathcal{H})$ be such that $A T=T A$. Then $T A$ is a (m, n)-class \mathcal{Q} operator.

Proof. Let

$$
S_{m, n}=m^{\frac{2}{n+1}}(T A)^{* n+1}(T A)^{n+1}-(n+1)(T A)^{*}(T A)+m^{\frac{2}{n+1}} n I
$$

Since $A T=T A$ and $A^{*} A=I$, we have

$$
S_{m, n}=m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) T^{*} T+m^{\frac{2}{n+1}} n I
$$

Since T is (m, n)-class \mathcal{Q}, we have $S_{m, n} \geq 0$. That is, $T A$ is (m, n)-class \mathcal{Q}.
Theorem 2.9. Let $T \in \mathcal{B}(\mathcal{H})$ be a (m, n)-class \mathcal{Q} operator and T is unitarily equivalent to a operator B. Then B is $a(m, n)$-class \mathcal{Q} operator.

Proof. Since T is unitarily equivalent to B, there exist a unitary operator U such that $B=U^{*} T U$. Now, $m^{\frac{2}{n+1}} B^{* n+1} B^{n+1}-(n+1) B^{*} B+m^{\frac{2}{n+1}} n I$

$$
\begin{aligned}
& =m^{\frac{2}{n+1}} U^{*}\left(T^{*}\right)^{n+1}(T)^{n+1} U-(n+1) U^{*} T^{*} T U+m^{\frac{2}{n+1}} n I \\
& =U^{*}\left(m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) T^{*} T+m^{\frac{2}{n+1}} n I\right) U \geq 0
\end{aligned}
$$

That is, B is a (m, n)-class \mathcal{Q} operator.
An operator $T \in \mathcal{B}(\mathcal{H})$ is $(m, n)^{*}$ - paranomal if and only if

$$
m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) a^{n} T T^{*}+m^{\frac{2}{n+1}} n a^{n+1} I \geq 0
$$

for each $a>0$ [3].
For $T \in \mathcal{B}(\mathcal{H})$, we define

$$
\mathcal{Q}_{(m, n)^{*}}=m^{\frac{2}{n+1}} T^{* n+1} T^{n+1}-(n+1) T T^{*}+m^{\frac{2}{n+1}} n I
$$

Definition 2.10. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be (m, n)-class \mathcal{Q}^{*} if $\mathcal{Q}_{(m, n)^{*}}>0$. Equivalently, T is (m, n)-class \mathcal{Q}^{*} if

$$
\left\|T^{*} x\right\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right)
$$

for every $x \in \mathcal{H}$.
Theorem 2.11. Let $T \in \mathcal{B}(\mathcal{H})$ be a weighted shift operator with non zero weights $\left\{\alpha_{k}\right\}, k=$ $1,2, \cdots T$ is a (m, n)-class \mathcal{Q}^{*} operator if and only if

$$
\frac{n+1}{m^{\frac{2}{n+1}}}\left(\left|\alpha_{k}\right|^{2}\right) \leq\left|\alpha_{k+1}\right|^{2}\left|\alpha_{k+2}\right|^{2} \cdots\left|\alpha_{k+n+1}\right|^{2}+n, \forall k \in \mathbb{N}
$$

Proof. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis of \mathcal{H}. Since $T e_{k}=\alpha_{k} e_{k+1}$, we have $T^{n+1} e_{k}=$ $\alpha_{k} \alpha_{k+1} \cdots \alpha_{k+n} e_{k+n+1}$ and $T^{*} e_{k}=\overline{\alpha_{k-1}} e_{k-1}$.
Now, T is (m, n)-class \mathcal{Q}^{*}

$$
\begin{aligned}
& \Leftrightarrow\left\|T^{*} x\right\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} x\right\|^{2}+n\|x\|^{2}\right), \forall x \in \mathcal{H} . \\
& \Leftrightarrow\left\|T^{*} e_{k}\right\|^{2} \leq \frac{m^{\frac{2}{n+1}}}{n+1}\left(\left\|T^{n+1} e_{k}\right\|^{2}+n\left\|e_{k}\right\|^{2}\right), \forall k \in \mathbb{N} . \\
& \Leftrightarrow \frac{n+1}{m^{\frac{2}{n+1}}}\left|\alpha_{k}\right|^{2} \leq\left|\alpha_{k+1}\right|^{2}\left|\alpha_{k+2}\right|^{2} \ldots .\left|\alpha_{k+n+1}\right|^{2}+n, \forall k \in \mathbb{N} .
\end{aligned}
$$

Theorem 2.12. Let $T \in \mathcal{B}(\mathcal{H})$ and let $c=\frac{n+1}{m^{\frac{2}{n+1}} n}$. If $\sqrt{c} T^{*}$ is a contraction, then T is a (m, n)-class \mathcal{Q}^{*} operator.

Proof. Since $\sqrt{c} T^{*}$ is a contraction, we have $-c T T^{*}+I \geq 0$. Hence

$$
\frac{1}{n} T^{* n+1} T^{n+1}-c T T^{*}+I \geq 0
$$

That is, T is a (m, n)-class \mathcal{Q}^{*} operator.
Theorem 2.13. Let $T \in \mathcal{B}(\mathcal{H})$. T is $(m, n)^{*}$-paranormal if and only if λT is (m, n)-class \mathcal{Q}^{*}, for each $\lambda>0$.

Proof. The reult follows by a similar argument as in the proof of Theorem 2.3.
By a similar argument as in the case of (m, n)-class \mathcal{Q}, the following results hold:
(i) If $T \in \mathcal{B}(\mathcal{H})$ is a (m, n)-class \mathcal{Q}^{*} operator, then the restriction $\left.T\right|_{\mathcal{M}}$ is (m, n)-class \mathcal{Q}^{*}, where \mathcal{M} is a closed subspace of \mathcal{H} which is invariant under T.
(ii) If $T \in \mathcal{B}(\mathcal{H})$ is a (m, n)-class \mathcal{Q}^{*} operator and $A \in \mathcal{B}(\mathcal{H})$ is an isometric operator such that $A T=T A$, then $T A$ is a (m, n)-class \mathcal{Q}^{*} operator.
(iii) If $T \in \mathcal{B}(\mathcal{H})$ is a (m, n)-class \mathcal{Q}^{*} operator and T is unitarily equivalent to an operator B, then B is a (m, n)-class \mathcal{Q}^{*} operator.

$3(m, n)$-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} composition operators

In this section we characterize (m, n)-class \mathcal{Q} and (m, n)-class \mathcal{Q}^{*} composition operators on L^{2} space. Throughout this section, T is a nonsingular measurable transformation on a σ - finite measure space (X, \mathcal{A}, μ).

Proposition 3.1. [1, 5]
Let C_{T} be the composition operator on $L^{2}(\mu)$ and P be the projection from $L^{2}(X, \mathcal{A}, \mu)$ onto $\overline{R\left(C_{T}\right)}$. Then for every $f \in L^{2}(\mu)$, the following holds
(i) $C_{T}^{*} f=h . E(f) \circ T^{-1}$.
(ii) $C_{T} C_{T}^{*} f=(h \circ T) P f, C_{T}^{*} C_{T}=h f$.
(iii) $\left(C_{T} C_{T}^{*}\right)^{k} f=(h \circ T)^{k} P f, k \in \mathbb{N}$.
(iv) $\left(C_{T}^{*} C_{T}\right)^{k} f=h^{k} f, k \in \mathbb{N}$.

Let h_{k} denotes the Radon-Nikodym derivative of the measure $\mu\left(T^{k}\right)^{-1}$ with respect to μ.
Theorem 3.2. C_{T} is (m, n)-class \mathcal{Q} if and only if $m^{\frac{2}{n+1}}\left(h_{n+1}+n\right) \geq(n+1) h$.
Proof. By definition, C_{T} is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}} C_{T}^{* n+1} C_{T}^{n+1}-(n+1) C_{T}^{*} C_{T}+m^{\frac{2}{n+1}} n I \geq 0
$$

By Proposition 3.1, $(n+1) C_{T}^{*} C_{T} f=(n+1) h f$ and

$$
\begin{aligned}
m^{\frac{2}{n+1}} C_{T}^{* n+1} C_{T}^{n+1} f & =m^{\frac{2}{n+1}} C_{T}^{* n+1}\left(f \circ T^{n+1}\right) \\
& =m^{\frac{2}{n+1}} h_{n+1} E\left(f \circ T^{n+1}\right) \circ T^{-(n+1)} \\
& =m^{\frac{2}{n+1}} h_{n+1} E(1) f \\
& =m^{\frac{2}{n+1}} h_{n+1} f
\end{aligned}
$$

Hence, C_{T} is of (m, n)-class \mathcal{Q} operator if and only if $m^{\frac{2}{n+1}} h_{n+1}-(n+1) h+m^{\frac{2}{n+1}} n I \geq 0$. That is, C_{T} is of (m, n)-class \mathcal{Q} operator if and only if $m^{\frac{2}{n+1}}\left(h_{n+1}+n\right) \geq(n+1) h$.

Theorem 3.3. C_{T}^{*} is a (m, n)-class \mathcal{Q} operator if and only if $m^{\frac{2}{n+1}}\left(h_{n+1} \circ T^{n+1}+n\right) \geq$ $(n+1) h \circ T$.

Proof. By definition, C_{T}^{*} is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}} C_{T}^{n+1} C_{T}^{* n+1}-(n+1) C_{T} C_{T}^{*}+m^{\frac{2}{n+1}} n I \geq 0
$$

By Proposition 3.1, $(n+1) C_{T} C_{T}^{*} f=(n+1)(h \circ T) P f=(n+1)(h \circ T) f$ and

$$
\begin{aligned}
m^{\frac{2}{n+1}} C_{T}^{n+1} C_{T}^{* n+1} f & =m^{\frac{2}{n+1}} C_{T}^{n+1}\left(h_{n+1} \cdot E(f) \circ T^{-(n+1)}\right. \\
& =m^{\frac{2}{n+1}}\left(h_{n+1} \cdot E(f) \circ T^{-(n+1)}\right) \circ T^{n+1} \\
& =m^{\frac{2}{n+1}} h_{n+1} \circ T^{n+1} E(f) \\
& =m^{\frac{2}{n+1}} h_{n+1} \circ T^{n+1} f .
\end{aligned}
$$

Thus,
C_{T}^{*} is a (m, n)-class \mathcal{Q} operator if and only if $m^{\frac{2}{n+1}} h_{n+1} \circ T^{n+1}-(n+1)(h \circ T)+m^{\frac{2}{n+1}} n I \geq 0$.
That is, C_{T}^{*} is a (m, n)-class \mathcal{Q} operator if and only if $m^{\frac{2}{n+1}}\left(h_{n+1} \circ T^{n+1}+n\right) \geq(n+1) h \circ T$.
Example 3.4. Let $X=\mathbb{N} \cup\{0\}, \mathcal{A}=P(X)$ and μ be the measure defined by

$$
\mu(A)=\sum_{k \in A} m_{k}
$$

where

$$
m_{k}= \begin{cases}1 & \text { if } k=0 \\ \frac{1}{4^{k-1}} & \text { if } k \geq 1\end{cases}
$$

Let $T: X \rightarrow X$ defined by

$$
T(k)= \begin{cases}0, & k=0,1 \\ k-1, & k \geq 2\end{cases}
$$

For $q>1$, we have

$$
T^{q}(k)= \begin{cases}0, & k=0,1,2, \ldots, q \\ k-q, & k \geq q+1\end{cases}
$$

Therefore, $h(k)=\frac{\mu T^{-1}(\{k\})}{\mu\{k\}}= \begin{cases}2, & k=0 \\ \frac{1}{4}, & k \geq 1 .\end{cases}$
For $q>1$,

$$
h_{q}(k)= \begin{cases}2+\frac{1}{4}+\frac{1}{4^{2}}+\ldots+\frac{1}{4^{q-1}} & k=0 \\ \frac{1}{4^{q}}, & k \geq 1\end{cases}
$$

If $m \geq 2$ and $n=1$, then $m\left(h_{2}+1\right) \geq 2 h$. Hence C_{T} is (m, n)-class \mathcal{Q} operator.
Now we characterize for (m, n)-class \mathcal{Q} weighted composition operators.
Proposition 3.5. [1]
If W is a weighted composition operator, then the following holds for every $f \in L^{2}(\mu)$ and $\pi>0$.
(i) $W^{*} W(f)=h E\left(\pi^{2}\right) \circ T^{-1}(f)$.
(ii) $W W^{*}(f)=\pi(h \circ T) E(\pi f)$.

Theorem 3.6. W is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}}\left(\left(h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)}+n\right) \geq(n+1) h E\left(\pi^{2}\right) \circ T^{-1} .\right.
$$

Proof. W is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}} W^{* n+1} W^{n+1}-(n+1) W^{*} W+m^{\frac{2}{n+1}} n I \geq 0
$$

By Proposition 3.5, $(n+1) W^{*} W f=(n+1) h E\left(\pi^{2}\right) \circ T^{-1} f$.
Since $W^{* k} W^{k}(f)=h_{k} E_{k}\left(\pi_{k}^{2}\right) \circ T^{-k}(f)$, we have

$$
m^{\frac{2}{n+1}} W^{* n+1} W^{n+1} f=m^{\frac{2}{n+1}} h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)} f
$$

Hence, W is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}} h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)}-(n+1) h E\left(\pi^{2}\right) \circ T^{-1}+m^{\frac{2}{n+1}} n I \geq 0
$$

That is, W is a (m, n)-class \mathcal{Q} operator if and only if

$$
m^{\frac{2}{n+1}}\left(\left(h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)}+n\right) \geq(n+1) h E\left(\pi^{2}\right) \circ T^{-1} .\right.
$$

The following results hold by similar arguments:
(i) C_{T} is a (m, n)-class \mathcal{Q}^{*} operator if and only if $m^{\frac{2}{n+1}}\left(h_{n+1}+n\right) \geq(n+1) h \circ T$.
(ii) C_{T}^{*} is a (m, n)-class \mathcal{Q}^{*} operator if and only if $m^{\frac{2}{n+1}}\left(h_{n+1} \circ T^{n+1}+n\right) \geq(n+1) h$.

Example 3.7. In example 3.4, if we choose $m \geq 4$ and $n=1$ then C_{T} is a (m, n)-class \mathcal{Q}^{*} operator.

Theorem 3.8. W is a (m, n)-class \mathcal{Q}^{*} operator if and only if

$$
\left\langle m^{\frac{2}{n+1}}\left(h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)}+n\right) f-(n+1) \pi(h \circ T) E(\pi f), f\right\rangle \geq 0
$$

Proof. W is a (m, n)-class \mathcal{Q}^{*} operator if and only if

$$
m^{\frac{2}{n+1}} W^{* n+1} W^{n+1}-(n+1) W W^{*}+m^{\frac{2}{n+1}} n I \geq 0
$$

By Proposition 3.5, $W W^{*}(f)=\pi(h \circ T) E(\pi f)$. Since $W^{* k} W^{k}(f)=h_{k} E_{k}\left(\pi_{k}^{2}\right) \circ T^{-k}(f)$, it follows that $\left\langle m^{\frac{2}{n+1}}\left(h_{n+1} E_{n+1}\left(\pi_{n+1}^{2}\right) \circ T^{-(n+1)}+n\right) f-(n+1) \pi(h \circ T) E(\pi f), f\right\rangle \geq 0$.

Acknowledgement: The authors would like to express sincere thanks to the referees for helpful comments and suggestions. The second author is supported by seed money project grant UO.No. 11874/2021/Admn, University of Calicut.

References

[1] J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32, 87-94 (1990).
[2] B. P Duggal, C. S Kubrusly and N. Levan, Contractions of class Q and invariant suspaces, Bull. Korean Math. Soc. 42, 169-177 (2005).
[3] P. Dharmarha and S. Ram, (m,n)-paranormal operators and (m,n)* -paranormal operators, Commun. Korean Math. Soc. 35 (1), 151-159 (2020).
[4] T. Furuta, On the class of paranormal operators, Proc. Jap. Acad. 43, 594-598 (1967).
[5] J. T. Campell and W. E. Hornor Whitley, Seminormal composition operators, J. Oper. Theory. 29, 125-135 (1984).
[6] J. D. Herron, Weighted conditional expectation operators, Oper. Matrices. 5(1), 107-118 (2011).
[7] A. Lambert, Hyponormal composition operators, Bull. London. Math.Soc. 18, 395-400 (1986).
[8] E. A. Nordgren, Composition Operators, Hibert Space Operators Proceedings 1977, Lect. Notes Math. No. 693, Springer Verlag, Berlin, 1978.
[9] S. Panayappan, Non-hyponormal weighted composition operators, Indian J. Pure Appl. Math., Vol. 27 (10), 979-983 (1996).
[10] M. M. Rao, Conditional measure and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, NewYork, (1993).
[11] R. K. Singh and J. S. Manahas, Composition Operators on Function Spaces, North-Holland Mathematics Studies 179.
[12] Y. Yang and C J Kim, Contractions of class Q* operators, Far East J. Math. Sci 27(3), 649-657 (2007).

Author information

P. RAMYA, Department of Mathematics, N.S.S College, Nemmara, Kerala, India -678508.

E-mail: ramyagccgmail.com
T. PRASAD, Department of Mathematics, University of Calicut, Malapuram, Kerala, India - 673635.

E-mail: prasadvalapil@gmail.com
E. SHINE LAL, Department of Mathematics, University College, Thiruvananthapuram, Kerala, India- 695034.

E-mail: shinelal.e@gmail.com
Received: 2022-05-13
Accepted: 2022-10-31

