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Abstract
In the present paper, we have discussed Ricci soliton and gradient Ricci soliton in spacetime.

Through these discussions, some new valuable things were found which will further enrich the
Ricci soliton and gradient Ricci soliton in spacetime.

1 Introduction

In relativity and cosmology applied physics, semi-Riemannian manifolds (M) have many uses
that are part of various modern geometries. Self-identifying solutions and translation solutions,
often referred to as soliton solutions, have emerged as important subject matter in recent years
as geometric flows as they present singularity models.There has been a lot of progress recently
in the study of Ricci flow (i.e., Ricci soliton) and the mean curvature flow.

A Ricci soliton [8] is a natural generalisation of the Einstein metric. The Ricci tensor is
a constant multiple of the semi-Riemannian metric g. A Ricci soliton is defined on a semi-
Riemannian manifold as

L∗
V g(X,Y ) + Sric(X,Y ) + µ∗g(X,Y ) = 0, (1.1)

where L∗ denotes the Lie derivative of semi-Riemannian metric g along a vector field V and µ∗

is a constant.
A Ricci soliton is said to be shrinking, steady, or expanding depending on whether µ∗ is neg-

ative, zero, or positive.

A gradient steady Ricci soliton is a semi-Riemannian manifold [5]. If a smooth function F ∗

exists such that the Ricci tensor of the metric is given by the Hessian of F ∗ :

Sric(X,Y ) = ∇∗
X∇∗

XF
∗, (1.2)

where ∇∗ be the Levi-Civita connection on manifolds. Gradient steady solitons play an impor-
tant role in Hemilton’s Ricci flow because they are compatible with translation solutions.

The result of the tireless work of many authors is Ricci Soliton, they are Hamilton [4], Mon-
dal and Shaikh [8], Shaikh and Mondal [12], Shaikh, Mandal and Mondal [13] and many others.

The General relativity given by Einstein’s equation [9] is the lower form of flow.

Sric(X,Y )−
1
2
r∗g(X,Y ) + λ∗g(X,Y ) = κ∗Tenergy(X,Y ), (1.3)

where r∗ is the scalar curvature, Tenergy(X,Y ) is the energy-momentum tensor of type (0, 2),
λ∗ is the cosmological constant and κ∗ is the gravitational constant. Einstein’s gave the equation
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without the cosmological constant as follows [10]:

Sric(X,Y )−
1
2
r∗g(X,Y ) = κ∗Tenergy(X,Y ). (1.4)

The energy-momentum tensor describes a Perfect fluid [9] if

Tenergy(X,Y ) = (σ∗ + p∗)A(X)A(Y ) + ρ∗g(X,Y ), (1.5)

where σ∗ is the energy density and p∗ is the fluid’s isotropic pressure and 1-form A is defined by
A(X) = g(X, ξ∗), ξ∗ ∈M.

A memory carries many authors on the energy momentum tensors of a semi-Riemannian
manifold (Mn, g) have studied by Barman [1], Ozen [11], Guler and Altay [3], Mallick, Suh and
De ([6], [7]) and many others.

A concurrent vector field W [14] on a manifold is defined as

∇∗
XW = X, (1.6)

for arbitrary vector field X on manifolds.

The present paper is organised as follows: After introduction, in Section 2, we show that if
the Ricci solution is combined with the perfect fluid of Einstein’s field equation, then we get the
scalar curvature, provided the vector field is parallel to other vector fields. In the same section,
we investigate whether the manifold of the Ricci soliton, which is a concurrent vector field of
Einstein’s field equation is flat if and only if the energy momentum tensor is divergence-free.
Finally, we study the sectional curvature function, which is identically zero of the Ricci soliton,
which is a concurrent vector field of Einstein’s field equation and the manifold is equivalent:

(1) M is locally symmetric,

(2) If L∗ : T ∗
p (M) → T ∗

q (M) is a curvature-preserving local isometry, then there exists an
isometry φ∗ of normal neighbourhoods of p and q such that dφ∗p = L∗,

(3) The local geodesic symmetry ζ∗ is an isometry at each point p of M,

if the energy momentum tensor is divergence-free.

2 Ricci soliton on Spacetimes

Theorem 2.1: If the Ricci solution is combined with the perfect fluid of Einstein’s field equa-
tion and the vector field is parallel to other vector fields, then the scalar curvature will be
r∗ = −2[2A(ξ∗)κ∗(σ∗ + p∗) + κ∗ρ∗ + µ∗].

Proof. When we sort equations (1.4) and (1.5), we get to write

Sric(X,Y ) = κ∗(σ∗ + p∗)A(X)A(Y ) + (κ∗ρ∗ +
1
2
r∗)g(X,Y ). (2.1)

Again when we do equations (1.1) and (2.1) together, we see that

L∗
V g(X,Y ) + 2κ∗(σ∗ + p∗)A(X)A(Y ) + (κ∗ρ∗ +

1
2
r∗ + µ∗)g(X,Y ) = 0. (2.2)

If we use the definition of Lie derivative for equation (2.2), the new equation will be

g(∇∗
XV, Y ) + g(X,∇∗

Y V ) + 2κ∗(σ∗ + p∗)A(X)A(Y )

+(κ∗ρ∗ +
1
2
r∗ + µ∗)g(X,Y ) = 0. (2.3)
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Since if V is parallel to the vector fields of X and Y, i.e.,

∇∗
XV = ∇∗

Y V = 0. (2.4)

By combining equations (2.3) and (2.4), we can obtain that

2κ∗(σ∗ + p∗)A(X)A(Y ) + (κ∗ρ∗ +
1
2
r∗ + µ∗)g(X,Y ) = 0. (2.5)

Putting Y = ξ∗ in equation (2.5), it follows that

[2κ∗(σ∗ + p∗)A(ξ∗) + (κ∗ρ∗ +
1
2
r∗ + µ∗)]A(X) = 0. (2.6)

From equation (2.6), it can be said that A(X) 6= 0 but r∗ = −2[2A(ξ∗)κ∗(σ∗+ p∗)+κ∗ρ∗+
µ∗]. Then the theorem is proved.

Theorem 2.2: The Ricci soliton’s manifoldM of Einstein’s field equation would be flat (R∗(X,W )V
= 0) if and only if the energy momentum tensor is divergence-free [(∇∗

WTenergy)(X,Y ) = 0],
then this vector field must be a concurrent vector field (∇∗

WX =W ).

Proof. From equation (1.1) and equation (1.4), it implies that

L∗
V g(X,Y ) + 2κ∗Tenergy(X,Y ) + (r∗ + µ∗)g(X,Y ) = 0. (2.7)

From the definition of Lie derivative for equation (2.7), the equation will be changed as
follows:

g(∇∗
XV, Y ) + g(X,∇∗

Y V ) + 2κ∗Tenergy(X,Y ) + (r∗ + µ∗)g(X,Y ) = 0. (2.8)

Taking the covariant derivative of the equation (2.8), we obtain that

∇∗
W g(∇∗

XV, Y )− g(∇∗
W∇∗

XV, Y )− g(∇∗
XV,∇∗

WY )

+∇∗
W g(X,∇∗

Y V )− g(∇∗
WX,∇∗

Y V )− g(X,∇∗
W∇∗

Y V )

+2κ∗(∇∗
WTenergy)(X,Y ) = 0. (2.9)

Interchange X and W by W and X respectively, in the equation (2.9), we get that

∇∗
Xg(∇∗

WV, Y )− g(∇∗
X∇∗

WV, Y )− g(∇∗
WV,∇∗

XY )

+∇∗
Xg(W,∇∗

Y V )− g(∇∗
XW,∇∗

Y V )− g(W,∇∗
X∇∗

Y V )

+2κ∗(∇∗
XTenergy)(W,Y ) = 0. (2.10)

Adding Equation (2.9) and Equation (2.10), we can write the new equation

R∗(X,W, V, Y ) = 2κ∗[(∇∗
WTenergy)(X,Y ) + (∇∗

XTenergy)(W,Y )]

−g(∇∗
[X,W ]V, Y ) +∇

∗
W g(∇∗

XV, Y ) + g(∇∗
XV,∇∗

WY )

−∇∗
W g(X,∇∗

Y V ) + g(∇∗
WX,∇∗

Y V ) + g(X,∇∗
W∇∗

Y V )

+∇∗
Xg(∇∗

WV, Y )− g(∇∗
WV,∇∗

XY ) +∇∗
Xg(W,∇∗

Y V )

−g(∇∗
XW,∇∗

Y V )− g(W,∇∗
X∇∗

Y V ), (2.11)

where R∗(X,W, V, Y ) = g(R∗(X,W )V, Y ) and R∗(X,W )V is the manifold’s curvature tensor.
Using equation (1.6) and equation (2.11), we can conclude that

R∗(X,W, V, Y ) = 2κ∗[(∇∗
WTenergy)(X,Y ) + (∇∗

XTenergy)(W,Y )].
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Since the energy momentum tensor is divergence-free [2], i.e., (∇∗
WTenergy)(X,Y ) =

(∇∗
XTenergy)(W,Y ) = 0. The proof of the theorem is completed.

Proposition 2.1: [9] A semi-Riemannian manifoldM is flat if and only if the sectional curvature
function K∗ is identically zero.

From the Theorem 2.2 and Proposition 2.1, we have

Theorem 2.3: The Ricci soliton’s sectional curvature function K∗, which is a concurrent vector
field of Einstein’s field equation, is identically zero if the energy momentum tensor is divergence-
free [(∇∗

WTenergy)(X,Y ) = 0].

Corollary 2.1: [9] A semi-Riemannian manifold of constant sectional curvature is locally sym-
metric.

Using Theorem 2.3 and Corollary 2.1, we get a new theorem.

Theorem 2.4: The Ricci soliton’s manifold M , a concurrent vector field of Einstein’s field equa-
tions, is locally symmetric (∇∗R∗ = 0) but the energy momentum tensor is divergence-free.

Corollary 2.2: [9] A semi-Riemannian manifold M are equivalent:
(1) M is locally symmetric,
(2) If L∗ : T ∗

p (M)→ T ∗
q (M) is a local isometry that preserves curvature, then there is an isom-

etry φ∗ of normal neighbourhoods of p and q such that dφ∗p = L∗,
(3) At each point p of M the local geodesic symmetry ζ∗ is an isometry.

From Theorem 2.4 and Corollary 2.2, we can write

Theorem 2.5 The manifold M of the Ricci soliton, which is a concurrent vector field of Ein-
stein’s field equation, is equivalent to:
(1) M is locally symmetric,
(2) If L∗ : T ∗

p (M)→ T ∗
q (M) is a curvature-preserving local isometry, then there exists an isom-

etry φ∗ of normal neighbourhoods of p and q such that dφ∗p = L∗,
(3) The local geodesic symmetry ζ∗ is an isometry at each point p of M,
if the energy momentum tensor is divergence-free.
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