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Abstract It is well known that among all closed bounded curves in the plane with the given
perimeter, the circle encloses the maximum area. There are many proofs in the literature. In this
article, we have provided a new proof using some ideas of Demar [5].

1 Introduction

The isoperimetric inequality is a very well-known geometric problem. The problem is finding a
simple closed curve that encloses the maximum area than any other simple closed curves with
the same length. From ancient times it has been known that the solution is the circle. There is a
famous story about this problem. The story dates back the problem to Virgil’s epic Latin poem
The Aeneid [11], written in the period 29 BC to 19 BC. This poem is about the foundation of the
city of Carthage. The Greeks [10] were the first who considered this problem and tried to solve
it.

Many mathematicians from ancient times tried to solve this problem. It was believed that
Zenodours [4] in the second century first gave a complete proof. Later Steiner, Euler, Weierstrass,
and many mathematicians proved it using different techniques. For complete history and some
proofs see Blåsjö [2], Osserman [9].

In 1975, Demar[5] proved the isoperimetric inequality in the plane using some geometric
arguments. He proved that if a closed continuous curve solves the isoperimetric inequality in
the plane, then any triangle formed by the intersection of two tangents at any two points and the
chord joining them is isosceles. And he then showed that every point on that curve at which
a tangent can be drawn lies at the same distance from a fixed point inside the curve. In this
article, we only use the first idea of Demar[5] that all such triangles are isosceles, and then we
shall prove that only for the region having maximum area all such triangles with equal base are
congruent.

2 Isoperimetric Inequality in the Plane.

Our main target is to prove the following theorem.

Theorem 2.1 (Isoperimetric Inequality). If γ be a simple closed curve in the plane with length L
and bounds a region of area A, then

L2 ≥ 4πA,

where the equality holds if and only if γ is a circle.

It is well known that the solution is a convex region in the plane [2, 5]. So only the convex
regions will be focused on here. The existence of the solution to the above inequality can be
proved easily by using compactness.

Let B be the set of all nonempty compact subsets in R2. The Hausdorff distance [6] in B is
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defined by

HD(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(A, b)
}

= sup
x∈R2
|dist(x,A)− dist(x,B)|.

Then (B, HD) becomes a metric space [6]. The following compactness theorem will solve the
existence problem.

Theorem 2.2. [8, Theorem 4.1] The space of all compact subsets of a ball in R2 is compact
under the Hausdorff metric.

Proof of the Existence of Solution of Theorem 2.1. Let γ be a simple closed curve of length L.
Then γ, by translation, can be put in a planar disk D of radius 2L. Take B as the set of all simple
closed curves of length L. Then by the Theorem 2.2 (B, HD) is compact. Now the function
f : B→ R, defined by

f(γ) = Area enclosed by γ

is continuous. We note that the function f is not onto since B does not contain any curve of area
more than 4πL2. Since B is compact, hence max(f) exists. So there is a simple closed curve
with length L having maximum area.

Let γ be a simple closed curve bounding a convex region R. Now standing at any point A on
the curve γ and facing the region R, there is a right-hand and left-hand direction along γ from A.
A right-hand tangent atA is a ray fromA tangent to γ in the right-hand direction, and similarly, a
left-hand tangent can be defined [7]. Now the interior angle between these two tangents, i.e., the
angle between right hand and left-hand tangent at any point, measured in the sector containing
R, is at most π for a convex region [5].

Figure 1.

Consider two points A and B on γ such that tangents at A and B meets each other at E. If
the length AB is l then we call the triangle4ABE, the tangent triangle on the curve ÂB of base
length l and is denoted it by 4lÂB, see Figure 1. It is not always possible that for any base
length, we get a tangent triangle, e.g., there is no tangent triangle of a circle with a base length
the same as the diameter. But for a sufficiently small length, it is possible to construct a tangent
triangle at any two points on the curve by taking this length as the base of the triangle. Now for
the general convex curve, two tangent triangles with equal base length may not be congruent, but
in a circle, all the tangent triangles with equal bases are congruent.

Proof of Theorem 2.1. We prove this by contradiction. Let γ be a simple closed curve of length
L, enclosing a convex region R. Let us assume that R is not circular and has the property that
it has a maximum area than any other region with the same boundary length L. Since the set of
points where the convex curve is not differentiable is at most countable [3, pp. 154] hence there
is a dense set of points of γ where tangents can be drawn. Demar [5] proved that any tangent
triangle of R is isosceles, see Figure 2. We will show that all the tangent triangles having the
same base length are congruent.
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Figure 2.

Figure 3.

Let the two tangent triangles 4rB̂C and 4rÂN are not congruent, see Figure 2. Let M be
a point on γ such that BM = r. Now interchanging the positions of the curves ÂN and B̂M
we get the curve γ1 enclosing the region R′, see Figure 3. Obviously γ1 has same length L and
occupies the same area as R.

Now we have two adjacent tangent triangles 4rÂB and 4rB̂C which are not congruent.
Since their base are equal hence ∠EAB 6= ∠FCB. Assume that

∠EAB > ∠FCB.

Now the triangle4ABC is isosceles. So we get

∠EAC > ∠FCA.

Now reflect the whole area ACFBE with respect to the perpendicular bisector of AC. Then we
get a new curve γ′ by replacing ÂC by its image Â′C ′ under the reflection. Hence we get a new
region R′′, see Figure 4, and since reflection does not change area and perimeter hence both R′

and R′′ have same area and perimeter.
Now the image of the triangles4ABE,4CFB and4ABC under the reflection are4A′BE′,

4C ′F ′B and4BA′C ′ respectively.
Hence we get

∠FCB = ∠F ′C ′B < ∠E′A′B.
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Figure 4.

This implies that
∠FCA = ∠F ′C ′A′ < ∠E′A′C ′ = ∠EAC,

since4BA′C ′ is isosceles. So combining above two inequalities we get

π = ∠FCA+∠ACD < ∠E′A′C ′ +∠C ′A′D.

But A′E′ and A′D are right hand and left hand tangents of γ′, therefore R′′ is not convex. It is a
contradiction that R is the region of maximum area among all regions with the same perimeter.
Hence all the tangent triangles having equal base are congruent and since all the tangent triangles
are isosceles, so γ must be a circle.
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