INDUCED RICCI TYPE TENSORS OF GCR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE SASAKIAN MANIFOLDS

Varun Jain, Satvinder Singh Bhatia and Rakesh Kumar
Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C25; Secondary 53C40, 53C50.
Keywords and phrases: GCR-lightlike submanifolds, indefinite Sasakian manifolds, indefinite Sasakian space form, induced Ricci type tensors.

Abstract We derive the expressions for induced Ricci type tensors of a GCR-lightlike submanifold of an indefinite Sasakian space form and obtain some characterization theorems for it.

1 Introduction

In 1978, Bejancu [1] introduced the notion of CR-submanifolds of Kaehler manifolds as a generalization of invariant and anti-invariant submanifolds. Later, contact CR-submanifolds of Sasakian manifolds were introduced by Bejancu et al. [2] in 1981. Since contact geometry has vital roles in the theory of differential equations, optics and phase spaces of a dynamical system therefore contact geometry with definite and indefinite metric becomes the topic of main discussion. The CR structures on real hypersurfaces of complex manifolds have interesting applications in the general theory of relativity. For example, Penrose correspondence [18] is a correspondence between points of a Minkowski space and projective lines of a certain real hypersurfaces in a complex projective space, which is an interesting means of passing from the geometry of a Minkowski space to the geometry of a CR manifold. Duggal [4, 5] studied the geometry of CR submanifolds with Lorentzian metric and obtained their interaction with relativity. Theory of contact CR-lightlike and contact SCR-lightlike submanifolds of indefinite Sasakian manifolds was introduced by Duggal and Sahin [7]. But there was no inclusion relation between invariant and screen real submanifolds, so a new class of submanifolds called, Generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Sasakian manifolds (which is an umbrella of invariant, screen real, contact CR-lightlike submanifolds) was derived by Duggal and Sahin [8] and further developed in [10]-[15], [17]. Since contact geometry and Ricci tensor have remarkable applications in mathematical physic and geometry, therefore we derive the expression of induced Ricci type tensor of a GCR-lightlike submanifold of an indefinite Sasakian space form and obtain some characterization theorems for it.

2 Lightlike Submanifolds

Let (\bar{M}, \bar{g}) be a real $(m+n)$-dimensional semi-Riemannian manifold of constant index q such that $m, n \geq 1,1 \leq q \leq m+n-1$ and (M, g) be an m-dimensional submanifold of \bar{M} and g be the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle $T M$ of M then M is called a lightlike submanifold of \bar{M}. For a degenerate metric g on $M, T M^{\perp}$ is a degenerate n dimensional subspace of $T_{x} \bar{M}$. Thus, both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $\operatorname{Rad}\left(T_{x} M\right)=T_{x} M \cap T_{x} M^{\perp}$ which is known as radical (null) subspace. If the mapping $\operatorname{Rad}(T M): x \in M \longrightarrow \operatorname{Rad}\left(T_{x} M\right)$, defines a smooth distribution on M of rank $r>0$ then the submanifold M of \bar{M} is called an r-lightlike submanifold and $\operatorname{Rad}(T M)$ is called the radical distribution on M, (for detail see [6]).

Let $S(T M)$ be a screen distribution which is a semi-Riemannian complementary distribution
of $\operatorname{Rad}(T M)$ in $T M$, that is,

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \perp S(T M) \tag{2.1}
\end{equation*}
$$

and $S\left(T M^{\perp}\right)$ is a complementary vector subbundle to $\operatorname{Rad}(T M)$ in $T M^{\perp}$. Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary (but not orthogonal) vector bundles to $T M$ in $\left.T \bar{M}\right|_{M}$ and to $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$, respectively. Then

$$
\begin{equation*}
\operatorname{tr}(T M)=l \operatorname{tr}(T M) \perp S\left(T M^{\perp}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=(\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)) \perp S(T M) \perp S\left(T M^{\perp}\right) \tag{2.3}
\end{equation*}
$$

Let \mathcal{U} be a local coordinate neighbourhood of M and consider a local quasi-orthonormal field of frames of \bar{M} along M on \mathcal{U} as $\left\{\xi_{1}, \ldots, \xi_{r}, W_{r+1}, \ldots, W_{n}, N_{1}, \ldots, N_{r}, X_{r+1}, \ldots, X_{m}\right\}$, where $\left\{\xi_{1}, \ldots, \xi_{r}\right\},\left\{N_{1}, \ldots, N_{r}\right\}$ are local lightlike bases of $\Gamma(\operatorname{Rad}(T M) \mid \mathcal{U}), \Gamma(\operatorname{ltr}(T M) \mid \mathcal{U})$, respectively and $\left\{W_{r+1}, \ldots, W_{n}\right\},\left\{X_{r+1}, \ldots, X_{m}\right\}$ are local orthonormal bases of $\Gamma\left(S\left(T M^{\perp}\right) \mid \mathcal{U}\right)$ and $\Gamma(S(T M) \mid \mathcal{U})$, respectively. Then for this quasi-orthonormal fields of frames, we have the following important observation.

Theorem 2.1. ([6]). Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an r-lightlike submanifold of a semiRiemannian manifold (\bar{M}, \bar{g}). Then, there exists a complementary vector bundle ltr $(T M)$ of $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$ and a basis of $\Gamma\left(\left.\operatorname{ltr}(T M)\right|_{\mathcal{U}}\right)$ consisting of smooth section $\left\{N_{i}\right\}$ of $S\left(T M^{\perp}\right)^{\perp} \mid \mathcal{U}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0, \quad \text { for any } i, j \in\{1,2, . ., r\}
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ is a lightlike basis of $\Gamma(\operatorname{Rad}(T M))$.
Let $\bar{\nabla}$ be the Levi-Civita connection on \bar{M}. Then according to the decomposition (2.3), the Gauss and Weingarten formulae are given by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} U=-A_{U} X+\nabla_{X}^{\perp} U,
$$

for any $X, Y \in \Gamma(T M)$ and $U \in \Gamma(\operatorname{tr}(T M))$, where $\left\{\nabla_{X} Y, A_{U} X\right\}$ and $\left\{h(X, Y), \nabla_{X}^{\perp} U\right\}$ belongs to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(T M)$, which is called the second fundamental form and A_{U} is a linear operator on M, known as the shape operator.

Considering the projection morphisms \mathcal{L} and \mathcal{S} of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$, respectively then Gauss and Weingarten formulae become

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y), \quad \bar{\nabla}_{X} U=-A_{U} X+D_{X}^{l} U+D_{X}^{s} U, \tag{2.4}
\end{equation*}
$$

where $h^{l}(X, Y)=\mathcal{L}(h(X, Y)), h^{s}(X, Y)=\mathcal{S}(h(X, Y)), D_{X}^{l} U=\mathcal{L}\left(\nabla \frac{1}{X} U\right), D_{X}^{s} U=\mathcal{S}\left(\nabla \frac{1}{X} U\right)$.
As h^{l} and h^{s} are $\Gamma(l \operatorname{tr}(T M))$-valued and $\Gamma\left(S\left(T M^{\perp}\right)\right)$-valued respectively, therefore they are called as the lightlike second fundamental form and the screen second fundamental form on M. In particular

$$
\begin{gather*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N), \tag{2.5}\\
\bar{\nabla}_{X} W=-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W), \tag{2.6}
\end{gather*}
$$

where $X \in \Gamma(T M), N \in \Gamma(l t r(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Using (2.2), (2.3) and (2.4)-(2.6), we obtain

$$
\begin{gather*}
\bar{g}\left(h^{s}(X, Y), W\right)+\bar{g}\left(Y, D^{l}(X, W)\right)=g\left(A_{W} X, Y\right) \tag{2.7}\\
\bar{g}\left(h^{l}(X, Y), \xi\right)+\bar{g}\left(Y, h^{l}(X, \xi)\right)+g\left(Y, \nabla_{X} \xi\right)=0 \tag{2.8}\\
\bar{g}\left(D^{s}(X, N), W\right)=\bar{g}\left(N, A_{W} X\right) \tag{2.9}\\
\bar{g}\left(A_{N} X, N^{\prime}\right)+\bar{g}\left(N, A_{N^{\prime}} X\right)=0 \tag{2.10}
\end{gather*}
$$

for any $\xi \in \Gamma(\operatorname{Rad}(T M)), W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and $N, N^{\prime} \in \Gamma(\operatorname{ttr}(T M))$.
Let \bar{P} be the projection morphism of $T M$ on $S(T M)$. Then using (2.1), we can induce some new geometric objects on the screen distribution $S(T M)$ of M as

$$
\nabla_{X} \bar{P} Y=\nabla_{X}^{*} \bar{P} Y+h^{*}(X, Y), \quad \nabla_{X} \xi=-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi,
$$

for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, where $\left\{\nabla_{X}^{*} \bar{P} Y, A_{\xi}^{*} X\right\}$ and $\left\{h^{*}(X, Y), \nabla_{X}^{* t} \xi\right\}$ belongs to $\Gamma(S(T M))$ and $\Gamma(\operatorname{Rad}(T M))$, respectively. ∇^{*} and $\nabla^{* t}$ are linear connections on complementary distributions $S(T M)$ and $\operatorname{Rad}(T M)$, respectively. h^{*} and A^{*} are $\Gamma(\operatorname{Rad}(T M))$ valued and $\Gamma(S(T M))$-valued bilinear forms and called as the second fundamental forms of distributions $S(T M)$ and $\operatorname{Rad}(T M)$, respectively. By using above equation, we obtain

$$
\begin{equation*}
\bar{g}\left(h^{l}(X, \bar{P} Y), \xi\right)=g\left(A_{\xi}^{*} X, \bar{P} Y\right), \quad \bar{g}\left(h^{*}(X, \bar{P} Y), N\right)=g\left(A_{N} X, \bar{P} Y\right) \tag{2.11}
\end{equation*}
$$

Denote by \bar{R} and R the curvature tensors of $\bar{\nabla}$ and ∇, respectively then by straightforward calculations ([6]), we have

$$
\begin{align*}
R(X, Y) Z= & \bar{R}(X, Y) Z-A_{h^{l}(X, Z)} Y+A_{h^{l}(Y, Z)} X-A_{h^{s}(X, Z)} Y+A_{h^{s}(Y, Z)} X \\
& -\left(\nabla_{X} h^{l}\right)(Y, Z)+\left(\nabla_{Y} h^{l}\right)(X, Z)-D^{l}\left(X, h^{s}(Y, Z)\right)+D^{l}\left(Y, h^{s}(X, Z)\right) \\
& -\left(\nabla_{X} h^{s}\right)(Y, Z)+\left(\nabla_{Y} h^{s}\right)(X, Z)-D^{s}\left(X, h^{l}(Y, Z)\right) \\
& +D^{s}\left(Y, h^{l}(X, Z)\right) . \tag{2.12}
\end{align*}
$$

An odd dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an ϵ-contact metric manifold, if there exist a $(1,1)$ tensor field ϕ, a vector field V, called the characteristic vector field, and a 1 -form η such that (see [16])

$$
\begin{gathered}
\bar{g}(\phi X, \phi Y)=\bar{g}(X, Y)-\epsilon \eta(X) \eta(Y), \quad \bar{g}(V, V)=\epsilon, \\
\phi^{2}(X)=-X+\eta(X) V, \quad \bar{g}(X, V)=\epsilon \eta(X), \quad d \eta(X, Y)=\bar{g}(X, \phi Y),
\end{gathered}
$$

for any $X, Y \in \Gamma(T M)$,where $\epsilon= \pm 1$, then it follows that

$$
\phi V=0, \quad \eta \circ \phi=0, \quad \eta(V)=\epsilon,
$$

and (ϕ, V, η, \bar{g}) is called an ϵ-contact metric structure of \bar{M}. We say that \bar{M} has a normal contact structure if $N_{\phi}+d \eta \otimes V=0$, where N_{ϕ} is Nijenhuis tensor field of ϕ. A normal ϵ-contact metric manifold is called an ϵ-Sasakian manifold and for an ϵ-Sasakian manifold, we have

$$
\bar{\nabla}_{X} V=-\phi X, \quad\left(\bar{\nabla}_{X} \phi\right) Y=-\bar{g}(X, Y) V+\epsilon \eta(Y) X .
$$

Let \bar{M} be an indefinite Sasakian space form $\bar{M}(c)$ of constant ϕ-holomorphic sectional curvature c then the curvature tensor \bar{R} of $\bar{M}(c)$ is given by

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, W)= & \frac{(c+3)}{4}\{\bar{g}(Y, Z) \bar{g}(X, W)-\bar{g}(X, Z) \bar{g}(Y, W)\} \\
& +\frac{(c-1)}{4}\{\epsilon \eta(X) \eta(Z) \bar{g}(Y, W)-\epsilon \eta(Y) \eta(Z) \bar{g}(X, W) \\
& +\epsilon \eta(Y) \eta(W) \bar{g}(X, Z)-\epsilon \eta(X) \eta(W) \bar{g}(Y, Z)+\bar{g}(\phi Y, Z) \bar{g}(\phi X, W) \\
& +\bar{g}(\phi Z, X) \bar{g}(\phi Y, W)-2 \bar{g}(\phi X, Y) \bar{g}(\phi Z, W)\}, \tag{2.13}
\end{align*}
$$

now using (2.12), we get

$$
\begin{align*}
\bar{g}(R(X, Y) Z, W)= & \frac{(c+3)}{4}\{\bar{g}(Y, Z) \bar{g}(X, W)-\bar{g}(X, Z) \bar{g}(Y, W)\} \\
& +\frac{(c-1)}{4}\{\epsilon \eta(X) \eta(Z) \bar{g}(Y, W)-\epsilon \eta(Y) \eta(Z) \bar{g}(X, W) \\
& +\epsilon \eta(Y) \eta(W) \bar{g}(X, Z)-\epsilon \eta(X) \eta(W) \bar{g}(Y, Z)+\bar{g}(\phi Y, Z) \bar{g}(\phi X, W) \\
& +\bar{g}(\phi Z, X) \bar{g}(\phi Y, W)-2 \bar{g}(\phi X, Y) \bar{g}(\phi Z, W)\}-\bar{g}\left(A_{h^{l}(X, Z)} Y, W\right) \\
& +\bar{g}\left(A_{h^{l}(Y, Z)} X, W\right)-\bar{g}\left(A_{h^{s}(X, Z)} Y, W\right)+\bar{g}\left(A_{h^{s}(Y, Z)} X, W\right) \\
& -\bar{g}\left(\left(\nabla_{X} h^{l}\right)(Y, Z), W\right)+\bar{g}\left(\left(\nabla_{Y} h^{l}\right)(X, Z), W\right) \\
& -\bar{g}\left(D^{l}\left(X, h^{s}(Y, Z)\right), W\right)+\bar{g}\left(D^{l}\left(Y, h^{s}(X, Z)\right), W\right) \\
& -\bar{g}\left(\left(\nabla_{X} h^{s}\right)(Y, Z), W\right)+\bar{g}\left(\left(\nabla_{Y} h^{s}\right)(X, Z), W\right) \\
& -\bar{g}\left(D^{s}\left(X, h^{l}(Y, Z)\right), W\right)+\bar{g}\left(D^{s}\left(Y, h^{l}(X, Z)\right), W\right) . \tag{2.14}
\end{align*}
$$

3 Generalized Cauchy-Riemann Lightlike Submanifold

Calin [3] proved that if the characteristic vector field V is tangent to M then it belongs to $S(T M)$. So, we assume characteristic vector V is tangent to M throughout this paper.

Definition 3.1. Let $(M, g, S(T M))$ be a real lightlike submanifold of an indefinite Sasakian manifold (\bar{M}, \bar{g}). Then, M is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold of \bar{M} if the following conditions are satisfied:
(A) there exist two subbundles D_{1} and D_{2} of $\operatorname{Rad}(T M)$ such that

$$
\operatorname{Rad}(T M)=D_{1} \oplus D_{2}, \quad \phi\left(D_{1}\right)=D_{1}, \quad \phi\left(D_{2}\right) \subset S(T M)
$$

(B) there exist two subbundles D_{0} and \bar{D} of $S(T M)$ such that

$$
S(T M)=\left\{\phi D_{2} \oplus \bar{D}\right\} \perp D_{0} \perp V, \quad \phi(\bar{D})=L \perp S
$$

where D_{0} is an invariant non-degenerate distribution on $M,\{V\}$ is one dimensional distribution spanned by V, L and S are vector subbundles of $l \operatorname{tr}(T M)$ and $S(T M)^{\perp}$, respectively.

Let Q, P_{1}, P_{2} be the projection morphisms on $D, \phi S, \phi L$ respectively, then

$$
X=Q X+\eta(X) V+P_{1} X+P_{2} X
$$

for any $X \in \Gamma(T M)$. Applying ϕ to the above equation, we obtain

$$
\begin{equation*}
\phi X=f X+\omega P_{1} X+\omega P_{2} X \tag{3.1}
\end{equation*}
$$

where $f X \in \Gamma(D), \omega P_{1} X \in \Gamma(S)$ and $\omega P_{2} X \in \Gamma(L)$, or we can write (3.1), as

$$
\phi X=f X+\omega X
$$

where $f X$ and ωX are the tangential and the transversal components of ϕX, respectively. Similarly

$$
\begin{equation*}
\phi U=B U+C U, \quad U \in \Gamma(\operatorname{tr}(T M)) \tag{3.2}
\end{equation*}
$$

where $B U$ and $C U$ are the sections of $T M$ and $\operatorname{tr}(T M)$, respectively. Differentiating (3.1) and using (2.5)-(2.8) and (3.2), we have

$$
\begin{aligned}
D^{l}\left(X, \omega P_{1} Y\right) & =-\nabla_{X}^{l} \omega P_{2} Y+\omega P_{2} \nabla_{X} Y-h^{l}(X, f Y)+C h^{l}(X, Y) \\
D^{s}\left(X, \omega P_{2} Y\right) & =-\nabla_{X}^{s} \omega P_{1} Y+\omega P_{1} \nabla_{X} Y-h^{s}(X, f Y)+C h^{s}(X, Y)
\end{aligned}
$$

for all $X, Y \in \Gamma(T M)$.

Definition 3.2. A GCR-lightlike submanifold of an indefinite Sasakian manifold is called:
(i) a totally geodesic GCR-lightlike submanifold if its second fundamental form h vanishes, that is, $h(X, Y)=0$, for any $X, Y \in \Gamma(T M)$.
(ii) a D-geodesic GCR-lightlike submanifold if $h(X, Y)=0$, for any $X, Y \in \Gamma(D)$.
(iii) a \bar{D}-geodesic GCR-lightlike submanifold $h(X, Y)=0$, for any $X, Y \in \Gamma(\bar{D})$.
(iv) a mixed-geodesic GCR-lightlike submanifold if $h(X, Y)=0$, for any $X \in \Gamma(D)$ and $Y \in \Gamma(\bar{D})$.

4 Induced Ricci Type Tensors of GCR-Lightlike Submanifold

Let $\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a local orthonormal frame field on M such that $\left\{E_{1}, E_{2}, \ldots, E_{p}, E_{p+1}=\right.$ $\left.\phi E_{1}, E_{p+2}=\phi E_{2}, \ldots, E_{2 p}=\phi E_{p}\right\},\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{s}, \xi_{s+1}=\phi \xi_{1}, \xi_{s+2}=\phi \xi_{2}, \ldots, \xi_{2 s}=\phi \xi_{s}\right\},\left\{E_{0}\right\}$, $\left\{\xi_{2 s+1}, \xi_{2 s+2}, \ldots, \xi_{r}\right\}$ and $\left\{\phi \xi_{2 s+1}, \phi \xi_{2 s+2}, \ldots, \phi \xi_{r}\right\}$ be local frame fields on D_{0}, D_{1}, V, D_{2} and ϕD_{2} respectively and $\left\{F_{1}, F_{2}, \ldots, F_{q}\right\}$ be a local frame field on \bar{D}, then by direct computation, we have

$$
\begin{align*}
\sum_{i=1}^{m} g\left(U, E_{i}\right) g\left(E_{i}, W\right) & =g(U, W) \tag{4.1}\\
\sum_{i=r+1}^{m} g\left(U, E_{i}\right) g\left(E_{i}, W\right) & =g(\bar{P} U, \bar{P} W) \tag{4.2}\\
\sum_{i=1}^{m-q} g\left(U, E_{i}\right) g\left(E_{i}, W\right) & =g(Q U, Q W) \tag{4.3}\\
\sum_{i=1}^{q} g\left(U, E_{i}\right) g\left(E_{i}, W\right) & =g(P U, P W) \tag{4.4}
\end{align*}
$$

for any $U, W \in \Gamma(T M)$ and where P is the projection morphism on \bar{D}. Let $\overline{\operatorname{Ric}}$ be the Ricci curvature tensor of \bar{M} and $R^{(0,2)}$ be the induced Ricci type tensor of M and given respectively by

$$
\begin{gathered}
\overline{\operatorname{Ric}}(X, Y)=\operatorname{trace}(Z \rightarrow \bar{R}(Z, X) Y), \quad \forall X, Y \in \Gamma(T \bar{M}) . \\
R^{(0,2)}(X, Y)=\operatorname{trace}(Z \rightarrow R(Z, X) Y), \quad \forall X, Y \in \Gamma(T M)
\end{gathered}
$$

Using the decomposition in (2.1), the induced Ricci type tensor is given by

$$
\begin{equation*}
R^{(0,2)}(U, W)=\sum_{a=1}^{r} \bar{g}\left(R\left(U, \xi_{a}\right) W, N_{a}\right)+\sum_{b=r+1}^{m} g\left(R\left(U, U_{b}\right) W, U_{b}\right) \tag{4.5}
\end{equation*}
$$

Using (2.14), we obtain

$$
\begin{align*}
\sum_{a=1}^{r} \bar{g}\left(R\left(U, \xi_{a}\right) W, N_{a}\right)= & -\frac{(c+3) r}{4} g(U, W)+\frac{(c-1) r}{4} \epsilon \eta(U) \eta(W) \\
& -\frac{(c-1)}{2} \sum_{a=1}^{r} \bar{g}\left(\phi U, \xi_{a}\right) \bar{g}\left(\phi W, N_{a}\right) \\
& -\frac{(c-1)}{4} \sum_{a=1}^{r} \bar{g}\left(\phi W, \xi_{a}\right) \bar{g}\left(\phi U, N_{a}\right) \\
& +\frac{(c-1)}{4} \sum_{a=1}^{r} \bar{g}(\phi W, U) \bar{g}\left(\phi \xi_{a}, N_{a}\right)+\sum_{a=1}^{r} \bar{g}\left(A_{h^{l}\left(\xi_{a}, W\right)} U, N_{a}\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(A_{h^{l}(U, W)} \xi_{a}, N_{a}\right)+\sum_{a=1}^{r} \bar{g}\left(A_{h^{s}\left(\xi_{a}, W\right)} U, N_{a}\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(A_{h^{s}(U, W)} \xi_{a}, N_{a}\right) \tag{4.6}
\end{align*}
$$

Now, using equation (2.30) of [6] at page 158, for any $U \in \Gamma(T(M))$ define a differential 1form as $\nu_{a}(U)=\bar{g}\left(U, N_{a}\right)$, for all $a \in\{1,2, \ldots, r\}$, then any vector field U on M is expressed as $U=\bar{P} U+\sum_{a=1}^{r} \nu_{a}(U) \xi_{a}+\eta(U) V$, where \bar{P} is the projection morphism of $T M$ on $S(T M)$, therefore we have $\sum_{a=1}^{r} \bar{g}\left(U, N_{a}\right) g\left(\xi_{a}, W\right)=g(U, W)-g(\bar{P} U, W)-\epsilon \eta(U) \eta(W)$. Hence, using (2.9) and (2.10)in (4.6), we obtain

$$
\begin{align*}
\sum_{a=1}^{r} \bar{g}\left(R\left(U, \xi_{a}\right) W, N_{a}\right)= & -\frac{(c+3) r+3(c-1)}{4} g(U, W)+\frac{3(c-1)}{4} g(f U, f W) \\
& +\frac{(c-1)(r+3)}{4} \epsilon \eta(U) \eta(W)-\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} U, h^{l}\left(\xi_{a}, W\right)\right) \\
& +\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi W, U) \bar{g}\left(\phi \xi_{a}, N_{a}\right)+\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} \xi_{a}, h^{l}(U, W)\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(U, N_{a}\right), h^{s}\left(\xi_{a}, W\right)\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(U, W)\right) \tag{4.7}
\end{align*}
$$

Using (2.7), (2.11), (2.14) and (4.2), we obtain

$$
\begin{align*}
\sum_{b=r+1}^{m} g\left(R\left(U, U_{b}\right) W, U_{b}\right)= & \frac{(c+3)}{4} g(\bar{P} U, \bar{P} W)+\frac{(c-1) \epsilon-(c+3)(m-r)}{4} g(U, W) \\
& -\frac{3(c-1)}{4} g(f U, f W)+\frac{(m-r-2)(c-1)}{4} \eta(U) \eta(W) \\
& +\sum_{b=r+1}^{m} \bar{g}\left(h^{l}\left(U_{b}, W\right), h^{*}\left(U, U_{b}\right)\right)-\sum_{b=r+1}^{m} \bar{g}\left(h^{l}(U, W), h^{*}\left(U_{b}, U_{b}\right)\right) \\
& +\sum_{b=r+1}^{m} \bar{g}\left(h^{s}\left(U_{b}, W\right), h^{s}\left(U, U_{b}\right)\right) \\
& -\sum_{b=r+1}^{m} \bar{g}\left(h^{s}(U, W), h^{s}\left(U_{b}, U_{b}\right)\right) \tag{4.8}
\end{align*}
$$

Thus substituting (4.7) and (4.8) in (4.5), we obtain the expression of induced Ricci type tensor of a GCR-lightlike submanifolds as

$$
\begin{aligned}
R^{(0,2)}(U, W)= & -\frac{((c+3) m+(3-\epsilon)(c-1))}{4} g(U, W)+\frac{(c+3)}{4} g(\bar{P} U, \bar{P} W) \\
& +\frac{(c-1)(m+1)}{4} \epsilon \eta(U) \eta(W)+\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi W, U) \bar{g}\left(\phi \xi_{a}, N_{a}\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} U, h^{l}\left(\xi_{a}, W\right)\right)+\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} \xi_{a}, h^{l}(U, W)\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(U, N_{a}\right), h^{s}\left(\xi_{a}, W\right)\right)-\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(U, W)\right) \\
& +\sum_{b=r+1}^{m} \bar{g}\left(h^{l}\left(U_{b}, W\right), h^{*}\left(U, U_{b}\right)\right)-\sum_{b=r+1}^{m} \bar{g}\left(h^{l}(U, W), h^{*}\left(U_{b}, U_{b}\right)\right) \\
& +\sum_{b=r+1}^{m} \bar{g}\left(h^{s}\left(U_{b}, W\right), h^{s}\left(U, U_{b}\right)\right)-\sum_{b=r+1}^{m} \bar{g}\left(h^{s}(U, W), h^{s}\left(U_{b}, U_{b}\right)\right) .
\end{aligned}
$$

Clearly, the induced Ricci type tensor $R^{(0,2)}$ is not symmetric because the induced connection ∇ is not a metric connection on M. The induced Ricci type tensor $R^{(0,2)}$ is called induced Ricci tensor and denoted by Ric of M if it is symmetric, (see [9]). Thus, the symmetry of the induced Ricci type tensor is very important. From the above expression, it is clear that if $c=1$ and M is a totally geodesic lightlike submanifold then the induced Ricci type tensor is symmetric.

Next, using orthonormal frame fields on $\bar{D}, D_{0} \oplus\{V\}, \phi D_{2}$ and $\operatorname{Rad}(T M)$, we can also find expressions of induced Ricci type tensor as

$$
\begin{aligned}
R^{(0,2)}(U, W)= & \sum_{i=1}^{q} g\left(R\left(U, F_{i}\right) W, F_{i}\right)+\sum_{k=0}^{2 p} g\left(R\left(U, E_{k}\right) W, E_{k}\right)+\sum_{l=2 s+1}^{r} g\left(R\left(U, \phi \xi_{l}\right) W, \phi N_{l}\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(R\left(U, \xi_{a}\right) W, N_{a}\right)
\end{aligned}
$$

Denote $D=D_{0} \oplus\{V\}$ then we have

$$
\begin{align*}
R_{D}^{(0,2)}(U, W)= & \sum_{k=0}^{2 p} g\left(R\left(U, E_{k}\right) W, E_{k}\right)+\sum_{l=2 s+1}^{r} g\left(R\left(U, \phi \xi_{l}\right) W, \phi N_{l}\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(R\left(U, \xi_{a}\right) W, N_{a}\right) \tag{4.9}\\
& R_{\bar{D}}^{(0,2)}(U, W)=\sum_{i=1}^{q} g\left(R\left(U, F_{i}\right) W, F_{i}\right)
\end{align*}
$$

Using (2.9), (2.11), (2.14) and (4.3), we obtain

$$
\begin{align*}
\sum_{k=0}^{2 p} g\left(R\left(U, E_{k}\right) W, E_{k}\right)= & -\frac{(c-3)}{4} g(Q U, Q W)+\frac{(c-1)(2 p-1)}{4} \epsilon \eta(U) \eta(W) \\
& -\left\{\frac{(2 p+1)(c+3)}{4}-\frac{(c-1)}{4}\right\} g(U, W) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, W\right), h^{*}\left(U, E_{k}\right)\right)-\sum_{k=0}^{2 p} \bar{g}\left(h^{l}(U, W), h^{*}\left(E_{k}, E_{k}\right)\right) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, W\right), h^{s}\left(U, E_{k}\right)\right) \\
& -\sum_{k=0}^{2 p} \bar{g}\left(h^{s}(U, W), h^{s}\left(E_{k}, E_{k}\right)\right) \tag{4.10}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{l=2 s+1}^{r} g\left(R\left(U, \phi \xi_{l}\right) W, \phi N_{l}\right)= & -\frac{(c+3)(r-2 s)}{4} g(U, W)+\frac{(c-1)(r-2 s)}{4} \epsilon \eta(U) \eta(W) \\
& +\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, W\right) g\left(U, \phi N_{l}\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{l}(U, W)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, W\right)} U, \phi N_{l}\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{s}(U, W)} \phi \xi_{l}, \phi N_{l}\right) \\
& +\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, W\right)} U, \phi N_{l}\right) \tag{4.11}
\end{align*}
$$

Using (4.7), (4.10) and (4.11) in (4.9), we obtain

$$
\begin{aligned}
R_{D}^{(0,2)}(U, W)= & -\left\{\frac{(c+3)(m-q)}{4}+\frac{(c-1}{2}\right\} g(U, W)-\frac{(c-3)}{4} g(Q U, Q W) \\
& +\frac{(c-1)(m-q+1)}{4} \epsilon \eta(U) \eta(W)+\frac{3(c-1)}{4} g(f U, f W) \\
& +\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi W, U) \bar{g}\left(\phi \xi_{a}, N_{a}\right) \\
& +\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, W\right) g\left(U, \phi N_{l}\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} \xi_{a}, h^{l}(U, W)\right)-\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} U, h^{l}\left(\xi_{a}, W\right)\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(U, W)\right)+\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(U, N_{a}\right), h^{s}\left(\xi_{a}, W\right)\right) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, W\right), h^{*}\left(U, E_{k}\right)\right)-\sum_{k=0}^{2 p} \bar{g}\left(h^{l}(U, W), h^{*}\left(E_{k}, E_{k}\right)\right) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, W\right), h^{s}\left(U, E_{k}\right)\right)-\sum_{k=0}^{2 p} \bar{g}\left(h^{s}(U, W), h^{s}\left(E_{k}, E_{k}\right)\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{l}(U, W)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, W\right)} U, \phi N_{l}\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{s}(U, W)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, W\right)} U, \phi N_{l}\right)
\end{aligned}
$$

Also using (2.7), (2.11), (2.14) and (4.4), we obtain

$$
\begin{aligned}
R_{\bar{D}}^{(0,2)}(U, W)= & \frac{(c+3)}{4} g(P U, P W)-\frac{q(c+3)}{4} g(U, W)+\frac{q(c-1) \epsilon}{4} \eta(U) \eta(W) \\
& -\sum_{i=1}^{q} \bar{g}\left(h^{l}(U, W), h^{*}\left(F_{i}, F_{i}\right)\right)+\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, W\right), h^{*}\left(U, F_{i}\right)\right) \\
& -\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, F_{i}\right), h^{s}(U, W)\right)+\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, W\right), h^{s}\left(U, F_{i}\right)\right)
\end{aligned}
$$

Let $X, Y \in \Gamma(D \oplus\{V\})$ and $Z, W \in \Gamma(\bar{D})$, then particularly, we have

$$
\begin{align*}
R_{\bar{D}}^{(0,2)}(X, Y)= & -\frac{q(c+3)}{4} g(X, Y)+\frac{q(c-1) \epsilon}{4}-\sum_{i=1}^{q} \bar{g}\left(h^{l}(X, Y), h^{*}\left(F_{i}, F_{i}\right)\right) \\
& +\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, Y\right), h^{*}\left(X, F_{i}\right)\right)-\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, F_{i}\right), h^{s}(X, Y)\right) \\
& +\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, Y\right), h^{s}\left(X, F_{i}\right)\right) \tag{4.12}
\end{align*}
$$

$$
\begin{align*}
R_{D}^{(0,2)}(X, Y)= & -\frac{(c+3)(m-q)+(3 c-5)}{4} g(X, Y)-\frac{(c-1)(m-q+1)}{4} \epsilon \\
& +\frac{3(c-1)}{4} g(f X, f Y)+\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Y, X) \bar{g}\left(\phi \xi_{a}, N_{a}\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} \xi_{a}, h^{l}(X, Y)\right)-\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} X, h^{l}\left(\xi_{a}, Y\right)\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(X, Y)\right)+\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(X, N_{a}\right), h^{s}\left(\xi_{a}, Y\right)\right) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, Y\right), h^{*}\left(X, E_{k}\right)\right)-\sum_{k=0}^{2 p} \bar{g}\left(h^{l}(X, Y), h^{*}\left(E_{k}, E_{k}\right)\right) \\
& +\sum_{k=0}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, Y\right), h^{s}\left(X, E_{k}\right)\right)-\sum_{k=0}^{2 p} \bar{g}\left(h^{s}(X, Y), h^{s}\left(E_{k}, E_{k}\right)\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{l}(X, Y)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, Y\right)} X, \phi N_{l}\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{s}(X, Y)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, Y\right)} X, \phi N_{l}\right) . \tag{4.13}
\end{align*}
$$

$$
\begin{align*}
R_{\bar{D}}^{(0,2)}(X, Z)= & -\sum_{i=1}^{q} \bar{g}\left(h^{l}(X, Z), h^{*}\left(F_{i}, F_{i}\right)\right)+\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, Z\right), h^{*}\left(X, F_{i}\right)\right) \\
& -\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, F_{i}\right), h^{s}(X, Z)\right)+\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, Z\right), h^{s}\left(X, F_{i}\right)\right), \tag{4.14}
\end{align*}
$$

$$
\begin{align*}
R_{D}^{(0,2)}(X, Z)= & \frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Z, X) \bar{g}\left(\phi \xi_{a}, N_{a}\right)+\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, Z\right) g\left(X, \phi N_{l}\right) \\
& +\sum_{a=1}^{r} \bar{g} g\left(A_{N_{a}} \xi_{a}, h^{l}(X, Z)\right)-\sum_{a=1}^{r} \bar{g} g\left(A_{N_{a}} X, h^{l}\left(\xi_{a}, Z\right)\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(X, Z)\right)+\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(X, N_{a}\right), h^{s}\left(\xi_{a}, Z\right)\right) \\
& +\sum_{k=1}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, Z\right), h^{*}\left(X, E_{k}\right)\right)-\sum_{k=1}^{2 p} \bar{g}\left(h^{l}(X, Z), h^{*}\left(E_{k}, E_{k}\right)\right) \\
& +\sum_{k=1}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, Z\right), h^{s}\left(X, E_{k}\right)\right)-\sum_{k=1}^{2 p} \bar{g}\left(h^{s}(X, Z), h^{s}\left(E_{k}, E_{k}\right)\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{l}(X, Z)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, Z\right)} X, \phi N_{l}\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{h^{s}(X, Z)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, Z\right)} X, \phi N_{l}\right), \tag{4.15}
\end{align*}
$$

and

$$
\begin{align*}
R_{\bar{D}}^{(0,2)}(Z, W)= & \frac{(c+3)(1-q)}{4} g(Z, W)-\sum_{i=1}^{q} \bar{g}\left(h^{l}(Z, W), h^{*}\left(F_{i}, F_{i}\right)\right) \\
& +\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, W\right), h^{*}\left(Z, F_{i}\right)\right)-\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, F_{i}\right), h^{s}(Z, W)\right) \\
& +\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, W\right), h^{s}\left(Z, F_{i}\right)\right) \tag{4.16}\\
R_{D}^{(0,2)}(Z, W)= & -\left\{\frac{(c+3)(m-q)}{4}+\frac{(c-1)}{2}\right\} g(Z, W) \\
& +\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, W\right) g\left(Z, \phi N_{l}\right) \\
& +\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} \xi_{a}, h^{l}(Z, W)\right)-\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} Z, h^{l}\left(\xi_{a}, W\right)\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(\xi_{a}, N_{a}\right), h^{s}(Z, W)\right)+\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(Z, N_{a}\right), h^{s}\left(\xi_{a}, W\right)\right) \\
& +\sum_{k=1}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, W\right), h^{*}\left(Z, E_{k}\right)\right)-\sum_{k=1}^{2 p} \bar{g}\left(h^{l}(Z, W), h^{*}\left(E_{k}, E_{k}\right)\right) \\
& +\sum_{k=1}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, W\right), h^{s}\left(Z, E_{k}\right)\right)-\sum_{k=1}^{2 p} \bar{g}\left(h^{s}(Z, W), h^{s}\left(E_{k}, E_{k}\right)\right) \\
& -\sum_{l=2 s+1}^{r} g\left(A_{\left.h^{l}(Z, W) \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, W\right)} Z, \phi N_{l}\right)}\right. \\
- & \sum_{l=2 s+1}^{r} g\left(A_{h^{s}(Z, W)} \phi \xi_{l}, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, W\right)} Z, \phi N_{l}\right) \tag{4.17}
\end{align*}
$$

Thus from (4.12) to (4.17), we have the following results.
Theorem 4.1. Let M be a totally geodesic GCR-lightlike submanifold of an indefinite Sasakian space form $\bar{M}(c)$. Then

$$
\begin{gathered}
R_{D}^{(0,2)}(X, Y)=-\frac{(c+3)(m-q)+(3 c-5)}{4} g(X, Y)-\frac{(c-1)(m-q+1)}{4} \epsilon \\
+\frac{3(c-1)}{4} g(f X, f Y)+\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Y, X) \bar{g}\left(\phi \xi_{a}, N_{a}\right), \\
R_{D}^{(0,2)}(X, Z)=\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Z, X) \bar{g}\left(\phi \xi_{a}, N_{a}\right)+\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, Z\right) g\left(X, \phi N_{l}\right), \\
R_{D}^{(0,2)}(Z, W)=-\left\{\frac{(c+3)(m-q)}{4}+\frac{(c-1)}{2}\right\} g(Z, W) \\
\\
+\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, W\right) g\left(Z, \phi N_{l}\right),
\end{gathered}
$$

$$
R_{\bar{D}}^{(0,2)}(X, Y)=-\frac{q(c+3)}{4} g(X, Y)+\frac{q(c-1) \epsilon}{4}, \quad R_{\bar{D}}^{(0,2)}(X, Z)=0,
$$

and

$$
R_{\bar{D}}^{(0,2)}(Z, W)=\frac{(c+3)(1-q)}{4} g(Z, W),
$$

for any $X, Y \in \Gamma(D)$ and $Z, W \in \Gamma(\bar{D})$.
Theorem 4.2. Let M be a D-geodesic GCR-lightlike submanifold of an indefinite Sasakian space form $\bar{M}(c)$. Then

$$
\begin{aligned}
R_{D}^{(0,2)}(X, Y)= & -\frac{(c+3)(m-q)+(3 c-5)}{4} g(X, Y)-\frac{(c-1)(m-q+1)}{4} \epsilon \\
& +\frac{3(c-1)}{4} g(f X, f Y)+\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Y, X) \bar{g}\left(\phi \xi_{a}, N_{a}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\bar{D}}^{(0,2)}(X, Y)= & -\frac{q(c+3)}{4} g(X, Y)+\frac{q(c-1) \epsilon}{4}+\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, Y\right), h^{*}\left(X, F_{i}\right)\right) \\
& +\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, Y\right), h^{s}\left(X, F_{i}\right)\right),
\end{aligned}
$$

for any $X, Y \in \Gamma(D)$.
Theorem 4.3. Let M be a \bar{D}-geodesic GCR-lightlike submanifold of an indefinite Sasakian space form $\bar{M}(c)$. Then

$$
\begin{aligned}
R_{D}^{(0,2)}(Z, W)= & -\left\{\frac{(c+3)(m-q)}{4}+\frac{(c-1)}{2}\right\} g(Z, W)+\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, W\right) g\left(Z, \phi N_{l}\right) \\
& -\sum_{a=1}^{r} \bar{g}\left(A_{N_{a}} Z, h^{l}\left(\xi_{a}, W\right)\right)+\sum_{a=1}^{r} \bar{g}\left(D^{s}\left(Z, N_{a}\right), h^{s}\left(\xi_{a}, W\right)\right) \\
& +\sum_{k=1}^{2 p} \bar{g}\left(h^{l}\left(E_{k}, W\right), h^{*}\left(Z, E_{k}\right)\right)+\sum_{k=1}^{2 p} \bar{g}\left(h^{s}\left(E_{k}, W\right), h^{s}\left(Z, E_{k}\right)\right) \\
& +\sum_{l=2 s+1}^{r} g\left(A_{h^{l}\left(\phi \xi_{l}, W\right)} Z, \phi N_{l}\right)+\sum_{l=2 s+1}^{r} g\left(A_{h^{s}\left(\phi \xi_{l}, W\right)} Z, \phi N_{l}\right),
\end{aligned}
$$

and

$$
R_{\bar{D}}^{(0,2)}(Z, W)=\frac{(c+3)(1-q)}{4} g(Z, W),
$$

for any $Z, W \in \Gamma(\bar{D})$.
Theorem 4.4. Let M be a mixed-geodesic GCR-lightlike submanifold of an indefinite Sasakian space form $\bar{M}(c)$. Then

$$
R_{D}^{(0,2)}(X, Z)=\frac{(c-1)}{4} \sum_{a=1}^{r} g(\phi Z, X) g\left(\phi \xi_{a}, N_{a}\right)+\frac{(c+3)}{4} \sum_{l=2 s+1}^{r} g\left(\phi \xi_{l}, Z\right) g\left(X, \phi N_{l}\right),
$$

and

$$
R_{\bar{D}}^{(0,2)}(X, Z)=\sum_{i=1}^{q} \bar{g}\left(h^{l}\left(F_{i}, Z\right), h^{*}\left(X, F_{i}\right)\right)+\sum_{i=1}^{q} \bar{g}\left(h^{s}\left(F_{i}, Z\right), h^{s}\left(X, F_{i}\right)\right),
$$

for any $X \in \Gamma(D)$ and $Z \in \Gamma(\bar{D})$.

References

[1] A. Bejancu, CR submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69, 135-142 (1978).
[2] A. Bejancu, M. Kon and K. Yano, CR submanifolds of a complex space form, J. Differential Geom. 16, 137-145 (1981).
[3] C. Calin, On existence of degenerate hypersurfaces in Sasakian manifolds, Arab J. Math. Sci. 5, 21-27 (1999).
[4] K. L. Duggal, CR-structures and Lorentzian geometry, Acta. Appl. Math. 7, 211-223 (1986).
[5] K. L. Duggal, Lorentzian geometry of CR submanifolds, Acta. Appl. Math. 17, 171-193 (1989).
[6] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of semi-Riemannian Manifolds and Applications, Kluwer, The Netherlands, (1996).
[7] K. L. Duggal and B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci. Article ID 57585, 1-21 (2007).
[8] K. L. Duggal and B. Sahin, Generalized Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds, Acta Math. Hungar. 122, 45-58 (2009).
[9] K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submnaifolds, Birkhäuser Verlag, Berlin, (2010).
[10] V. Jain, R. Kumar and R. K. Nagaich, Totally contact umbilical GCR-lightlike submanifolds of indefinite Sasakian manifolds, Vietnam J. Math. 39, 91-103 (2011).
[11] V. Jain, R. Kumar and R. K. Nagaich, On GCR-lightlike product of Indefinite Cosymplectic manifolds, Int. J. Math. Math. Sci. Article ID 605816, 1-12 (2012).
[12] V. Jain, R. Kumar, R. K. Nagaich, Non existence of totally contact umbilical GCR-lightlike submanifolds of indefinite Cosymplectic manifolds, Vietnam J. Math. 41, 121-134 (2013).
[13] V. Jain, R. Kumar, R. K. Nagaich, Non existence of totally contact umbilical GCR-lightlike submanifolds of indefinite Kenmotsu manifolds, Hacet. J. Math. Stat. 44, 83--91 (2015).
[14] V. Jain, R. Kumar, R. K. Nagaich, Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds, Int. J. Geom. Methods Mod. Phys. 14, 1-18 (2017).
[15] V. Jain, R. Rani and R. Kumar, On GCR-lightlike submanifolds of indefinite Kaehler manifolds, J. Geom. Symmetry Phys. 63(1), 21-37 (2022).
[16] R. Kumar, R. Rani and R. K. Nagaich, On sectional curvature of ϵ-Sasakian manifolds, Int. J. Math. Math. Sci. Article ID 93562, 1-8 (2007).
[17] R. Kumar, V. Jain and R. K. Nagaich, GCR-lightlike product of indefinite Sasakian manifolds, Adv. Math. Phys. Article ID 983069, 1-13 (2011).
[18] R. Penrose, Physical space-time and nonrealizable CR-structures, Proceedings of Symposia in Pure Mathematics. 39, 401-422 (1983).

Author information

Varun Jain, Department of Mathematics, Multani Mal Modi College, Patiala 147 001, Punjab, India. E-mail: varun82jain@gmail.com

Satvinder Singh Bhatia, Department of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147 001, Punjab, India.
E-mail: ssbhatia@thapar.edu
Rakesh Kumar, Department of Mathematics, Punjabi University, Patiala 147 002, Punjab, India.
E-mail: dr_rk37c@yahoo.co.in (Corresponding Author)
Received: 2022-05-26
Accepted: 2022-08-08

