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Abstract: The goal of this research is to investigate the 3-dimensional Lorentzian concir-
cular structure manifolds, abbreviated as (LCS)n-manifolds admitting the η-Einstein solitons.
A symmetric second order covariant tensor in a (LCS)n-manifold is proven to be a constant
multiple of the metric tensor and η-Einstein soliton on a (LCS)n-manifold is satisfying some
symmetric conditions R.S = 0 and S.R = 0. Furthermore, we deduce the result for gradient
η-Einstein soliton when the potential vector field ξ is of gradient type, ξ = grad(ψ), and if the
soliton vector field is a torqued vector field τ . Finally, in the region where the (LCS)n-manifold
is expanding, an example of η-Einstein soliton (LCS)n-manifolds is given.

1 Introduction

Einstein manifolds are important in both Riemannian geometry and the general theory of rela-
tivity (GTR). The equation of Einstein soliton in relation to string theory has also been studied
by theoretical physicists. The investigation of exact solutions to the Einstein field equations,
as well as considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces, led to the
discovery of quasi-Einstein manifolds. In GTR, quasi-Einstein manifolds play a role. The
Robertson-Walker spacetimes, for example, are quasi-Einstein manifolds. Furthermore, quasi-
Einstein manifolds can be used to simulate perfect fluid spacetime in GTR. In [16], Mantica and
Molinari have proved that the (LCS)n-manifold coincides with generalized Robertson-Walker
(GRW ) spacetime, which was introduced by Alías, Romero and Sánchez [3] in 1995. The ge-
ometry of semi-Riemannian submersions has risen in popularity in present geometric evaluation
to its involvement in physics, specially in the general theory of relativity (GTR) such as Yang-
Mills theory, String theory, Kaluza-Klein theory, and Hodge theory, etc. Moreover, (LCS)4-
Lorentzian concircular sapcetime manifold is one of the suitable framework for 4-dimensional
spacetime.

Shaikh [21] proposed the geometry of Lorentzian concircular structure manifolds (briefly,
(LCS)n-manifolds) in 2003, which generalizes the notion ofLP -Sasakian manifolds established
by Matsumoto [15] and Mihai and Rosca [17]. Then, [22], Shaikh and Baishya examined the
applications of (LCS)n-manifolds to the general theory of relativity, solitons, and cosmology.
Atceken [2] also investigated the (LCS)n-manifolds. Shaikh et al. [23, 24, 25] also explored
some interesting properties of (LCS)n-manifolds, which are correlated with this research note.

In 1988, Hamilton [13] established the Ricci solitons move under the Ricci flow merely by
diffeomorphisms of the initial metric, implying that they are stationary points of the Ricci flow
determined by

∂g

∂t
= −2S(g). (1.1)

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization of
Einstein metric such that

LV g + 2S + 2λ = 0, (1.2)
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where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M and λ is a
real scalar. Ricci soliton is said to be shrinking, steady or expanding according as λ < 0, λ = 0
or λ > 0, respectively.

If the vector field V is the gradient of a potential function -ψ , where ψ is some smooth
function ψ : M → R, then g is called a gradient Ricci soliton, and equation (1.1) assumes the
form

∇∇ψ = S + λg. (1.3)

It is well known that the quantity a(g, ψ) := R +
∣∣∇ψ2

∣∣ − ψ must be constant on M and it
is often called the auxiliary constant. When ψ is constant, the gradient Ricci soliton is simply
an Einstein manifold. Thus Ricci solitons are natural extensions of Einstein metrics, an Ein-
stein manifold with constant potential function is called a trivial gradient Ricci soliton. Gradient
Ricci solitons play an important role in Hamilton Ricci flow [13] as they correspond to self-
similar solutions, and often arise as singularity models. They are also related to smooth metric
measure spaces, since equation (1.2) is equivalent to∞-Bakry-Emery Ricci tensor Ricψ = 0. In
physics, a smooth metric space (M, g, eψ, dvol) with Ricψ = λg is called quasi-Einstein man-
ifold. Therefore, it is important to study the geometry and topology of gradient Ricci solitons
and their classifications.

In general, one cannot expect potential function ψ to grow or decay linearly along all direc-
tions at infinity, because of the product property: the product of any two gradient steady Ricci
solitons is also a gradient steady Ricci soliton. Consider for example (R, g, ψ), where g is the
standard Euclidean metric, ψ(x1, x2) = x1ψ is constant along x2 direction, so, without additional
conditions, ψ may not have linear growth at infinity.

In the same way as the Ricci solitons generate self-similar solutions to the Ricci flow, the
Einstein solitons, which generate self-similar solutions to the Einstein flow.

In 2016, Catino and Mazzieri introduced the notion of Einstein solitons [9], which generate
self-similar solutions to Einstein flow

∂g

∂t
= −2

(
S − scal

2
g

)
. (1.4)

The interest in studying this equation from different points of view arises from concrete physical
problems. On the other hand, gradient vector fields play a central role in Morse-Smale theory. In
what follows, after characterizing the manifold of constant scalar curvature via the existence of
η-Einstein solitons, we focus on the case when the potential vector field ξ is of gradient type (i.e.,
ξ = gradψ), for ψ a nonconstant smooth function on M and give the Poisson equation satisfied
by ξ.

η-Einstein solitons are natural extension of Einstein solitons and Ricci soliton which include
quasi-Einstein metrics. Perturbing the equation (1.4) that defines this kind of solitons by a mul-
tiple of a certain (0, 2)-tensor field η ⊗ η, we obtain a slightly more general notion, namely
η-Einstein solitons satisfying the equation ([4])

Lξg + 2S + (2λ− scal) g + 2µη ⊗ η = 0, (1.5)

in particular if µ = 0 then η-Einstein soliton reduces to Einstein soliton.
In 1925, Levy [14] obtained the necessary and sufficient conditions for the existence of such

tensors. In [1], Ali and Ahsan examined the 4-dimensional spacetime Lorentzian manifolds in
terms of Ricci soliton. Moreover, Sharma [20] initiated the study of Ricci solitons in contact
Riemannian geometry. After that, others like Bagewadi et al. [6] extensively studied Ricci soli-
ton in Lorentzian Sasakian manifolds. In 2009, Cho and Kimura [8] introduced the notion of
η-Ricci solitons and gave a classification of real hypersurfaces in non-flat complex space forms
[7] admitting η-Ricci solitons. In [18] Prakasha and Hadimani discussed η-Ricci solitons on
para-Sasakian manifolds. Blaga also has studied a more notion named η -Einstein soliton [4, 5].
Moreover, Siddiqi et al. [26, 27, 28, 29, 30, 31] have also studied some properties of the η -
Einstein soliton which is closely related to this paper. Therefore, in the present paper, the author
has studied the η-Einstein soliton in Lorentzian concircular structure manifolds (briefly (LCS)n-
manifolds).
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2 Preliminaries

A 3-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff mani-
fold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field of type (0, 2)
such that for each point p ∈ M , the tensor gp : TpM × TpM −→ R is a non-degenerate inner
product of signature (−,+, ....,+), where TpM denotes the tangent vector space ofM at p and R
is the real number space. A non-zero vector v ∈ TpM is said to be timelike (resp. non-spacelike,
null, spacelike) if it satisfies gp(v, v) < 0 (resp. ≤ 0,= 0,≥ 0) [19]. The category into which a
given vector falls is called its causal character.

Definition 2.1. In a Lorentzian manifold (M, g) [32, 23] a vector field P defined by

g(X,P ) = A(X)

for any X ∈ χ(M) is said to be concircular vector field if

(∇XA)Y = α {g(X,Y ) + ω(X)A(Y )} ,

where α is a non-zero scalar and ω is a closed 1-form.

Let M be a Lorentzian 3- dimensional manifold admitting a unit timelike concircular vector
field ξ, called the characteristics vector field of the manifold. Then we have

g(ξ, ξ) = −1. (2.1)

Since ξ is a unit concircular vector filed, it follows that there exists a non-zero 1-form η such that
for

g(X, ξ) = η(X), (2.2)

the equation of the following form holds.

(∇Xη)Y = α[g(X,Y ) + η(X)η(Y )], (α 6= 0), (2.3)

∇Xξ = α {X + η(X)ξ} (α 6= 0) (2.4)

for all vector fields X,Y , where ∇ denotes the operator of the covariant differentiation with
respect to the Lorentzian metric g and α is non-zero scalar function satisfies

∇Xα = (Xα) = dα(X) = ρη(X), (2.5)

ρ being a certain scalar function given by ρ = −(ξα) if we put

φX =
1
α
∇Xξ, (2.6)

then from (2.3) and (2.6) we have

φX = X + η(X)ξ, (2.7)

g(φX, Y ) = g(X,φY ), (2.8)

from which it follows that φ is a symmetric (1, 1) tensor and called the structure tensor of the
manifold. Thus the Lorentzian manifold M together with unit time like concircular vector field
ξ, it associated 1-form η and (1, 1) tensor filed φ is said to be Lorentzian concircular structure
manifold or briefly called (LCS)n-manifold [22]. Moreover, a (LCS)n-manifold is a general-
ized Robertson-Walker spacetime if and only if it admits a unit timelike vector field which is
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also an eigenvector of the Ricci tensor. Especially, if we take α = 1, then we can obtain the
LP -Sasakian structure [32] of the following relations hold [21]

φ2X = X + η(X)ξ, (2.9)

η(ξ) = −1, φ(ξ) = 0, η(φ) = 0, (2.10)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.11)

η(R(X,Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.12)

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )]ξ, (2.13)

S(X,Y ) =
[ r

2
− (α2 − ρ)

]
g(X,Y ) (2.14)

−
[ r

2
− 3(α2 − ρ)

]
η(X)η(Y ),

QX =
[ r

2
− (α2 − ρ)

]
X −

[ r
2
− 3(α2 − ρ)

]
η(X)ξ (2.15)

(∇Xφ)Y = α {g(X,Y )ξ + 2η(X)η(Y ) + η(Y )X} (2.16)

(Xρ) = dρ(X) = βη(X) (2.17)

Using (2.13) and (2.14), for constants α and ρ , we have

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.18)

R(ξ, Y )Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y ], (2.19)

S(X, ξ) = [2(α2 − ρ)]η(X), (2.20)

Qξ = [2(α2 − ρ)]ξ, (2.21)

where R is curvature tensor, while Q is the Ricci operator given by S(X,Y ) = g(QX,Y ).

Definition 2.2. A (LCS)n-manifold (Mn, g) is said to be η-Einstein if its Ricci tensor S of the
type (0, 2) is of the form

S = ag(X,Y ) + bη(X)η(Y ), (2.22)

where a and b are smooth function on M .

Again, from the definition of Lie derivative, we have

(Lξg)(X,Y ) = (∇Xg)(X,Y ) + 2αg(X,Y ) + 2αη(X)η(Y ) (2.23)

= 2α[g(X,Y ) + η(X)η(Y )].
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3 η-Einstein solitons on (M,φ, ξ, η, g, α)

In the study of the η-Einstein soliton equation, we will consider certain assumptions, one es-
sential condition being ∇ξ = α[Iξ(M) + η ⊗ ξ] which naturally arises in different geometry of
(LCS)n- manifolds.

An important geometrical object in studying η-Einstein solitons is a symmetric (0, 2)- tensor
field which is parallel with respect to the Levi-Civita connection.

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect to
the Levi-Civita connection ∇ that is ∇h = 0. Applying the Ricci commutation identity [12]

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0, (3.1)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0. (3.2)

Replacing Z =W = ξ in (3.2) and also use the symmetricness of h, we have

h(ξ,R(ξ, Y )ξ) = 0. (3.3)

Using (2.19) in (3.3) we get

(α2 − ρ)[h(Y, ξ) + η(Y )h(ξ, ξ)] = 0. (3.4)

Since α2 − ρ 6= 0 we have
h(Y, ξ) + η(Y )h(ξ, ξ) = 0. (3.5)

Differentiating (3.5) covariantly along X , we get

g(∇XY, ξ)h(ξ, ξ) + g(Y,∇Xξ)h(ξ, ξ) + 2g(Y, ξ)h(∇Xξ, ξ) (3.6)

+h(∇XY, ξ) + h(Y,∇Xξ) = 0.

Putting Y = ∇XY in (3.5) we obtain

g(∇XY, ξ)h(ξ, ξ) + h(∇XY, ξ) = 0. (3.7)

In view of (3.7) it follows from (3.6) that

g(Y,∇Xξ)h(ξ, ξ) + 2g(Y, ξ)h(∇Xξ, ξ) + h(Y,∇Xξ) = 0. (3.8)

Using (2.6) in (3.8) we get

g(Y, φX)h(ξ, ξ) + 2η(Y )h(φX, ξ) + h(Y, φX) = 0, since α 6= 0. (3.9)

Replacing X by φX in (3.9) and then using (2.9) and (3.5) we obtain

h(X,Y ) = −h(ξ, ξ)g(X,Y ). (3.10)

Differentiating (3.10) covariantly along any vector filed on M , it can be easily shown that h(ξ, ξ)
is constant. Now, we can give the conclusion:

Theorem 3.1. Let (M,φ, ξ, η, g, α) be a (LCS)n- manifold with non-vanishing ξ-sectional cur-
vature and endowed with a tensor field h ∈ γ(T 0

2 (M)) which is symmetric and φ-skew-symmetric.
If h is parallel with respect to ∇ then it is a constant multiple of the metric tensor g.

Definition 3.2. Let (M,φ, ξ, η, g, α) be a (LCS)n-manifold. consider the equation

Lξg + 2S + (2λ− scal) g + 2µη ⊗ η = 0, (3.11)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor
field of the metric g, and λ and µ are real constants. For µ 6= 0, the data (g, ξ, λ, µ) will be called
η-Einstein soliton.
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Remark that if the scalar curvature scal of the manifold is constant, then the η-Einstein soli-
ton (g, ξ, λ, scal2 , µ) reduces to an η-Ricci soliton and, moreover, if µ = 0, to a Ricci soliton
(g, ξ, λ, scal2 ). Therefore, the two concepts of η-Einstein soliton [9] and η-Ricci soliton are dis-
tinct on manifolds of nonconstant scalar curvature. Writing Lξg in terms of the Levi-Civita
connection ∇, we obtain [9]:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Xξ)− (2λ− scal)g(X,Y )− 2µη(X)η(Y ), (3.12)

for any X,Y ∈ χ(M).

Definition 3.3. The data (g, ξ, λ, µ) which satisfy the equation (3.11) is said to be η- Einstein
soliton on M [8], and it is called shrinking, steady or expanding according as λ < 0, λ = 0 or
λ > 0 respectively [8].

Now, from (2.4) , the equation (3.11) becomes:

S(X,Y ) = −
(
λ− scal

2
+ α

)
g(X,Y )− (µ+ α)η(X)η(Y ). (3.13)

The above equations yields

S(X, ξ) = −
(
λ− scal

2
+ µ

)
η(X) (3.14)

QX = −
(
λ− scal

2
+ α

)
X + (µ+ α)ξ (3.15)

Qξ = −
(
λ− scal

2
+ µ

)
ξ (3.16)

Note that on (LCS)n-manifold, the existence of an η-Einstein soliton implies that the charac-
teristic vector ξ is an eigenvector if the Ricci operator corresponding to the eigenvalue−

(
λ− scal

2 + µ
)
.

Now we shall apply the previous results on η-Einstein soliton.

Theorem 3.4. Let (M,φ, ξ, η, g, α) be a (LCS)n-manifold. Assume that the symmetric (0,2)-
tensor field h = Lξg + 2S + µη ⊗ η is parallel with respect to the Levi-Civita connection
associated to g. Then (g, ξ, µ) yield an η-Einstein soliton.

Proof. Compute h(ξ, ξ) and from (3.11) we obtain

h(ξ, ξ) = (Lξg)(ξ, ξ) + 2S(ξ, ξ) + 2η(ξ)η(ξ) = −2λ+ scal+ 2α+ 4µ,

so λ = − 1
2 [h(ξ, ξ) +

scal
2 − 2µ− α]. From (3.10) we conclude that

h(X,Y ) = [2λ− scal+ 2α+ 4µ]g(X,Y )

for any X,Y ∈ χ(M). Therefore

Lξg + 2S + 2µη ⊗ η = (2λ− scal+ 2α+ 4µ)g.

Conversely, we shall study the consequence of the existence of the η-Einstein soliton on a
(LCS)n-manifold. From (3.13) we deduce:

Theorem 3.5. If (3.11) defines an η-Einstein soliton on the (LCS)n-manifold (M,φ, ξ, η, g, α).
Then (M, g) is quasi-Einstein.
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Recall that the manifold is called quasi-Einstein [11] if the Ricci curvature tensor field S is
a linear combination (with real scalars λ and µ respectively, with µ 6= 0) of g and the tensor
product of a non-zero 1-from η satisfying η = g(X, ξ), for ξ a unit vector field and respectively,
Einstein if S is collinear with g.

In what follows we shall consider η-Einstein solitons requiring for the curvature to satisfy
R(ξ,X).S = 0, S.R(ξ,X) = 0, and also, we study the two cases (i) when the potential vector
field ξ is of gradient type and second (ii) the potential vector field ξ is a torqued vector filed τ
[10].

Definition 3.6. The vector filed ξ which is nowhere zero vector filed, is called the torqued vector
filed τ if it satisfies

∇Xτ = φX + γ(X)τ, γ(τ) = 0, (3.17)

where the function φ is called torqued function and 1-form γ is called the torqued of τ [10].

4 η-Einstein solition on (LCS)n-manifold satisfyingR.(ξ,X).S = 0

Now we consider a (LCS)n-manifold satisfying the condition

S(R(ξ,X)Y,Z) + S(Y, (ξ,X)Z) = 0, (4.1)

for any X,Y ∈ χ(M).
Replacing the expression of S from (3.13) and from the symmetries of R we get

(α2 − ρ)(µ+ α)[η(Y )g(X,Z) + η(Z)g(X,Y ) + 2η(X)η(Y )η(Z)] = 0, (4.2)

for any X,Y ∈ χ(M).
For Z = ξ we have

−(α2 − ρ)(µ+ α)g(φX, φY ) = 0, (4.3)

for any X,Y ∈ χ(M).
Also, for X = Y = Z = ξ in (4.2) we obtain

(α2 − ρ)(µ+ α)[η(ξ)]2[η(ξ) + 1] = 0, since (α2 − ρ) 6= 0, (4.4)

which implies µ = −α
Hence we can state the following theorem:

Theorem 4.1. If (g, ξ, λ, µ) is an η-Einstein soliton on a (LCS)n-manifold M and satisfies
R(ξ,X).S = 0, then µ = −α and the manifold (M, g) is an Einstein manifold.

For µ = 0, we deduce:

Corollary 4.2. On a (LCS)n-manifold satisfying R(ξ,X).S = 0, there is no Ricci soliton with
the potential vector field ξ.

5 η-Einstein soliton on (LCS)n-manifold satisfying S.R(ξ,X) = 0

In this section we consider (LCS)n-manifold satisfying the condition S.R(ξ,X) = 0.

S(X,R(Y,Z)W )ξ − S(ξ,R(Y, Z)W )X + S(X,Y )R(ξ, Z)W− (5.1)

−S(ξ, Y )R(X,Z)W + S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W+

+S(X,W )R(Y, Z)ξ − S(ξ,W )R(Y,Z)X = 0
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for any X,Y, Z,W ∈ χ(M).
Taking the inner product with ξ, the equation (5.1) becomes

S(X,R(Y,Z)W ) |ξ|2 − S(ξ,R(Y, Z)W )η(X) + S(X,Y )η(R(ξ, Z)W )− (5.2)

−S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )− S(ξ, Z)η(R(Y,X)W )+

+S(X,W )η(R(Y,Z)ξ)− S(ξ,W )η(R(Y, Z)X) = 0

for any X,Y, Z,W ∈ χ(M).
For W = ξ and from the symmetries of R we get

S(X,R(Y,Z)W ) |ξ|2 − S(ξ,R(Y,Z)W )η(X) + S(ξ, ξ)η(R(Y, Z)ξ,X) = 0 (5.3)

for any X,Y, Z,W ∈ χ(M).
Replacing the expression of S from (3.13), we get

(α2 − ρ) |ξ|2 [2λ+ 2α− scal+ (µ+ α) |ξ|2][η(Y )g(X,Z)− η(Z)g(X,Y )] = 0. (5.4)

For W = ξ we have

(α2 − ρ) |ξ|2 [2λ+ 2α− scal+ (µ+ α) |ξ|2][η(X)η(Y )− |ξ|2 g(X,Y )] = 0. (5.5)

for any X,Y ∈ χ(M), and we obtain

(α2 − ρ)[2λ+ 2α− scal+ (µ+ α) |ξ|2]g(X,R(Y,Z)ξ) = 0. (5.6)

Also, we get
(α2 − ρ)[2λ+ 2α− scal+ (µ+ α) |ξ|2] (5.7)

for any X,Y ∈ χ(M). We can state the following:

Theorem 5.1. If (φ, ξ, η, g, α) is a (LCS)n-manifold M , (g, ξ, λ, µ) is an η-Einstein soliton on
M and S(ξ,X).R = 0, then (α2 − ρ)[2λ+ 2α− scal+ (µ+ α) |ξ|2] = 0.

For µ = 0 follows λ = |ξ|2+scal
2 − α, so;

Corollary 5.2. On a (LCS)n-manifold satisfies equation (3.11) and S(ξ,X).R = 0, then λ =
|ξ|2+scal

2 − α.

6 η-Einstein solition on (LCS)n-manifold with the potential vector of type

ξ = grad(ψ)

Consider the equation

Lξg + 2S + 2(λ+ scal)g + 2µη ⊗ η = 0. (6.1)

Writing explicitly the Lie derivative Lξg we get

(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) (6.2)

and form (6.1) we obtain

S(X,Y ) = −(λ− scal

2
)g(X,Y )− µη(X)η(Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)], (6.3)

for any X,Y ∈ χ(M).
Contracting (6.3) we get

r = −(λ− scal

2
)dim(M) + µ− div(ξ). (6.4)
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Let (Mn, g) be a 3-dimensional (LCS)n-manifold and (g, ξ, λ, µ) be a η-Einstein soliton in
M . From (2.14) and (6.3) we obtain[

−(α2 − ρ)− λ
]
g(X,Y )− [3λ+ µ+ 4α− 3(α2 − ρ) + µ]η(X)η(Y ) (6.5)

+
1
2
[g(∇Xξ, Y ) + g(X,∇Y ξ)] = 0.

for any X,Y ∈ χ(M).
Consider {ei}1≤i≤3 an orthonormal frame field and ξ =

∑3
i=1ξ

iei. We have
∑3
i=1εii(ξ

i)2 =

−1 and η(ei) = εiiξ
i.

Multiplying (6.5) by εii and summing over i for X = Y = ei, we get

7λ− 2µ = (α2 − ρ)− 4α− div(ξ). (6.6)

Writing (6.5) for X = Y = ξ , we obtain

4λ− µ = 4α− 2(α2 − ρ) (6.7)

Therefore {
λ = 4α+ (α2 − ρ)− div(ξ)

3
µ = 8α+ 6(α2 − ρ)− 4div(ξ)

(6.8)

Using (6.8) we can state the following results

Theorem 6.1. Let (Mn, g) be a 3-dimensional (LCS)n -manifold and η be the g-dual 1-form of
the gradient vector field ξ = grad(ψ) with g(ξ, ξ) = −1. If (6.1) defines an η-Einstein soliton in
Mn, then the Poisson equation satisfied by ψ becomes

∆(ψ) = −1
2

[µ
2
− 4α− 3(α2 − ρ)

]
, (6.9)

where ∆ is the Laplace operator, and ψ is the solution to be determined. The Laplace equa-
tion plays a fundamental role in Physics; also well known for its importance in Electrostatics,
Biophysics, and Engineering. Moreover, in case if ψ will be a harmonic function manifold M ,
then we can also explore some harmonic aspects of η-Einstein soliton on manifold M .

7 Application of torqued vector field to η-Einstein soliton on

(LCS)n-manifold

In this section, we are going to study the case of η-Einstein soliton on (LCS)n-manifolds in
which the potential vector filed ξ is torqued vector filed τ . From the definition of Lie-derivative
and in the view of equation (3.17) we have

(Lτg)(X,Y ) = g(∇Xτ, Y ) + (X,∇Y τ) = γ(X)g(τ, Y ) + γ(Y )g(τ,X) (7.1)

for X and Y being tangent to M .
In view of (3.11) and (7.1), we get

S(X,Y ) = −
(
λ− scal

2

)
g(X,Y )− µη(X)η(Y )− 1

2
[γ(X)η(Y ) + γ(Y )η(X)]. (7.2)

Here we denote that the dual 1-form of τ by η. Hence the manifold M is in the form of the
generalized quasi-Einstein manifold such that [11]

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + c[A(X)B(Y ) +A(Y )B(X)]. (7.3)

where a = −
(
λ− scal

2

)
, b = µ and c = − 1

2 .
Putting X = Y = ei in (7.2), where {ei} is the orthonormal basis of the tangent space and

summing over i, we get

λ =
5
2
r + µ+ 1 (7.4)

So, we assert the following.
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Theorem 7.1. Let (g, ξ, λ − scal
2 , µ) be an η-Einstein soliton on a 3-dimensional (LCS)n man-

ifold. If the potential vector field ξ is a torqued vector field τ , then M is a generalized quasi-
Einstein manifold.

Corollary 7.2. Let (g, ξ, λ− scal
2 , µ) be an η-Einstein soliton on a 3-dimensional (LCS)n man-

ifold . If the potential vector field ξ is a torqued vector field τ , then such soliton is expanding.

8 Example of 3-dimensional (LCS)n-manifold admitting η-Einstein soliton

Example 8.1. Consider the three dimensional manifold M =
{
(x, y, z) ∈ R3 : z 6= 0

}
, where

(x, y, z) are the Cartesian coordinates in R3 and let the linearly independent vector fields are

e1 = z3 ∂

∂x
, e2 = z3 ∂

∂y
, e3 =

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Lorentzian metric
defined by
g(e1, e1) = g(e2, e2) = −g(e3, e3) = 1, g(e1, e2) = g(e2, e3) = g(e3, e1) = 0,

Let η be the 1-form defined by ξ = e3, η(X) = g(X, e3) for any vector field X on M and φ
be the (1,1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = 0

Then by using the linearity of φ and g, we have φ2X = X + η(X)ξ, with ξ = e3.
Further g(φX, φY ) = g(X,Y ) + η(X)η(Y ) for any vector fields X and Y on M . Hence for

e3 = ξ, the structure defines an (LCS)3- structure in R3.
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])

− g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula.

∇e1e1 = −
3
z
e3, ∇e1e2 = 0, ∇e1e3 = −

3
z
e1,

∇e2e2 = −
3
z
e2, ∇e2e1 = 0, ∇e2e3 = −

3
z
e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

using the above relation, for any vector X on M , we have ∇Xξ = α[X + η(X)ξ)], where α =
− 3
z . Hence (φ, ξ, η, g, α) structure defines the (LCS)3-structure in R3.

Example 8.2. On the (LCS)3-manifold (M, g, ξ, η, φ, α) considered in Example (8.1), the data
(g, ξ, λ, µ) for λ = 3(z+1)

z2 and µ = 3(z+7)
z2 defines an almost η-Ricci soliton.

Indeed,the Riemann and the Ricci curvature tensor fields are computed as follows:

R(e1, e2)e2 =
6
z2 e1, R(e1, e3)e3 = −

9
z2 e1, R(e2, e1)e1 =

6
z2 e2,

R(e2, e3)e3 = −
9
z2 e2, R(e3, e1)e1 =

6
z2 e3, R(e3, e2)e2 =

6
z2 e3,

From the above expression of the curvature tensor we can also obtain Ricci tensor

S(e1, e1) = S(e2, e2) = −
3
z2 , S(e3, e3) = −

18
z2
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Also, α = − 3
z , ρ = − 3

z2 .
Therefore,

r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −
24
z2 (8.1)

scalar curvature scal = − 24
z2 . By the definition of almost η- Einstein soliton and using (3.12) we

obtain

2α[g(ei, ei) + η(ei)η(ei)] + 2S(ei, ei) + (2λ− scal)g(ei, ei) + 2µη(ei)η(ei) = 0

for all i ∈ {1, 2, 3}, and we have

2(1 + δi3)− 2
3
z2 + (2λ+

24
z2 ) + 2µδi3 = 0

for all i ∈ {1, 2, 3}.
Therefore λ = 3(z−3)

z2 and µ = 3(z+3)
z2 the data (g, ξ, λ, scal2 , µ) is an η-Einstein soliton on 3-

dimensional (LCS)n-manifolds. Since the λ > 0, so, it is expanding.

References
[1] Ali, M, and Ahsan, Z., Ricci Solitons and Symmetries of Space time manifold of general relativity, Journal

of Advanced Research on Classical and Modern Geometries, Vol.1(2),75- 84, (2014).

[2] Atceken, M., On geometry of submanifolds of (LCS)n-manifolds, Int. J. Math. Math. Sci. 2012 (2012),
Art. ID 304647, 11 pp.

[3] Alías, L. J., Romero, A. and Sánchez, M., Uniqueness of complete spacelike hypersurfaces of constant
mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 27 (1995), no.
1, 71-84.

[4] Blaga, A. M., On gradient η-Einstein soliton, Kragujevac J. Math., 42 (2), (2018), 229-237.

[5] Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496.

[6] Bagewadi, C. S. and Ingalahalli, G., Ricci Solitons in Lorentzian α-Sasakian Manifolds, Acta Math. Acad.
Paedagog. Nyhzi. (N.S.) 28(1) (2012), 59-68.

[7] Calin, C. and Crasmareanu, M., η-Ricci solitons on Hopf Hypersurfaces in complex space forms, Rev.
Roumaine Math. Pures Appl. 57 (2012), no. 1, 55-63.

[8] Cho, J. T. and Kimura, M., Ricci solitons and Real hypersurfaces in a complex space form, Tohoku
math.J., 61(2009), 205-212.

[9] Catino, G. and Mazzieri, L., Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-74.

[10] Chen, B. Y., Classification of torqued vector fields and its applications to Ricci solitons,Kragujevac J.
Math.41(2017), no. 2, 239-250.

[11] Chaki, M, C., On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.

[12] Eisenhart, L. P., Symmetric tensors of the second order whose first covariant derivatives are zero, Trans.
Amer. Math. Soc., 25(2) (1923), 297-306.

[13] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA, 1986),
Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.

[14] Levy, H. Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math. 27(2)
(1925), 91-98.

[15] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science, 2(1989), 151-
156.

[16] Mantica, C. A. and Molinari, L. G., A notes on concircular structure spacetimes, Commun. Korean Math.
Soc. 34 (2019), No. 2, pp. 633-635.

[17] Mihai, I and R. Rosca, R., On Lorentzian para-Sasakian manifolds, Classical Anal., World Sci. Publ.,
Singapore, 1992. 155-169.

[18] Prakasha, D. G. and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., 108 (2),
(2017), 383-392.

[19] O’Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York,
1983.



394 Shah Alam Siddiqui

[20] Sharma, R., Certain results on K-contact and (k, µ)-contact manifolds, J. Geom., 89(1-2) (2008), 138-
147.

[21] Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type,
Kyungpook Math. J. 43 (2003), no. 2, 305-314.

[22] Shaikh, A. A and Baishya, K. K., On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2,
129-132.

[23] Shaikh, A. A., Some results on (LCS)n-manifolds, J. Korean Math. Soc. 46 (2009), no. 3, 449-461.

[24] Shaikh, A. A., Datta, B. R., Ali. A. and Alkhaldi, A. H., (LCS)n-manifolds and Ricci solitons, Int. J.
Geom. Methods Mod. Phys., 18(9) (2021), 2150138 (17 pages).

[25] Shaikh, A. A. and Helaluddin, A., Some transformations on (LCS)n-manifolds, Tskuba J. Math., 38(1)
(2014), 1-24.

[26] Siddiqi, M. D., η-Einstein soliton in a δ- Lorentzian Trans Sasakian manifolds, Mathematical Advances
in Pure and Applied Sciences. 1(1) (2018) 27-38.

[27] Siddiqi, M. D., Chaubey, S. K., η-Einstein soliton on (ε)-Kenmotsu manifolds, Kyungpook Math. J., 60(4)
(2020), 805-819.

[28] Siddiqi, M.D. Chaubey, S.K. Khan, M.N.I. f(R, T )-Gravity Model with Perfect Fluid Admitting Einstein
Solitons. Mathematics 2022, 10, 82. https://doi.org/10.3390/ math10010082.

[29] Siddiqi, M. D, Chaubey, S. K., Almost Conformal η-Ricci solitons in three dimensional Lorentzian Con-
circular structures, Konuralp Journal of Mathematics, 8(1) (2020), 70-78.

[30] Siddiqi, M. D, η-Einstein solitons in an (ε)-Kenmotsu manifolds with a semi-symmetric metric connec-
tion, Annales, Univ. Sci. Budapest, 62 (2019), 5-25.

[31] Siddiqi, M. D, Chaubey, S. K., Almost η-Conformal Ricci solitons in (LCS)3-manifolds, Sarajevo Journal
of Mathematics, 16(29), no.2 (2020), 1-15.

[32] Yano, K., Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-
200

Author information
Shah Alam Siddiqui, Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia.
E-mail: sasiddiqui@jazanu.edu.sa

Received: 2022-05-28

Accepted: 2022-11-21


	1 Introduction
	2 Preliminaries
	3 -Einstein solitons on (M,,,,g,)
	4 0.2cm-Einstein solition on (LCS)n-manifold satisfying R.(,X).S=0
	5 0.2cm-Einstein soliton on (LCS)n-manifold satisfying S.R(,X)=0
	6 0.2cm-Einstein solition on (LCS)n-manifold with the potential vector of type =grad()
	7 0.2cmApplication of torqued vector field to -Einstein soliton on (LCS)n-manifold
	8 Example of 3-dimensional (LCS)n-manifold admitting -Einstein soliton

