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Abstract With the notion of weighted sharing, we study the uniqueness of meromorphic
functions of finite order, sharing a polynomial with its difference monomial and its shift, obtain
some improved and generalized results from those of Sujoy Majumder [12].

1 Introduction and definitions

A function f(z) is meromorphic if it is analytic in the complex plane except at isolated poles;
if there are no poles, then f(z) reduces to an entire function. Throughout the rest of this paper,
we assume that the reader is familiar with Nevanlinna’s preliminary results and notation [6],
[13]. Let C = C ∪ {∞} and C∗ = C \ {0}, where C denotes set of all complex numbers. For
any non-constant meromorphic function h(z) we define S(r, h) = o (T (r, h)) , (r → ∞, r /∈ E)
whereE denote any set of positive real numbers having finite linear measure. Many authors have
investigated the value distribution of difference polynomial.

Definition 1.1. [7] Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by Ek(a; f) the set of
all a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and k+1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

Definition 1.2. [4] Let k be a positive integer for any constant a in the complex plane C.
We denote

(i) By Nk)
(
r, 1
f−a

)
the counting function of a-points of f(z) with multiplicity ≤ k.

(ii) By N(k

(
r, 1
f−a

)
the counting function of a-points of f(z) with multiplicity≥ k. Similarly,

the reduced counting functions Nk)

(
r, 1
f−a

)
and N (k

(
r, 1
f−a

)
are defined.

Definition 1.3. By a difference product, we mean a difference monomial and its shifts, that is an

expression of the type
s∏
j=1

f(z + cj)µj .

In 2011, K. Liu, X. L. Liu, and T. B. Cao studied the uniqueness of the difference monomials
and obtained the following results.

Theorem A. [10] Let f and g be two transcendental meromorphic functions with finite order.
Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 14, fn(z)f(z + c) and gn(z)g(z + c) share 1 CM,
then f ≡ tg or fg ≡ t, where tn+1 = 1.

Theorem B. [10] Let f and g be two transcendental meromorphic functions with finite order.
Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 26, fn(z)f(z + c) and gn(z)g(z + c) share 1 IM,
then f ≡ tg or fg ≡ t, where tn+1 = 1.

In 2015, Y.Liu, J. P. Wang, and F. H. Liu improved Theorems A and B and obtained the
following results.

Theorem C. [11] Let c ∈ C \ {0} and let f and g be two transcendental meromorphic functions
with finite order, and n (≥ 14), k (≥ 3) be two positive integers. If Ek(1, fn(z)f(z + c)) =
Ek(1, gn(z)g(z + c)), then f ≡ t1g or fg ≡ t2 for some constants t1 and t2 satisfying tn+1

1 = 1
and tn+1

2 = 1.
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Theorem D. [11] Let c ∈ C \ {0} and let f and g be two transcendental meromorphic functions
with finite order, and n (≥ 16) be a positive integer. If E2(1, fn(z)f(z+c)) = E2(1, gn(z)g(z+
c)), then f ≡ t1g or fg ≡ t2, for some constants t1 and t2 satisfying tn+1

1 = 1 and tn+1
2 = 1.

Theorem E. [11] Let c ∈ C \ {0} and let f and g be two transcendental meromorphic functions
with finite order, and n (≥ 22) be a positive integer. If E1(1, fn(z)f(z+c)) = E1(1, gn(z)g(z+
c)), then f ≡ t1g or fg ≡ t2, for some constants t1 and t2 satisfying tn+1

1 = 1 and tn+1
2 = 1.

In 2017, Sujoy Majumder replaced the sharing value 1 by a nonzero polynomial p(z) in C,
D, and E and obtained the following results.

Theorem F. [12] Let f and g be two transcendental meromorphic functions of finite order, c ∈
C\{0} and n ∈ N be such that n ≥ 14. Let p (6≡ 0) be a polynomial such that deg(p) < (n−1)/2.
If fn(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z) share (0, 2), then one of the following two
cases holds:

1 f ≡ tg for some constant t such that tn+1 = 1,

2 fg ≡ t, where p(z) reduces to a nonzero constant c and t is a constant such that tn+1 = c2.

Theorem G. [12] Let f and g be two transcendental meromorphic functions of finite order, c ∈
C\{0} and n ∈ N be such that n ≥ 16. Let p (6≡ 0) be a polynomial such that deg(p) < (n−1)/2.
Suppose fn(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z) share (0, 1). Then the conclusion of
Theorem F holds.

Theorem H. [12] Let f and g be two transcendental meromorphic functions of finite order, c ∈
C\{0} and n ∈ N be such that n ≥ 26. Let p (6≡ 0) be a polynomial such that deg(p) < (n−1)/2.
Suppose fn(z)f(z+c)−p(z) and gn(z)g(z+c)−p(z) share (0, 0). Then conclusion of Theorem
F holds.

It is quite natural to ask the following question.

Question 1. When two finite order meromorphic functions f and g share a nonzero polynomial,
what can be said about their uniqueness if we consider the difference monomial and its shift
instead of the difference polynomial?

Based on the possible answer to the above question, we obtain the following results that
improve and generalize Theorems F - H of [12].

2 Main results

Theorem 2.1. Let f and g be two transcendental meromorphic function of finite order and n be
a positive integer such that n ≥ 2s+ 2σ+ 6. Suppose that cj ∈ C \ {0} for j = {1, 2, 3, . . . , s}.

Let fn
s∏
j=1

f(z + cj)µj − p(z) and gn
s∏
j=1

g(z + cj)µj − p(z) share (0, 2) where p be a nonzero

polynomial such that 2deg (p(z)) < n− σ, then one of the following two cases holds:

(i) f ≡ tg for some constant t such that tn+σ = 1,

(ii) f(z)g(z) ≡ t, where p(z) reduces to a nonzero constant c and t is a constant such that
tn+σ = c2.

Theorem 2.2. Let f and g be two transcendental meromorphic function of finite order and n be
a positive integer such that n > 5s+2σ+11

2 . Suppose that cj ∈ C \ {0} for j = {1, 2, 3, ...s}.

Let fn
s∏
j=1

f(z + cj)µj − p(z) and gn
s∏
j=1

g(z + cj)µj − p(z) share (0, 1) where p be a nonzero

polynomial such that 2deg (p(z)) < n− σ, then the conclusion of Theorem 2.1 holds.

Theorem 2.3. Let f and g be two transcendental meromorphic function of finite order and n be
a positive integer such that n ≥ 5s + σ + 9. Suppose that cj ∈ C \ {0} for j = {1, 2, 3, ...s}.

Let fn
s∏
j=1

f(z + cj)µj − p(z) and gn
s∏
j=1

g(z + cj)µj − p(z) share (0, 0) where p be a nonzero

polynomial such that 2deg (p(z)) < n− σ, then the conclusion of Theorem 2.1 holds.
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Remark 2.4. Theorem 2.1 - 2.3 is an improvement of Theorem F - H respctively.

Taking s = 1 we get σ =
s∑
j=1

µj = 1, fn
s∏
j=1

f(z + cj)µj and gn
s∏
j=1

g(z + cj)µj reduces to

fnf(z + c) and gng(z + c), then

(i) In Theorem 2.1 we obtain n ≥ 10 which is an improvement of Theorem F,

(ii) In Theorem 2.2 we obtain n > 9 which is an improvement of Theorem G,

(iii) In Theorem 2.3 we obtain n ≥ 15 which is an improvement of Theorem H.

3 Some Lemmas

In this section, we present few lemmas needed in the sequel. Let F and G be two non-constant
meromorphic functions defined in the open complex plane C. We denote by H the function

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
. (3.1)

Lemma 3.1. [3] Let f be a meromorphic function of finite order ρ, and let c ∈ C \ {0} be fixed.
Then for each ε > 0, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= O(rρ−1+ε) = S(r, f).

The following lemma has few modifications of the original version [3, Corollary 2.5]

Lemma 3.2. [13] Let f be a non-constant meromorphic function and let an(z)(6≡ 0), an−1(z),
. . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 3.3. [5] Let f be a non-constant meromorphic function of finite order and c ∈ C. Then

N (r, 0; f(z + c)) ≤ N (r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N (r, 0; f(z + c)) ≤ N (r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Lemma 3.4. [3] Let f be a transcendental meromorphic function of finite order, c ∈ C \ {0} be
fixed. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 3.5. [13] Let f and g be two non-constant meromorphic functions. Then

N

(
r,∞;

f

g

)
−N

(
r,∞;

g

f

)
= N(r,∞; f) +N(r, 0; g)−N(r,∞; g)−N(r, 0; f).

Lemma 3.6. Let f be a transcendental meromorphic function of finite order and let

F = fn
s∏
j=1

(f(z + cj))
µj , where n is positive integer. Then

(n− σ)T (r, f) ≤ T (r, F ) + S(r, f).
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Proof. From Lemma 3.2, 3.1 and first fundamental theorem, we obtain

(n+ σ)T (r, f) = T (r, fn+σ) + S(r, f),

≤ T

r, fσ(z)F
s∏
j=1

(f(z + cj))
µj

+ S(r, f),

≤ T (r, F ) + T

r, fσ(z)
s∏
j=1

(f(z + cj))
µj

+ S(r, f),

≤ T (r, F ) +N

r,
s∏
j=1

(f(z + cj))
µj

fσ(z)

+ S(r, f),

≤ T (r, F ) + 2σT (r, f) + S(r, f),

(n− σ)T (r, f) ≤ T (r, F ) + S(r, f).

This completes the proof of Lemma.

Lemma 3.7. Let f and g be two transcendental meromorphic functions of finite order, c ∈ C\{0}
and n ∈ N such that n > σ. Let p be a nonzero polynomial such that 2deg (p) < n− σ. Then

(i) if deg(p) ≥ 1, then fn
s∏
j=1

(f(z + cj))
µj .gn

s∏
j=1

(g(z + cj))
µj 6≡ p2(z),

(ii) if p(z) = c ∈ C \ {0},
then the relation fn

s∏
j=1

(f(z + cj))
µj gn

s∏
j=1

(g(z + cj))
µj ≡ p2(z), always implies that

f.g = t, where t is a constant such that tn+σ = c2.

Proof. Suppose fn s∏
j=1

(f(z + cj))
µj

gn s∏
j=1

(g(z + cj))
µj

 ≡ p2(z). (3.2)

Let h1 = fg then by 3.2, we have

hn1 (z) =
p2(z)

s∏
j=1

h1(z + cj)µj
. (3.3)

We now consider the following two cases,
Case 1. Suppose h1 is a transcendental meromorphic function. Now by Lemma 3.1, 3.2 and 3.3,
we get

nT (r, h1) = T (r, hn1 ) + S (r, h1) ,

= T

r, p2(z)
s∏
j=1

h1(z + cj)µj

+ S (r, h1) ,

≤ N

r, 0;
s∏
j=1

f(z + cj)
µj

+N

r, 0;
s∏
j=1

g(z + cj)
µj

+ S (r, h1) ,

≤ σ [T (r, f) + T (r, g)] + S (r, h1) ,
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from h1 = fg, which implies T (r, h1) = T (r, f) + T (r, g), we get

n [T (r, f) + T (r, g)] ≤ σ [T (r, f) + T (r, g)] + S (r, h1) ,

which is a contradiction.
Case 2. Suppose h1 is a rational function. Let

h1 =
h2

h3
(3.4)

where h2, h3 are two non-zero relatively prime polynomials. By 3.3, we have

T (r, h1) = max{deg(h2), deg(h3)} log r +O(1). (3.5)

Now by 3.3 - 3.5, we have

max{deg(h2), deg(h3)} log r = T (r, hn1 ) +O(1),

≤ σ [T (r, f) + T (r, g)] + 2T (r, p) +O(1),

max{deg(h2), deg(h3)} log r ≤ σmax{deg(h2), deg(h3)} log r + 2T (r, p) +O(1). (3.6)

We see that max{deg(h2), deg(h3)} ≥ 1. Now by 3.6, we deduce that (n− σ) ≤ 2deg (p(z)) .
Which contradicts our assumption that 2deg (p(z)) < (n− σ) . Hence h1 must be a non-zero
constant.
Let

h1 = t ∈ C \ {0}. (3.7)

Now when deg(p) ≥ 1 by 3.3 and 3.7, we arrive at a contradiction.

In this case we have

(
fn

s∏
j=1

(f(z + cj))
µj

)(
gn

s∏
j=1

(g(z + cj))
µj

)
6≡ p2(z).

Suppose p(z) = c ∈ C \ {0}. So by 3.2, we see that hn+σ1 ≡ c2.
By 3.7, we get tn+σ ≡ c2.
This completes the proof.

Lemma 3.8. Let f and g be two transcendental meromorphic functions of finite order, c ∈ C\{0}
be finite complex constant such that f(z+cj) 6= f(z) for i = 0, 1, 2, . . . , s. and g(z+cj) 6= g(z)

and let n be an integer such that n ≥ 3(s + 1) + σ. Let F (z) =
fn

s∏
j=1

(f(z+cj))
µj

p(z) and G(z) =

gn
s∏
j=1

(g(z+cj))
µj

p(z) , where p(z) is nonzero polynomial. If H ≡ 0 then either

(i) fn
s∏
j=1

(f(z + cj))
µj .gn

s∏
j=1

(g(z + cj))
µj ≡ p2(z),

where fn
s∏
j=1

(f(z + cj))
µj − p(z) and gn

s∏
j=1

(g(z + cj))
µj − p(z) share 0 CM,

(ii) f(z) = tg(z) for a constant t with tn+σ = 1.

Proof.

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Since H ≡ 0, by integration, we get

1
F − 1

=
BG+A−B

G− 1
(3.8)

where A 6= 0, B are constant. From 3.7 it is clear that F and G share (1,∞). We now consider
the following cases.
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Case 1. Let B 6= 0 and A 6= B, if B = −1 then from 3.8, we have F = −A
G−A−1 .

Therefore N
(
r, 1
G−(A+1)

)
= N (r, F ) ≤ N

(
r, 1
p

)
≤ T (r, p) = S(r, g).

So in view of Lemma 3.6 and the Second fundamental theorem , we get

(n− σ)T (r, g) ≤ T

r, gn s∏
j=1

(g(z + cj))
µj

+ S(r, g),

≤ T (r,G) + S(r, g),

≤ N (r,∞;G) +N (r, 0;G) +N (r, (A+ 1);G) + S(r, g),

≤ 2(s+ 1)T (r, g) + S(r, g)

which contradicts with n > 2(s+ 1) + σ.
If B 6= 1, from 3.8 we get that

F −
(

1 +
1
B

)
=

−A
B2
(
G+ A−B

B

) .
So N

(
r, B−AB ;G

)
= N(r,∞;F ) ≤ S(r, g). Using Lemma 3.6 and the same argument as used

in the case when B = −1 we can get a contradiction.
Case 2. Let B 6= 0 and A = B. If B = −1, then from 3.8, we have

fn
s∏
j=1

f(z + cj)
µjgn

s∏
j=1

g(z + cj)
µj = p2(z),

when

[
fn

s∏
j=1

f(z + cj)µj

]
− p(z) and

[
gn

s∏
j=1

g(z + cj)µj

]
− p(z) share 0 CM.

If B 6= 1, from 3.8 we have
1
F

=
BG

(1 +B)G− 1
.

Therefore N (r, (1 +B);G) = N(r,∞;F ). So in view of Lemma 3.8 and the Second funda-
mental theorem, we get

(n− σ)T (r, g) ≤ T (r,G) + S(r, g),

≤ N (r,∞;G) +N (r, 0;G) +N (r, (1 +B);G) + S(r, g),

≤ 2(s+ 1)T (r, g) + (1 + s)T (r, f) + S(r, f) + S(r, g),

so for r ∈ I , we have
(n− σ − 3(s+ 1))T (r, g) ≤ S(r, g).

Which is contardiction, since n > 3(s+ 1) + σ.
Case 3. Let B = 0. From 3.8 we obtain

F =
G+A− 1

A
(3.9)

if A 6= 1, then from 3.9, we obtain N (r, (1−A);G) = N (r, 0;F ) .
We can similarly deduce a contradiction as in case 2. Therefore A = 1 and from 3.9, we obtain
, F (z) ≡ G(z).
That is

fn
s∏
j=1

f(z + cj)
µj ≡ gn

s∏
j=1

g(z + cj)
µj . (3.10)

Let h = f
g and then substituting f = gh in 3.10, we deduce

hn(z) =
1

s∏
j=1

h(z + cj)µj
(3.11)
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hn+1 =
f

g
s∏
j=1

h(z + cj)µj
,

if h is not a constant, then we have

(n+ 1)T (r, h) ≤ T

r, f
s∏
j=1

f(z + cj)µj

+ T

r,
s∏
j=1

g(z + cj)µj

g

+ S(r, f) + S(r, g),

≤ (1 + σ) [T (r, f) + T (r, g)] + S(r, f) + S(r, g),

we obtain
(n− σ) [T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which is impossible.
Therefore h is constant, then substituting f = gh in 3.10, we have hn+σ ≡ 1.
Therefore f = tg where t is a constant with tn+σ = 1.

Lemma 3.9. [1] If f , g be two non-constant meromorphic functions such that they share(1, 1).
Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E(r, 1; f)−Nf>2(r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 3.10. [2] Let f and g share (1, 1). Then

Nf>2(r, 1; g) ≤ 1
2
N(r, 0; f) +

1
2
N(r,∞; f)− 1

2
N0(r, 0; f

′
) + S(r, f),

where N0 (r, 0; f ′) is the counting function of the zeros of f ′ which are not the zero of f(f − 1).

Lemma 3.11. [2] Let f, g share (1, 0). Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′
) + S(r, f).

Lemma 3.12. [9] Let f, g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 3.13. [2] Let f and g be two non-constant meromorphic functions sharing (1, 0). Then

NL(r, 1; f)+2NL(r, 1; g)+N
(2
E(r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 3.14. [8] If N(r, 0; f (k)|f 6= 0) denotes the counting function of those zeros of f (k)(z)
which are not the zeros of f(z), where a zero of f (k)(z) is counted according to its multiplicity,
then

N(r, 0; f (k)|f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f | < k) + kN(r, 0; f | ≥ k) + S(r, f).

4 Proof of main Theorems

Proof of Theorem 2.1. Let F =
fn

s∏
j=1

f(z+cj)
µj

p(z) and G =
gn

s∏
j=1

g(z+cj)
µj

p(z) . It follows that F and
G share (1, 2) except the zeors of p(z).
Case 1. Let H 6≡ 0 from 3.1, we obtain

N(r,∞;H) ≤ N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N0(r, 0;F
′
)

+N0(r, 0;G
′
).

(4.1)
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N0(r, 0;F
′
) is the reduced counting function of those zero’s of F

′
which are not the zero’s of

F (F − 1), and N0(r, 0;G
′

is similarly defined.
Let z0 be a simple zero of F − 1 such that p(z0) 6= 0. Then z0 is a simple zero of G − 1 and a
zero of H . So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (4.2)

From 4.1 and 4.2

N(r, 1;F ) ≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +N(r, 1;F | ≥ 2)

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g). (4.3)

Now in the view of Lemma 3.14, we get

N0(r, 0;G
′
) +N(r, 1;F | ≥ 2) +N∗(r, 1;F,G) ≤ N0(r, 0;G

′
) +N(r, 1;F | ≥ 2)

+N(r, 1;F | ≥ 3)

≤ N(r, 0;G
′
|G 6= 0) ≤ N(r, 0;G) + S(r, g). (4.4)

Using equations 4.3, 4.4 and Lemma 3.6, we get from Second fundamental theorem that

(n− σ)T (r, f) ≤ T (r, F ) + S(r, f),

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F )−N0(r, 0;F
′
) + S(r, f),

≤ N(r,∞;F ) +N2(r, 0;F ) +N2(r, 0;G) + S(r, f) + S(r, g),

≤ N(r,∞; f) +N

r,∞;
s∏
j=1

f(z + cj)
µj

+ 2N(r, 0; f)

+N

r, 0;
s∏
j=1

f(z + cj)
µj

+N2

r, 0; gn
s∏
j=1

g(z + cj)
µj


+ S(r, f) + S(r, g),

≤ (3 + s+ σ)T (r, f) + (2 + s)T (r, g) + S(r, f) + S(r, g).

(4.5)

Similarly, we can obtain

(n− σ)T (r, g) ≤ (3 + s+ σ)T (r, g) + (2 + s)T (r, f) + S(r, f) + S(r, g). (4.6)

Combining 4.5 and 4.6 we have

(n− 2σ − 2s− 5) [T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (4.7)

Since n > 2σ + 2s+ 5, equation 4.7 leads to contradiction.
Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 3.7 and 3.8. This completes the

proof.

Proof of Theorem 2.2. Let F (z) =
fn(z)

s∏
j=1

f(z+cj)
µj

p(z) and G(z) =
gn(z)

s∏
j=1

g(z+cj)
µj

p(z) . Then F and
G share (1,1) except for the zeros of p(z). We now consider the following two cases.

Case 1. H 6≡ 0.
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Using Lemmas 3.6, 3.8, 3.9 and equations 4.1 and 4.2, we get

N(r, 1;F ) ≤ N(r, 1;F | = 1) +NL(r, 1;F ) +NL(r, 1;G) +N
(2
E(r, 1;F ),

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +NL(r, 1;F ) +NL(r, 1;G)

+N
(2
E(r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2
E(r, 1;F )

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>2(r, 1;G) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N(r, 0;F | ≥ 2) +
1
2
N(r, 0;F ) +N(r, 0;G| ≥ 2) +N(r, 0;G

′
|G 6= 0) +N0(r, 0;F

′
)

+ S(r, f) + S(r, g),

N(r, 1;F ) ≤ N(r, 0;F | ≥ 2) +
1
2
N(r, 0;F ) +N2(r, 0;G) +N0(r, 0;F

′
) + S(r, f) + S(r, g).

(4.8)
Hence by using Second fundamental theorem, 4.8, Lemmas 3.1 and 3.6 we get

(n− σ)T (r, f) ≤ T (r, F ) + S(r, f),

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F )−N0(r, 0;F ′) + S(r, f),

≤ N(r,∞;F ) +
1
2
N(r, 0;F ) +N2(r, 0;F ) +N2(r, 0;G) + S(r, f) + S(r, g),

≤ N(r,∞; f) +N
(
r,∞;

s∏
j=1

f(z + cj)
µj
)
+

1
2
N
(
r, 0; fn

s∏
j=1

f(z + cj)
µj
)

+ 2N(r, 0; f) +N
(
r, 0;

s∏
j=1

f(z + cj)
µj
)
+N2

r, 0; gn
s∏
j=1

g(z + cj)
µj


+ S(r, f) + S(r, g),

(n− σ)T (r, f) ≤
(

7 + 3s+ 2σ
2

)
T (r, f) + (2 + s)T (r, g) + S(r, f) + S(r, g). (4.9)

Similarly, we obtain

(n− σ)T (r, g) ≤
(

7 + 3s+ 2σ
2

)
T (r, g) + (2 + s)T (r, f) + S(r, f) + S(r, g). (4.10)

Combining 4.9 and 4.10, we get(
n− 5s+ 4σ + 11

2

)
[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (4.11)

Since n > 5s+4σ+11
2 , equation 4.11 leads to contradiction.

Case 2. Let H ≡ 0.
Then the theorem follows from Lemmas 3.7 and 3.8.
This completes the proof.

Proof of Theorem 2.3. Let F (z) =
fn(z)

s∏
j=1

f(z+cj)
µj

p(z) and G(z) =
gn(z)

s∏
j=1

g(z+cj)
µj

p(z) . Then F and
G share (1, 0) except for the zeros of p(z).
In this case equation 4.2 changes to
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N
1)
E (r, 1;F ) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G). (4.12)

Using Lemmas 3.11 - 3.14 and equations 4.2 and 4.12, we get

N(r, 1;F ) ≤ N1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2
E(r, 1;F )

≤ N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NL(r, 1;F )

+NL(r, 1;G) +N
(2
E(r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2
E(r, 1;F )

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>1(r, 1;G) +NG>1(r, 1;F ) +NL(r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

≤ N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 0;G
′
|G 6= 0) +N0(r, 0;F

′
) + S(r, f)

+ S(r, g),

N(r, 1;F ) ≤ N2(r, 0;F )+N(r, 0;F )+N2(r, 0;G)+N(r, 0;G)+N0(r, 0;F
′
)+S(r, f)+S(r, g).

(4.13)
Hence using 4.13, Lemmas 3.1 and 3.6, we obtain from Second fundamental theorem that

(n− σ)T (r, f) ≤ T (r, F ) + S(r, f),

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F )−N0(r, 0;F
′
) + S(r, f),

≤ N(r,∞;F ) + 2N2(r, 0;F ) +N2(r, 0;G) +N(r, 0;G) + S(r, f) + S(r, g),

≤ N(r,∞; f) +N

r,∞;
s∏
j=1

f(z + cj)
µj

+ 4N(r, 0; f)

+ 2N

r, 0;
s∏
j=1

f(z + cj)
µj

+N2

r, 0; gn
s∏
j=1

g(z + cj)
µj


+N

r, 0; gn
s∏
j=1

g(z + cj)
µj

+ S(r, f) + S(r, g),

(n− σ)T (r, f) ≤ (5 + 3s)T (r, f) + (3 + 2s)T (r, g) + S(r, f) + S(r, g). (4.14)

Similarly, we obtain

(n− σ)T (r, g) ≤ (5 + 3s)T (r, g) + (3 + 2s)T (r, f) + S(r, f) + S(r, g). (4.15)

Combining 4.14 and 4.15, we get

(n− σ − 5s− 8) [T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (4.16)

Since n > 5s+ σ + 8, 4.16 leads to contradiction.
Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 3.7 and 3.8.

This completes the proof.
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