EQUIVALENCE OF PSEUDO-DISCRETE MODULES AND DISCRETE MODULES

Prajnan Kumar Bhagawati, Hiya Saharia and Helen K. Saikia
Communicated by Ayman Badawi

MSC 2010 Classifications: 16D40, 16D70,16D80.
Keywords and phrases: Discrete Modules, Pseudo-Discrete Modules, $(C D)_{2}$-modules.
The first author acknowledges the financial support to this work provided by University Grant Commission of In$\operatorname{dia}(U G C)$.

Abstract

Let M be a left R-module. In this paper, various results pertaining to the equivalence of discrete modules and pseudo-discrete modules are established. Furthermore, a new class of module termed as $(C D)_{2}$-module is introduced and certain characteristics of this new class of module, along with its relation with the above mentioned equivalence of discrete modules and pseudo- discrete modules are studied.

1 Introduction

Injective Modules constitute an important part of Module Theory. A weaker notion of injective module is 'quasi-injective module' whereas projective module is a dual interpretation of injective module. At this point we recall that the definition of M-projective and M-injective were first coined by G. Azumaya in his unpublised paper named " M - projective and M-injective modules". The researcher made generalization of injectivity and named it as 'Continuous Module'. The concept of continuity in continuous module was originated from the book- "Continuous Geometry" by Von Neumann [7]. The continuous modules are defined in terms of C_{1}, C_{2}, C_{3} and C_{4} conditions. The concept of discrete module was introduced as a dual notion of continuous module, which was dualized in terms of d-continuous module by Mohamed and Singh in their paper [13]. At first the dual concept of continuous module was studied under various names namely perfect, dual continuous etc. By the motivation of Oshiro's theorem, which states that every quasi-discrete module is the direct sum of indecomposables, Mohamed and Müller termed it as 'Discrete Module'. Like the continuous modules, the dual notion of C_{1}, C_{2}, C_{3} and C_{4} modules were subsequently introduced namely D_{1}, D_{2}, D_{3} and D_{4} respectively.

In this article, our main objective is to show the equivalence of discrete and pseudo-discrete module. An attempt is made to show partly the equivalence between pseudo-discrete modules and pseudo-continuous modules. We denote:

Condition $(*)$: Equivalence of discrete modules and pseudo-discrete modules.
Condition $(* *)$: Equivalence of pseudo-discrete modules and pseudo-continuous modules.
In the first section, we consider the ring $E n d_{R}(M)$ and apply different conditions to obtain the structure of an R-module which satisfies condition (*). In the subsequent theorems the equivalence of discrete modules and pseudo-discrete modules is established in terms of the finite exchange property. Also, a new class of module called $(C D)_{(2,2)}$-module is introduced which satisfies both condition $(*)$ and condition $\left({ }^{* *}\right)$. In short, this module is denoted as $(C D)_{2}$-module. In theorem (3.15), it is shown that if M is a pseudo-discrete module with DCC on summands and if for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Imf} \subseteq{ }^{\oplus} M$, then M is a discrete module if and only if every epimorphism $M \longrightarrow M$ with small kernel is an isomorphism i.e. M satisfies condition(*). Finally in theorem (3.16), it is established that if M is a pseudo-discrete module with DCC on summands with $\nabla=J$ and $\operatorname{End}(M) / \nabla$ is regular and then M is a discrete module under the assumption that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq{ }^{\oplus} M$.

The second section deals with a brief discussion on $(C D)_{2}$-module. It is easy to verify that
every $(C D)_{2}$-module is a C_{2}-module and a D_{2}-module. But every C_{2}-module is not a $(C D)_{2^{-}}$ module. Similarly, every D_{2}-module is not a $(C D)_{2}$-module.

Throughout this paper, M is considered as a left module over an associative ring R with unity; $\operatorname{Im} f$ and $\operatorname{Ker} f$ denote the image and kernel of a homomorphism f respectively; ∇ denotes the cosingular ideal of a module M and J denotes the Jacobson radical of $E n d_{R}(M)$. Moreover, the symbols \leq, \subseteq^{\oplus} and $\subseteq^{\text {ess }}$ denote the submodule, direct summand and essential submodule of a module respectively.

2 Preliminaries

Let M be an R-module. A submodule X of M is said to be small in M if there is no proper submodule Y such that $M=X+Y$. It is denoted by $X \ll M$. M is said to be hollow if every submodule of M is small in M [6].
Let X and Y be two submodules of M. As in [12], Y is said to be supplement of X if $M=X+Y$ and $X \cap Y \ll Y$.

Theorem 2.1. [11, Modularity condition] If X, Y, Z are submodules of M and $X \leq Y$, then $Y \cap(X+Z)=Y+(Z \cap Y)$.

Theorem 2.2. [12, lemma 4.2] Let A, B and C be submodules of M. Then :
(i) If $A \ll B$ and $B \leq C$, then $A \ll C$;
(ii) If $A \ll M, A \leq B$ and $B \subseteq \oplus$, then $A \ll B$;
(iii) If $A \ll M$ and $f: M \rightarrow N$ is a homomorphism, then $f(A) \ll f(M)$.

As in [6], a module M is said to have the n-exchange property if, for any module A and any internal direct sum decompositions of A given by

$$
A=M^{\prime} \bigoplus N=\bigoplus_{I} A_{i}
$$

for modules M^{\prime}, N, A_{i} where $M \simeq M^{\prime}$ and $\operatorname{card}(I) \leq n$, can be exchanged at M^{\prime}. If M has the n-exchange property for every positive integer n, then M has the finite exchange property. A module M has the finite exchange property if $E n d_{R}(M)$ is an exchange ring. As defined in[5] by G.S.Monk, a homomorphism f of M into K is divided on M, where M is a submodule of K, if $M=M_{1} \bigoplus M_{2}$ and $K=K_{1} \bigoplus K_{2}$ such that $f\left(M_{1}\right) \simeq K_{1}, f\left(M_{2}\right) \leq K_{2}$ and $1-f: M_{2} \longrightarrow K$ splits.
Monk characterized a module M with the finite exchange property as follows:
Theorem 2.3. [5, Theorem 1] The module M has the finite exchange property if and only if for $f \in \operatorname{End}_{R}(M), f$ is divided on M.

We call a module M a D_{i}-module ($\mathrm{i}=1,2,3,4$) as follows:
(i) D_{1} (Lifting Module): For every submodule X of M, there is a decomposition, $M=$ $M_{1} \bigoplus M_{2}$ such that $M_{1} \leq X$ and $X \cap M_{2} \ll M$.
(ii) D_{2} (Direct Projective Module): For every submodule $X \leq M$ such that $M / X \simeq Y \subseteq{ }^{\oplus} M$, then $X \subseteq{ }^{\oplus} M$.
(iii) D_{3} (\cap-Direct Projective Module): For any two direct summands M_{1}, M_{2} of M with $M=$ $M_{1}+M_{2}$, then $M_{1} \cap M_{2} \subseteq{ }^{\oplus} M$.
(iv) D_{4} : If $M=M_{1} \bigoplus M_{2}$ and $f: M_{1} \longrightarrow M_{2}$ is a homomorphism with $\operatorname{Imf} \subseteq{ }^{\oplus} M_{2}$, then Kerf $\subseteq{ }^{\oplus} M_{1}$.

An R-module is called a discrete module if it is both D_{1} and D_{2}-module. A quasi-discrete module is both D_{1} and D_{3}-module. Since a D_{2}-module is again a D_{3}-module, so a discrete module is also a quasi-discrete module. A module M which is both D_{1} and D_{4} is called a pseudo-discrete module as in [10]. In [10, proposition 2.1] it has been shown that a module M is a D_{4}-module iff for any two submodules X and Y of M , with $X \subseteq Y$ and $M / Y \simeq X \subseteq{ }^{\oplus} M$, then $Y \subseteq \oplus \quad M$. If M is a module with the finite internal exchange property, then M is a D_{4}
module iff M is a D_{3} module [10, proposition 2.23]. We have used the above characterization (2.3) of a module with the finite exchange property, given by Monk, to show the equivalence between D_{2} and D_{4}-module. Direct sum of D_{4}-module need not be a D_{4}-module. In [10], it has been proved that every direct sum of two D_{4}-modules over a ring R is a D_{4}-module iff R is semisimple artinian. Some important results for D_{i}-module ($i=1,2,3,4$) are as follows:

Theorem 2.4. [6, 22.3 Characterization of lifting modules] The following are equivalent for a module M :
(i) M has $\left(D_{1}\right)$;
(ii) Every submodule X of M can be written as $X=Y \bigoplus S$ with $Y \subseteq \oplus ~ M$ and $S \ll M$;
(iii) M is amply supplemented and every supplement submodule of M is a summand.

Theorem 2.5. [12, lemma 4.22] Let M be a quasi-discrete module. If $M=\sum_{i \in I} M_{i}$ is an irredundant sum of indecomposable submodules M_{i}, then $M=\bigoplus_{i \in I} M_{i}$.
Theorem 2.6. [12, Theorem 4.15] Any quasi-discrete module M has a decomposition $M=$ $\bigoplus_{i \in I} H_{i}$ where each H_{i} is hollow.

Theorem 2.7. [10, proposition 2.11] The following statements hold:
(i) A direct summand of a D_{4}-module is again a D_{4}-module.
(ii) If $M \bigoplus M$ is a D_{4}-module, then M is a D_{2}-module.
(iii) If $M_{1} \bigoplus M_{2}$ is a D_{4}-module and there exists an epimorphism $f: M_{1} \longrightarrow M_{2}$, then M_{2} is a D_{2}-module.

A module M is said to be dual-square-free(DSF) if M has no proper submodule X and Y with $M=X+Y$ and $M / X \cong M / Y$ as in [15]. Direct summand and homomorphic image of a DSF-module is also a DSF-module. Factor module of a module is a DSF-module provided the module itself is a DSF-module [2]. Instead of submodules, if X and Y are summands of M, then M is called summand square free module (SDSF)[15].

Theorem 2.8. [10, Lemma 5.5] If M is a lifting module, then M is an SDSF-module if and only if M is a DSF-module.

Two left R-modules A and B are said to be factor orthogonal if no non zero factor module of A is isomorphic to a factor module of B [15].

Theorem 2.9. [15, Lemma 2.7] If $M=X \bigoplus Y$ is a DSF-module, then X and Y are factor orthogonal.

Theorem 2.10. [10, Lemma 4.9] Let $X=N \bigoplus M$ be a pseudo-discrete module. If $f: N \rightarrow$ N / B is the canonical homomorphism and $g: M \rightarrow N / B$ is an epimorphism with $B \ll N$, then there exists a homomorphism $h: M \rightarrow N$ such that $f h=g$.

Theorem 2.11. [10, Theorem 5.6] If M is a pseudo-discrete module with DCC on summands, then $M=Q \bigoplus D$ with Q, a quasi projective module and D, a DSF-module.

Now, whenever $M \bigoplus X \cong M \bigoplus Y$ implies $X \cong Y$, then M is said to have the property of cancellation. M is said to have the internal cancellation property if whenever $M=A_{1} \bigoplus B_{1} \cong$ $A_{2} \bigoplus B_{2}$ with $A_{1} \cong A_{2}$ implies $B_{1} \cong B_{2}$ [12].

A ring R is said to be a von Neumann regular ring if every element of R is regular[8]. A ring R is regular iff every principal ideal is generated by an idempotent element. If $\operatorname{End}_{R}(M)$ is a von Neumann regular ring, then M is an endoregular module.

Theorem 2.12. [11, Theorem 37.7] Let M be an R-module and $S=\operatorname{End}_{R}(M)$. Let $f \in S$. Then the following properties are equivalent:
(i) There exists $g \in S$ with $f g f=f$;
(ii) Kerf and Imf are direct summands of M.

As in [6], the cosingular ideal of two modules M and N is defined as:

$$
\nabla(M, N)=\{f \in \operatorname{Hom}(M, N) \mid \operatorname{Im} f \ll N\}
$$

If $M=N$, then $\nabla(M)=\nabla(M, N)$.
In the following theorem, a discrete module M is characterized in terms of Jacobson radical and cosingular ideal.

Theorem 2.13. [13, Theorem 3.10] Let M be a discrete module and let J denote the Jacobson radical of $\operatorname{End}(M)$. Then:
(i) $\operatorname{End}(M) / J$ is a (von neumann) regular ring;
(ii) $J=\nabla$;
(iii) Idempotents modulo J can be lifted.

Let M be a left R-module. Then M is said to be a rickart module if $\operatorname{Ker} f$ is a direct summand of M for all $f \in \operatorname{End}_{R}(M)$ [4]. Dual of rickart module is d-rickart module. If $\operatorname{Im} f$ is a direct summand of a module M for all $f \in \operatorname{End}_{R}(M)$, then M is called a d-rickart module.

Theorem 2.14. [3, Proposition 2.3] The following are equivalent for a module M :
(i) M is an endoregular module;
(ii) M is a rickart and d-rickart module.

Theorem 2.15. [4, Proposition 2.11] A module M is rickart iff M is a D_{2}-module and there is an isomorphism between Imf and a direct summand of M for all $f \in \operatorname{End}_{R}(M)$.

Theorem 2.16. [6, Lemma 11.2] Let M_{1}, M_{2} and N be modules with $M_{1} \leq N \leq M_{1} \bigoplus M_{2}$. Then $N=M_{1} \bigoplus N_{1}$ where $N_{1}=N \cap M_{2}$.

Theorem 2.17. [10, proposition 2.23] If M has the finite internal exchange property, then M is a D_{4}-module iff M is a D_{3}-module.

Theorem 2.18. [1, problem 7.4.40] Each element of a commutative ring R is either a unit or a nilpotent element iff the ring R has exactly one prime ideal.

A module M over a ring R is said to be an $L E-$ module if its endomorphism ring $\operatorname{End}_{R}(M)$ is local [6].
A left R-module M is called an Utumi module (U-module) if, whenever A and B are submodules of M with $A \cong B$ and $A \cap B=0$, there exists two summands K and L of M such that $A \subseteq{ }^{\text {ess }} K, B \subseteq^{\text {ess }} L$ and $K \oplus L \subseteq \subseteq^{\oplus} M$ [17].
A left R-module M is called a Dual-Utumi-Module (DU-module) if for any two proper submodules A and B of M with $M / A \cong M / B$ and $A+B \leq M$, there exist two summands K and L of M such that A lies over K, B lies over L and $K \cap L \subseteq \oplus M$. Dual-U-modules are strict generalizations of quasi-discrete, pseudo-discrete and dual-square-free modules [16].

3 Main Results

3.1 Discussion on Equivalence

Lemma 3.1. Let M be an R-module with the finite exchange property and $E n d_{R}(M)$ satisfies the left cancellation property. Then M is a D_{2}-module.

Proof. Let X be a submodule of M such that $M / X \simeq Y \subseteq{ }^{\oplus} M$. Thus, there is an $f \in$ $\operatorname{End}_{R}(M)$ with $\operatorname{Imf}=Y$ and $\operatorname{Ker} f=X$. Now, it is enough to show that there exists a $g \in \operatorname{End}_{R}(M)$ such that $f g=1_{M}$ i.e, f is a retraction.

Since M has the finite exchange property, so f is divided on M. Thus there exists $g \in$ $E n d_{R}(M)$ such that $g f g=g$, which implies that $f g=1_{M}$. Thus Kerf is a direct summand of M.

Following this lemma it is easy to conclude the theorem as below:
Theorem 3.2. Let M be a left R-module with the finite exchange property such that $E n d_{R}(M)$ has left cancellation property. Then the following conditions are equivalent:
(i) M is a discrete module;
(ii) M is a pseudo-discrete module.

Proof. 1) \Leftrightarrow 2) follows from lemma (3.1).
Remark 3.3. It has already been mentioned that R is a semisimple artinian ring if and only if every direct sum of two D_{4}-modules over a ring R is again a D_{4}-module [10]. Then using the result of (2.7), it can be concluded that if M is a module over a semisimple artinian ring, then M is a pseudo-discrete module if and only if M is a discrete module.

Theorem 3.4. Let M be an R-module such that the ring $\operatorname{End}_{R}(M)$ is commutative. If $E n d_{R}(M)$ has exactly one prime ideal with degree of each nilpotent element atmost 2 , then M is a discrete module iff M is a pseudo-discrete module.

Proof. Discrete \Rightarrow pseudo-discrete is trivial.
Let X be a submodule of M such that $M / X \cong Y \subseteq{ }^{\oplus} M$. Therefore there exists an endomorphism $f: M \rightarrow M$ with $\operatorname{Im} f=Y$ and $\operatorname{Ker} f=\bar{X}$. From (2.18), f is either a unit or a nilpotent. Now, if f is a unit, then it is obvious. If f is a nilpotent element with degree 2 , then $f^{2}=0$. For $x \in \operatorname{Im} f$ implies $x \in \operatorname{Ker} f$. Since M is a pseudo-discrete module, this implies $\operatorname{Kerf} \subseteq \subseteq^{\oplus} M$. Hence M is a discrete module.

If we consider $\operatorname{End}_{R}(M)$ as a commutative ring with identity, then as a consequence of theorem (3.4), we get the following about the equivalence:

Corollary 3.5. Let M be an $L E$ - module such that the ring $E n d_{R}(M)$ is commutative with identity. If $\operatorname{End}_{R}(M)$ is a principal ideal domain with each nilpotent element of degree atmost 2, then M is a pseudo-discrete module iff M is a discrete module.

Proof. Let M be a pseudo-discrete module. The ring $\operatorname{End}_{R}(M)$ has exactly one maximal ideal. Since $\operatorname{End}_{R}(M)$ is commutative ring with unity, it implies that it has exactly one prime ideal. Now from (3.4), M is a discrete module.

Corollary 3.6. If M is a simple R-module, then M is a pseudo-discrete module iff M is a discrete module.

Proof. Since M is a simple R-module, so $E n d_{R}(M)$ is a division ring. The rest is easy to prove.

Theorem 3.7. Let M be an endoregular module. Then M is a pseudo-discrete module iff M is a discrete module.

Proof. Follows from theorem (2.14) and theorem (2.15).
A module M is said to be a $(C D)_{2}$ module if for every submodule A and B of M such that $A \cong C \subseteq \subseteq^{\oplus} M$ and $M / B \cong D \subseteq \oplus^{\oplus} M$ implies $A \subseteq \oplus^{\oplus} M$ and $B \subseteq{ }^{\oplus} M$. It is easy to show that if M is a $(C D)_{2}$-module, then M is a C_{i}-module iff M is a D_{i}-module, for $i=2,4$. Thus if M is a $(C D)_{2}$-module with C_{1}, D_{1} condition, then M satisfies both condition (*) and condition (${ }^{* *}$).
Lemma 3.8. Let M be a D_{4} module. Then M is indecomposable provided M is an SDSFmodule.

Proof. Assume to the contrary that M is decomposable i.e. there exists two summands D_{1} and D_{2} such that $M=D_{1} \bigoplus D_{2}$. Let $f: D_{1} \rightarrow D_{2}$ be a homomorphism such that $\operatorname{Imf} \subseteq{ }^{\oplus} D_{2}$. Thus $D_{2}=\operatorname{Imf} \bigoplus K$ for $K \leq D_{2}$. Then $D_{2} / K \cong \operatorname{Imf}$. Since M is a D_{4}-module, thus $\operatorname{Kerf} \subseteq D_{1}$ and we have $D_{1} / \operatorname{Kerf} \cong D_{2} / K$. Hence D_{1} and D_{2} are not factor orthogonal which is a contradiction (using theorem 2.9). Thus M is indecomposable.

Lemma 3.9. Let M be a pseudo-discrete module. Then M is an amply supplemented module and $M=X \oplus Y$ for any two submodules X and Y which are supplements of each other such that $X \cong Y$.

Proof. Consider M is a pseudo-discrete module. By (2.12), M is an amply supplemented module. Since X, Y are supplements of each other in M, it implies that $M=X+Y$ and $X \cap Y \ll M$. Again by (2.12), X, Y are direct summands of M. Now $M=X+Y$ and $X \cong Y$, hence by $\left(D_{4}\right), X \cap Y \subseteq{ }^{\oplus} M$ and $X \cap Y=0$.

Lemma 3.10. Let Y be a supplement of a submodule X in a pseudo-discrete module M and Z be a supplement submodule of M contained in X. Assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq{ }^{\oplus} M$, then $Y \cap Z=0$ and $Y \bigoplus Z \subseteq{ }^{\oplus} M$.

Proof. Since M is a pseudo-discrete module, by (2.4) both Y and Z are direct summands. Consider $M=Z \bigoplus Z^{*}$. By the modularity condition, $X=X \cap Z^{*} \bigoplus Z$, it implies that $M=X \cap Z^{*}+Z+Y$. Again by (2.4), $X \cap Z^{*}$ contains a supplement U of $Z+Y$. Clearly $U \bigoplus Z \subseteq{ }^{\oplus} M$.Now writing $M=(U \bigoplus Z)+Y$, consider a map $f: U \bigoplus Z \rightarrow Y$ such that $f(k)=m-k$, where $m=y+k, m \in M, y \in Y$ and $k \in U \bigoplus Z$. Clearly this map is well-defined and a homomorphism. For $k \in Y, m=k$ implies that $\operatorname{Kerf}=(U \bigoplus Z) \cap Y$. By assumption, $\operatorname{Imf} \subseteq \subseteq^{\oplus} M$ and M is a pseudo-discrete module, hence $\operatorname{Kerf} \subseteq{ }^{\oplus} M$. Now $(U \bigoplus Z) \cap Y \leq X \cap Y \ll M$, so $(Z \bigoplus U) \cap Y=0$. Thus we have $Y \cap Z=0$ and $Y \bigoplus Z \subseteq{ }^{\oplus} M$.

Lemma 3.11. Let X be a summand and Y be an indecomposable summand of a pseudo-discrete module M. Assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Imf} \subseteq{ }^{\oplus}$ M.Then either $X+Y \subseteq{ }^{\oplus} M$ and $X \cap Y=0$ or $X+Y=X \bigoplus Z$ with $Z \ll M$ and Y is isomorphic to a summand of X.

Proof. Let Z be a supplement of $X+Y$ in M. Therefore $M=Z+X+Y$ and $Z \cap(X+Y) \ll Z$. By (3.10), $X \cap Z=0$. If $Y \not \leq X \bigoplus Z$, then $Y \cap(X+Z) \ll Y$ and hence Y is a supplement of $X+Z$. By (3.10), $X \cap Y=0$ and $X \bigoplus Y \subseteq \oplus M$.
If $Y \leq X \bigoplus Z$, then $M=X \bigoplus Z$.By the modularity condition, $X+Y=X \bigoplus((X+Y) \cap Z)$ where $Z \cap(X+Y) \ll M$. Writing $M=Y \bigoplus Y^{\prime}$, we have $M=X+Y+Y^{\prime}=X+((X+$ $Y) \cap Z)+Y^{\prime}=X+Y^{\prime}$. Since M is an amply supplemented, so by (3.9) $M=X^{\prime} \bigoplus Y^{\prime}$ where X^{\prime} is a supplement of Y^{\prime} contained in X. Therefore $Y \cong X^{\prime}$ which is a summand of X.

Lemma 3.12. Let M be a pseudo-discrete module. Assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq{ }^{\oplus}$ M. If $M=\sum_{i \in I} M_{i}$ is an irredundant sum of indecomposable submodules M_{i}, then $M=\bigoplus_{i \in I} M_{i}$

Proof. It follows from theorem (2.5) and theorem (3.11).

Lemma 3.13. Let M be a pseudo-discrete module with DCC on summands and assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq{ }^{\oplus} M$. Let A and B be two direct summands of M. If $\frac{A}{X} \cong \frac{B}{Y}$ with $X \ll A$ and $Y \ll B$, then $A \cong B$.

Proof. Since M is a pseudo-discrete module with DCC on summands, so A and B are also pseudo-discrete modules with DCC on summands. We can write $A=Q \bigoplus D$ where Q is a quasi-projective module and D is a DSF-module (by 2.11). By (2.6), we can write $Q=\bigoplus_{i \in I} H_{i}$, where H_{i} 's are hollow. Thus $A=\left(\bigoplus_{i \in I} H_{i}\right) \bigoplus D$.

Let $A^{\prime}=\frac{A}{X}$ and $B^{\prime}=\frac{B}{Y}$. Let $f: A^{\prime} \rightarrow B^{\prime}$ is an isomorphism. Then $B^{\prime}=f\left(\frac{A}{X}\right)$.

$$
\begin{aligned}
B^{\prime} & =f\left(\frac{A}{X}\right) \\
\Rightarrow B^{\prime} & =f\left(\frac{\oplus H_{i} \oplus D}{X}\right) \\
\Rightarrow B^{\prime} & =f\left(\oplus_{i \in I} \frac{H_{i}}{H_{i} \cap X} \oplus \frac{D}{D \cap X}\right) \\
\Rightarrow B^{\prime} & =\sum_{i \in I} f\left(\frac{H_{i}}{H_{i} \cap X}\right)+f\left(\frac{D}{D \cap X}\right)
\end{aligned}
$$

Consider $H_{i}^{\prime}=H_{i} /\left(H_{i} \cap X\right)$ and $D^{\prime}=D /(D \cap X)$. Then we have $B^{\prime}=\sum_{i \in I} f\left(H_{i}^{\prime}\right)+f\left(D^{\prime}\right)$. Here, $f\left(D^{\prime}\right)$ and D^{\prime} are also DSF-modules. Since f is an isomorphism and $X \ll A$, so this sum is irredundant.

Let $f\left(H_{i}^{\prime}\right)=C_{i}^{\prime} \leq B^{\prime}$ for $i \in I$, where $C_{i}^{\prime}=C_{i} /\left(C_{i} \cap Y\right)$ with $C_{i} \leq B$. Clearly $H_{i}^{\prime} \cong C_{i}^{\prime}$ and C_{i}^{\prime} 's are hollow. Also, $f\left(D^{\prime}\right)=E^{\prime} \leq B^{\prime}$ where $E^{\prime}=E /(E \cap Y), E \leq B$. Similarly $D^{\prime} \cong E^{\prime}$ and E^{\prime} is itself a DSF-module. It is easy to prove that $B=\sum C_{i}+E$ where C_{i} 's are hollow and E is a DSF-module. This sum is irredundant.

Since B is lifting, $C_{i}=B_{i} \bigoplus K_{i}$ where $B_{i} \subseteq{ }^{\oplus} B$ and $K_{i} \ll B$. Since C_{i}^{\prime} 's are hollow, so either $C_{i}^{\prime}=B_{i} /\left(B_{i} \cap Y\right)$ or $C_{i}^{\prime}=K_{i} /\left(K_{i} \cap Y\right)$. If $C_{i}^{\prime}=K_{i} /\left(K_{i} \cap Y\right)$, then it is easy to show that $C_{i} \ll B$, which is a contradiction to the fact that $B=\sum C_{i}+E$ is irredundant. Therefore, the only possibility is $C_{i}^{\prime}=B_{i} /\left(B_{i} \cap Y\right) \cong\left(B_{i}+Y\right) / Y$ which implies that $C_{i}=B_{i}+Y$. Similarly $D^{\prime} \cong E^{\prime}$.
Claim: D^{\prime} is indecomposable.
If possible, consider $D /(D \cap X) \cong D_{1} /\left(D_{1} \cap X\right) \bigoplus D_{2} /\left(D_{2} \cap X\right)$, implies $D=\left(D_{1} \bigoplus\right.$ $\left.D_{2}\right)+(D \cap X)$ where $D \cap X \ll D$. Therefore $D_{1} \bigoplus D_{2}=D$. But D is indecomposable in A. Thus D^{\prime} is indecomposable and E^{\prime} is indecomposable. Now let $E=F \bigoplus L$ where $F \subseteq{ }^{\oplus} B$ and $L \ll B$. Since E^{\prime} is indecomposable, so either $E^{\prime}=F /(F \cap Y)$ or $E^{\prime}=L /(L \cap Y)$. Now it is easy to show that $E^{\prime}=L /(L \cap Y)$ is not possible and $E=F+Y$. Therefore

$$
B=\sum_{i \in I} C_{i}+E=\sum_{i \in I}\left(B_{i}+Y\right)+(F+Y)=\sum_{i \in I} B_{i}+F
$$

and this sum is irredundant.
Claim: Each B_{i}, for $i \in I$, is hollow and F is a DSF-module.
Assume $B_{i}=U+V$. Then $B_{i}^{\prime}=B_{i} /\left(B_{i} \cap Y\right)=U /(U \cap Y)+V /(V \cap Y)=U^{\prime}+V^{\prime}$. Then $B_{i}^{\prime}=U^{\prime}$ or $B_{i}^{\prime}=V^{\prime}$. Now it is easy to show that B_{i}^{\prime} is hollow for $i \in I$. As F is indecomposable, so F is an SDSF-module i.e. a DSF-module.

Now using theorem (3.12), we can write $B=\left(\bigoplus_{i \in I} B_{i}\right) \bigoplus F$.
Claim: $H_{i} \cong B_{i}$ for $i \in I$ and $D \cong F$.
Since H_{i} and B_{i} are hollow summands of M, so using theorem (3.11), either $H_{i} \cong B_{i}$ or $H_{i}+B_{i}$ is direct and it is a summand of M. For the second case, $H_{i} \bigoplus B_{i}$ is a pseudo-discrete module. Using theorem (2.10), there exists an epimorphism $\alpha_{i}: H_{i} \rightarrow B_{i}$ such that the following diagram is commutative:
[node distance $=3 \mathrm{~cm}]$ (A) $H_{i} ;(\mathrm{B})$ [right of=A] H_{i}^{\prime}; (C) [below of=A] B_{i}; (D) [right of=C] B_{i}^{\prime}; $[->]$ (A)to node (B); [->] (A) to node [left] $\alpha_{i}(\mathrm{C}) ;[->](\mathrm{C})$ to node (D); [->] (B) to node [right] $\cong(\mathrm{D}) ;$

Since $H_{i} \bigoplus B_{i}$ is pseudo-discrete and H_{i} and B_{i} are hollow, so α_{i} is an isomorphism. Hence $H_{i} \cong B_{i}$. Similarly, we can show that $D \cong F$.

Therefore,

$$
\left(\bigoplus_{i \in I} H_{i}\right) \bigoplus D \cong\left(\bigoplus_{i \in I} B_{i}\right) \bigoplus F \Rightarrow A \cong B
$$

In [10], the decomposition theorem for pseudo-discrete module has already been proved. We now restate the decomposition theorem for pseudo-discrete module as follows:

Theorem 3.14 (Decomposition Theorem). Let M be a pseudo-discrete module with DCC on summands. Then $M=\bigoplus_{i \in I} H_{i}$ where each H_{i} is hollow.

Proof. It follows from theorem (2.11) and theorem (3.8).
Theorem 3.15. Let M be a pseudo-discrete module with DCC on summands. Assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq{ }^{\oplus} M$. Then M is a discrete module if and only if every epimorphism $M \longrightarrow M$ with small kernel is an isomorphism.

Proof. Let $M \xrightarrow{\mathrm{f}} M$ be an epimorphism with small kernel K. Then $M / K \cong M$. As M is a pseudo-discrete module, so $K \subseteq{ }^{\oplus} M$. Let $M=K \bigoplus L$ where L is a summand of M. From this we can conclude that $M=L$ and $K=0$. Thus f is a monomorphism, which implies that f is an isomorphism.

To prove M is discrete, it is enough to show that M is a D_{2} module. Let N be a submodule of M such that $M / N \cong K \subseteq \oplus M$. We need to show that N is also a direct summand of M.

Let $f: M \rightarrow K$ is an epimorphism with $\operatorname{Ker} f=N$. Since M is lifting, so let $M=A \bigoplus B$ with $A \ll N$ and $B \cap N \ll B$. Thus $M=N+B$ and by (2.16), we get $N=A \bigoplus(B \cap N)$. Now $K \cong M / N \cong(N+B) / N \cong B /(N \cap B)$. K and B are both summands and $N \cap B \ll B$. By (3.13), we can write $K \cong B$. Let $g: N \rightarrow B$ be an isomorphism. Then we get an epimorphism as follows:

$$
M=A \bigoplus B \xrightarrow{1 \oplus f \mid B} A \bigoplus N \xrightarrow{1 \oplus g} A \bigoplus B=M
$$

where its kernel is $B \cap N$ which is small. Thus $B \cap N=0$ and $N=A \subseteq{ }^{\oplus} M$.
Theorem 3.16. Let M be a pseudo-discrete module with DCC on summands. Assume that for any two summands D_{1}, D_{2} with $M=D_{1}+D_{2}$, there exists a homomorphism $f \in \operatorname{Hom}\left(D_{1}, D_{2}\right)$ such that $\operatorname{Im} f \subseteq^{\oplus} M$. If $\nabla=J$ and $\operatorname{End}(M) / \nabla$ is regular, then M is a discrete module.

Proof. Let $f \in \operatorname{End}(M)$ be an epimorphism with small kernel. To prove M is a discrete module, it is enough to show that f is a monomorphism.

Since $\operatorname{End}(M) / \nabla$ is regular, so there exist $g \in \operatorname{End}(M)$ such that $f-f g f \in \nabla$. We prove that f is a monomorphism. Consider $(1-g f) M+A=M$. Now $f(1-g f) M+f(A)=$ M implies $f(A)=M$. Thus $M=A+\operatorname{Kerf}$ from which we get $M=A$. Now we have $(1-g f) M \ll M$.Thus $(1-g f) \in \nabla=J$ i.e. $1-(1-g f)$ is unit. This implies that f is a monomorphism. Thus by (3.15), we can conclude that M is a discrete module.

$3.2(C D)_{2}$-modules

Definition 3.17. A module M is said to be a $(C D)_{2}$-module if for every submodule A, B of M such that $A \cong C \subseteq \subseteq^{\oplus} M$ and $M / B \cong D \subseteq \subseteq^{\oplus} M$ implies $A \subseteq{ }^{\oplus} M$ and $B \subseteq{ }^{\oplus} M$.

In short, we can interpret it as a module which is both C_{2} and D_{2}-module.
Example 3.18. (i) Every endoregular module is a $(C D)_{2}$-module. To see this, first consider that M is an endoregular module and A, B are two submodules of M such that $A \cong C \subseteq{ }^{\oplus}$ M and $M / B \cong D \subseteq \oplus$. Now, since M is an endoregular module, so $A \cong f(M)$ where $f^{2}=f \in \operatorname{End}_{R}(M)$. Let $g: f(M) \rightarrow A$ be an isomorphism. Then $\operatorname{Img} f=g f(M)=$ $A \subseteq{ }^{\oplus} M$. Again since $M / B \cong D \subseteq{ }^{\oplus} M$, there is an $f \in \operatorname{End}_{R}(M)$ such that $\operatorname{Kerf}=B$, a summand of M. But converse is not true. The converse is true if M is a $(C D)_{2}$-module and Imf is isomorphic to a direct summand of M for all $f \in \operatorname{End}_{R}(M)$. [3, Proposition 2.3].
(ii) Every semi simple module is a $(C D)_{2}$-module.
(iii) $\mathrm{A}(C D)_{2}$-module is a C_{2}-module, but the converse is not true in general. For example, $Z_{p \infty}$ is a C_{2} module but not a $(C D)_{2}$-module. This example also proves that every injective module is not a $(C D)_{2}$ - module as Z-module $Z_{p \infty}$ is an injective module.
(iv) $\mathrm{A}(C D)_{2}$-module is also a D_{2}-module, but the converse is not true in general. For example, Z-module Z is a D_{2}-module, but not a $(C D)_{2}$-module. This example also works for projective module which is not $(C D)_{2}$-module.
(v) Submodule of a $(C D)_{2}$-module need not be a $(C D)_{2}$-module. For example: Z-module Q is a $(C D)_{2}$-module but its submodule Z is not a $(C D)_{2}$-module. In fact it is not even a C_{2}-module.
(vi) A module M is called an $S S P$-module (res. $S I P$-module) if the sum (res. intersection) of any two direct summands of M is again a direct summand [10]. Now it is easy to show that if M is a $(C D)_{2}$-module, then M is an $S S P$-module iff M is an $S I P$-module.
(vii) Direct sum of $(C D)_{2}-$ module need not be a $(C D)_{2}$-module.
(viii) Fully invariant submodule of a $(C D)_{2}$-module need not be a $(C D)_{2}$-module.

Theorem 3.19. Let M be a $(C D)_{2}$-module over R. Then it satisfies the following properties:
(i) Every direct summand of M is also a $(C D)_{2}$-module.
(ii) Every submodule A of M with $M / A \cong B \leq M$, where B is isomorphic to some summand, then A is a direct summand of M.
(iii) Every submodule A of M with $A \cong B \leq M$, where B is kernel of some epimorphism $\phi: M \rightarrow C \subseteq{ }^{\oplus} M$, then A is a direct summand of M.

Proof. (i) \Rightarrow Consider A is a direct summand of M. Assume A_{1}, B_{1} are two submodules of M such that $A_{1} \cong C$ and $A / B_{1} \cong D$, where C, D are direct summands of M. Then $\left(A \oplus A^{\prime}\right) /\left(B_{1} \oplus A^{\prime}\right) \cong D$ implies $B_{1} \oplus A^{\prime} \subseteq{ }^{\oplus} M$.Then $B_{1} \subseteq{ }^{\oplus} A$, which is easy to show. At the same time, it is also easy to show that $A_{1} \subseteq{ }^{\oplus} A$. Therefore, clearly A is also a $(C D)_{2}$ module.
(ii) \Rightarrow Consider an arbitrary submodule A of M with $M / A \cong B \leq M$ and B is isomorphic to some summand of M. Since M is a $(C D)_{2}$-module, B is itself a direct summand. But by D_{2} condition, A is itself a direct summand.
(iii) \Rightarrow Consider an arbitrary submodule A of M with $A \cong B \leq M$ and $\phi: M \rightarrow C \subseteq{ }^{\oplus} M$. Since M is a $(C D)_{2}$-module, B is a direct summand of M. Therefore A is a direct summand of M.

Remark 3.20. (i) If M is a $(C D)_{2}$-module, then for any two direct summands A, B of M and $A \cap B=0$ implies $M=A_{1} \bigoplus B=A \bigoplus B_{1}$ for submodules $A_{1} \geq A$ and $B_{1} \geq B$.
(ii) If M is a $(C D)_{2}$-module, then for any two direct summands $A, B \subseteq{ }^{\oplus} M$ and $M=A+B$ implies $M=A_{1} \bigoplus B=A \bigoplus B_{1}$ for submodules $A_{1} \leq A$ and $B_{1} \leq B$.
(iii) If M is a $(C D)_{2}$-module, then for any two summands $A, B \subseteq{ }^{\oplus} M$ and $A \cap B \subseteq{ }^{\oplus} M$ implies $A+B \subseteq{ }^{\oplus} M$.
(iv) If M be a $(C D)_{2}$-module, then for any two summands $A, B \subseteq \subseteq^{\oplus} M$ and $A+B \subseteq \subseteq^{\oplus} M$ implies $A \cap B \subseteq{ }^{\oplus} M$.
(v) $(C D)_{2}+D_{1} \Rightarrow$ Dual Utumi Module.
(vi) $(C D)_{2}+C_{1} \Rightarrow$ Utumi Module.

Proposition 3.21. Let M be a $(C D)_{2}$-module. Then the following conditions are equivalent:
(i) For any two direct summand $A, B \subseteq \oplus{ }^{\oplus} M$ and $A \cap B=0$ implies $M=A_{1} \bigoplus B=A \bigoplus B_{1}$ for submodules $A_{1} \geq A$ and $B_{1} \geq B$;
(ii) for any two direct summand $A, B \subseteq \oplus$ and $M=A+B$ implies $M=A_{1} \bigoplus B=A \bigoplus B_{1}$ for submodules $A_{1} \leq A$ and $B_{1} \leq B$.

Proof. (1) \Rightarrow (2) $A, B \subseteq \subseteq^{\oplus} M$ such that $A \cap B=0$.Clearly $A \bigoplus B \subseteq{ }^{\oplus} M$ implies $M=$ $A \bigoplus B \bigoplus T$, for some $T \subseteq{ }^{\oplus} M$.There are two cases:

- Case 1: When T is indecomposable, the proof is trivial.
- Case 2: When T is decomposable, M can be written as $M=\left(A \bigoplus K_{1}\right)+\left(B \bigoplus K_{2}\right)$ for some $K_{1}, K_{2} \subseteq^{\oplus} M \Rightarrow M=C \bigoplus D, C:=A \bigoplus K_{1}, D:=B \bigoplus K_{2}$. Then by assumption there exists $C_{1}:=A \bigoplus K_{1}^{\prime}$ such that $M=C_{1} \bigoplus D=\left(A \bigoplus K_{1}^{\prime}\right) \bigoplus(B \bigoplus$
$\left.K_{2}\right)=\left(A \bigoplus K_{1}^{\prime} \bigoplus K_{2}\right) \bigoplus B=A_{1} \bigoplus B$ with $A_{1}=A \bigoplus K_{1}^{\prime} \bigoplus K_{2}$. Similarly there exists $D_{1}:=B \bigoplus K_{2}^{\prime} \leq D$ such that $M=C \bigoplus D_{1}=\left(A \bigoplus K_{1}\right) \bigoplus\left(B \bigoplus K_{2}^{\prime}\right)=\left(A \bigoplus K_{1} \bigoplus\right.$ $\left.K_{2}^{\prime}\right) \bigoplus B=A \bigoplus B_{1}$ with $B_{1}=A \bigoplus K_{1} \bigoplus K_{2}^{\prime}$
(2) \Rightarrow (1)Consider $A, B \subseteq{ }^{\oplus} M$ with $M=A+B$. Then $A \cap B \subseteq{ }^{\oplus} M$ implies $A \backslash B$ and $B \backslash A$ are direct summands such that $(A \backslash B) \cap(B \backslash A)=0$. By assumption, there exists $C:=A \geq(A \backslash B)$ such that $M=C \bigoplus(B \backslash A)=A \bigoplus B_{1}$ with $B_{1}:=(B \backslash A) \leq B$. Similarly, there exists $D:=B \geq(B \backslash A)$ such that $M=(A \backslash B) \bigoplus D=A_{1} \bigoplus B$ with $A_{1}:=(A \backslash B) \leq B$.

Remark 3.22. Let M be a $(C D)_{2}$-module and $M=A_{1} \bigoplus A_{2}$. If there is an R-homomorphism from A_{1} to A_{2}, then $\operatorname{Kerf} \subseteq{ }^{\oplus} A_{1}$ if and only if $\operatorname{Imf} \subseteq{ }^{\oplus} A_{2}$.

References

[1] D. S. Dummit, R. M. Foote,"Abstract algebra",John Wiley \& Sons,Inc, Hoboken,2004.
[2] Derya Keskin Tütüncü, Isao Kikumasa, Yosuke Kuratomi and Yoshiharu Shibata, "On dual of square free modules", Communications in Algebra, vol. 46, pp. 3365-3376.
[3] G. Lee,S. T. Rizvi,C. Roman,"Modules whose endomorphism rings are von Neumann regular",Communications in Algebra ,vol. 41,pp. 4066-4088, 2013.
[4] G. Lee and S. T. Rizvi and C. S. Roman ""Rickart modules", Communications in Algebra ,vol. 38,pp. 4005-4027, 2010.
[5] G.S. Monk,"A characterization of exchange rings",Proceedings of the American Mathematical Society,vol 35,pp. 349-353, 1972.
[6] J. Clark,C. Lomp,N. Vanaja,R. Wisbauer,"Lifting Modules: Supplements and Projectivity in Module Theory",Birkhäuser Verlag, Basel-Boston-Berlin,2006.
[7] J. V. Neumann, "Continuous Geometry",Princeton University Press,London,1960.
[8] K.R Goodearl "Von Neumann Regular Rings" , Pitman, London-San Francisco-Melbourne, 1979.
[9] N. Ding,Y. Ibrahim,M. Yousif and Y. Zhou, "C4-modules", Communications in Algebra vol. 45, pp. 1727-1740, 2017.
[10] N. Ding,Y. Ibrahim,M. Yousif and Y.Zhou, D_{4}-modules, Journal of Algebra and Its Applications,vol. 16, pp. 1750166, 2017.
[11] R. Wisbauer,"Foundations of Module and Ring Theory", Gordon and Breach Science Publishers, Philadelphia,1991.
[12] S. H. Mohamed,B.J. Muller,"Continuous and Discrete Modules", Cambridge University Press., New York,1990.
[13] S. Mohamed,S. Singh, "Generalizations of decomposition theorems known over perfect rings",Journal of the Australian Mathematical Society,vol. 24,pp. 496-510,1977.
[14] S. Mohamed and T. Bouhy,"Continuous modules",Arabian Journal for Science and Engineering,vol. 2,pp. 107-112, 1977.
[15] Y. Ibrahim, M. Yousif, "Dual-square-free modules", Communications in Algebra, vol. 47,pp. 2954-2966, 2019.
[16] Yasser Ibrahim, Mohamed Yousif, "Dual Utumi Modules" Communications in Algebra,vol. 47, pp 38893904, 2019.
[17] Yasser Ibrahim, Mohamed Yousif, "Utumi Modules" Communications in Algebra,vol. 46, pp 870886,2017.

Author information

Prajnan Kumar Bhagawati, Department of Mathematics, Gauhati University, Guwahati-781014, INDIA.
E-mail: bhagawatipu@gmail.com
Hiya Saharia, Department of Mathematics, Gauhati University, Guwahati-781014, INDIA.
E-mail: hiyasaharia123@gmail.com

Helen K. Saikia, Department of Mathematics, Gauhati University, Guwahati-781014, INDIA.
E-mail: hsaikia@yahoo.com
Received: 2022-06-27
Accepted: 2023-04-16

