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Abstract Let M be a left R−module. In this paper, various results pertaining to the equiva-
lence of discrete modules and pseudo-discrete modules are established. Furthermore, a new class
of module termed as (CD)2-module is introduced and certain characteristics of this new class of
module, along with its relation with the above mentioned equivalence of discrete modules and
pseudo- discrete modules are studied.

1 Introduction

Injective Modules constitute an important part of Module Theory. A weaker notion of injective
module is ‘quasi-injective module’ whereas projective module is a dual interpretation of injective
module. At this point we recall that the definition of M−projective and M−injective were first
coined by G. Azumaya in his unpublised paper named “M− projective and M−injective mod-
ules". The researcher made generalization of injectivity and named it as ‘Continuous Module’.
The concept of continuity in continuous module was originated from the book- “Continuous Ge-
ometry" by Von Neumann [7]. The continuous modules are defined in terms of C1,C2,C3 and C4
conditions. The concept of discrete module was introduced as a dual notion of continuous mod-
ule, which was dualized in terms of d-continuous module by Mohamed and Singh in their paper
[13]. At first the dual concept of continuous module was studied under various names namely
perfect, dual continuous etc. By the motivation of Oshiro’s theorem, which states that every
quasi-discrete module is the direct sum of indecomposables, Mohamed and Müller termed it as
’Discrete Module’. Like the continuous modules, the dual notion of C1,C2,C3 and C4 modules
were subsequently introduced namely D1, D2,D3 and D4 respectively.

In this article, our main objective is to show the equivalence of discrete and pseudo-discrete
module. An attempt is made to show partly the equivalence between pseudo-discrete modules
and pseudo-continuous modules. We denote:

Condition(*) : Equivalence of discrete modules and pseudo-discrete modules.
Condition(**): Equivalence of pseudo-discrete modules and pseudo-continuous modules.
In the first section, we consider the ring EndR(M) and apply different conditions to obtain

the structure of an R-module which satisfies condition (*). In the subsequent theorems the
equivalence of discrete modules and pseudo-discrete modules is established in terms of the finite
exchange property. Also, a new class of module called (CD)(2,2)-module is introduced which
satisfies both condition(*) and condition(**). In short, this module is denoted as (CD)2-module.
In theorem (3.15), it is shown that if M is a pseudo-discrete module with DCC on summands
and if for any two summands D1, D2 with M = D1 + D2, there exists a f ∈ Hom(D1, D2)
such that Imf ⊆⊕ M , then M is a discrete module if and only if every epimorphism M −→M
with small kernel is an isomorphism i.e. M satisfies condition(*). Finally in theorem (3.16), it
is established that if M is a pseudo-discrete module with DCC on summands with 5 = J and
End(M)/5 is regular and then M is a discrete module under the assumption that for any two
summands D1, D2 with M = D1 +D2, there exists a f ∈ Hom(D1, D2) such that Imf ⊆⊕ M .

The second section deals with a brief discussion on (CD)2-module. It is easy to verify that
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every (CD)2-module is a C2-module and a D2-module. But every C2-module is not a (CD)2-
module. Similarly, every D2-module is not a (CD)2-module.

Throughout this paper, M is considered as a left module over an associative ring R with unity;
Imf and Kerf denote the image and kernel of a homomorphism f respectively; 5 denotes the
cosingular ideal of a module M and J denotes the Jacobson radical of EndR(M). Moreover, the
symbols ≤, ⊆⊕ and ⊆ess denote the submodule, direct summand and essential submodule of a
module respectively.

2 Preliminaries

Let M be an R-module. A submodule X of M is said to be small in M if there is no proper
submodule Y such that M = X + Y . It is denoted by X � M . M is said to be hollow if every
submodule of M is small in M [6].
LetX and Y be two submodules ofM . As in [12], Y is said to be supplement ofX ifM = X+Y
and X ∩ Y � Y .

Theorem 2.1. [11, Modularity condition] If X,Y, Z are submodules of M and X ≤ Y , then
Y ∩ (X + Z) = Y + (Z ∩ Y ).

Theorem 2.2. [12, lemma 4.2] Let A,B and C be submodules of M . Then :

(i) If A� B and B ≤ C, then A� C;

(ii) If A�M , A ≤ B and B ⊆⊕ M , then A� B;

(iii) If A�M and f : M → N is a homomorphism, then f(A)� f(M).

As in [6], a module M is said to have the n-exchange property if, for any module A and any
internal direct sum decompositions of A given by

A =M ′
⊕
N =

⊕
I Ai

for modules M ′, N,Ai where M ' M ′ and card(I)≤ n, can be exchanged at M ′. If M has the
n−exchange property for every positive integer n, then M has the finite exchange property. A
moduleM has the finite exchange property ifEndR(M) is an exchange ring. As defined in[5] by
G.S.Monk, a homomorphism f of M into K is divided on M , where M is a submodule of K, if
M =M1

⊕
M2 and K = K1

⊕
K2 such that f(M1) ' K1, f(M2) ≤ K2 and 1− f : M2 −→ K

splits.
Monk characterized a module M with the finite exchange property as follows:

Theorem 2.3. [5, Theorem 1] The module M has the finite exchange property if and only if for
f ∈ EndR(M), f is divided on M .

We call a module M a Di-module (i=1,2,3,4) as follows:

(i) D1 (Lifting Module): For every submodule X of M , there is a decomposition, M =
M1
⊕
M2 such that M1 ≤ X and X ∩M2 �M .

(ii) D2 (Direct Projective Module): For every submodule X ≤M such that M/X ' Y ⊆⊕ M ,
then X ⊆⊕ M .

(iii) D3 (∩-Direct Projective Module): For any two direct summands M1,M2 of M with M =
M1 +M2, then M1 ∩M2 ⊆⊕ M .

(iv) D4: If M = M1
⊕
M2 and f : M1 −→ M2 is a homomorphism with Imf ⊆⊕ M2, then

Kerf ⊆⊕ M1.

An R-module is called a discrete module if it is both D1 and D2-module. A quasi-discrete
module is both D1 and D3-module. Since a D2-module is again a D3-module, so a discrete
module is also a quasi-discrete module. A module M which is both D1 and D4 is called a
pseudo-discrete module as in [10]. In [10, proposition 2.1] it has been shown that a module M
is a D4-module iff for any two submodules X and Y of M, with X ⊆ Y and M/Y ' X ⊆⊕ M ,
then Y ⊆⊕ M . If M is a module with the finite internal exchange property, then M is a D4



PSEUDO-DISCRETE MODULES AND DISCRETE MODULES 421

module iff M is a D3 module [10, proposition 2.23]. We have used the above characterization
(2.3) of a module with the finite exchange property, given by Monk, to show the equivalence
between D2 and D4-module. Direct sum of D4-module need not be a D4-module. In [10], it
has been proved that every direct sum of two D4-modules over a ring R is a D4-module iff R is
semisimple artinian. Some important results for Di-module (i = 1, 2, 3, 4) are as follows:

Theorem 2.4. [6, 22.3 Characterization of lifting modules] The following are equivalent for a
module M :

(i) M has (D1);

(ii) Every submodule X of M can be written as X = Y
⊕
S with Y ⊆⊕ M and S �M ;

(iii) M is amply supplemented and every supplement submodule of M is a summand.

Theorem 2.5. [12, lemma 4.22] Let M be a quasi-discrete module. If M =
∑

i∈I Mi is an
irredundant sum of indecomposable submodules Mi, then M =

⊕
i∈I Mi.

Theorem 2.6. [12, Theorem 4.15] Any quasi-discrete module M has a decomposition M =⊕
i∈I Hi where each Hi is hollow.

Theorem 2.7. [10, proposition 2.11] The following statements hold:

(i) A direct summand of a D4-module is again a D4-module.

(ii) If M
⊕
M is a D4-module, then M is a D2-module.

(iii) If M1
⊕
M2 is a D4-module and there exists an epimorphism f : M1 −→M2, then M2 is a

D2-module.

A module M is said to be dual-square-free(DSF) if M has no proper submodule X and Y
with M = X + Y and M/X ∼=M/Y as in [15]. Direct summand and homomorphic image of a
DSF-module is also a DSF-module. Factor module of a module is a DSF-module provided the
module itself is a DSF-module [2]. Instead of submodules, ifX and Y are summands of M , then
M is called summand square free module (SDSF)[15].

Theorem 2.8. [10, Lemma 5.5] If M is a lifting module, then M is an SDSF-module if and only
if M is a DSF-module.

Two left R-modules A and B are said to be factor orthogonal if no non zero factor module of
A is isomorphic to a factor module of B [15].

Theorem 2.9. [15, Lemma 2.7] If M = X
⊕
Y is a DSF-module, then X and Y are factor

orthogonal.

Theorem 2.10. [10, Lemma 4.9] Let X = N
⊕
M be a pseudo-discrete module. If f : N →

N/B is the canonical homomorphism and g : M → N/B is an epimorphism with B � N , then
there exists a homomorphism h : M → N such that fh = g.

Theorem 2.11. [10, Theorem 5.6] If M is a pseudo-discrete module with DCC on summands,
then M = Q

⊕
D with Q, a quasi projective module and D, a DSF-module.

Now, whenever M
⊕
X ∼= M

⊕
Y implies X ∼= Y , then M is said to have the property of

cancellation. M is said to have the internal cancellation property if whenever M = A1
⊕
B1 ∼=

A2
⊕
B2 with A1 ∼= A2 implies B1 ∼= B2[12].

A ring R is said to be a von Neumann regular ring if every element of R is regular[8]. A ring
R is regular iff every principal ideal is generated by an idempotent element. If EndR(M) is a
von Neumann regular ring, then M is an endoregular module.

Theorem 2.12. [11, Theorem 37.7] Let M be an R-module and S = EndR(M). Let f ∈ S.
Then the following properties are equivalent:

(i) There exists g ∈ S with fgf = f ;
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(ii) Kerf and Imf are direct summands of M .

As in [6], the cosingular ideal of two modules M and N is defined as:

5(M,N) = {f ∈ Hom(M,N) | Imf � N}

If M = N , then5(M) = 5(M,N).
In the following theorem, a discrete module M is characterized in terms of Jacobson radical

and cosingular ideal.

Theorem 2.13. [13, Theorem 3.10] Let M be a discrete module and let J denote the Jacobson
radical of End(M). Then:

(i) End(M)/J is a (von neumann) regular ring;

(ii) J = 5;

(iii) Idempotents modulo J can be lifted.

LetM be a leftR-module. ThenM is said to be a rickart module ifKerf is a direct summand
of M for all f ∈ EndR(M)[4]. Dual of rickart module is d-rickart module. If Imf is a direct
summand of a module M for all f ∈ EndR(M), then M is called a d-rickart module.

Theorem 2.14. [3, Proposition 2.3] The following are equivalent for a module M :

(i) M is an endoregular module;

(ii) M is a rickart and d-rickart module.

Theorem 2.15. [4, Proposition 2.11] A module M is rickart iff M is a D2-module and there is
an isomorphism between Imf and a direct summand of M for all f ∈ EndR(M).

Theorem 2.16. [6, Lemma 11.2] Let M1,M2 and N be modules with M1 ≤ N ≤ M1
⊕
M2.

Then N =M1
⊕
N1 where N1 = N ∩M2.

Theorem 2.17. [10, proposition 2.23] If M has the finite internal exchange property, then M is
a D4-module iff M is a D3-module.

Theorem 2.18. [1, problem 7.4.40] Each element of a commutative ring R is either a unit or a
nilpotent element iff the ring R has exactly one prime ideal.

A module M over a ring R is said to be an LE−module if its endomorphism ring EndR(M)
is local [6].
A left R-module M is called an Utumi module (U-module) if, whenever A and B are submod-
ules of M with A ∼= B and A ∩ B = 0, there exists two summands K and L of M such that
A ⊆ess K, B ⊆ess L and K ⊕ L ⊆⊕ M [17].
A left R-module M is called a Dual-Utumi-Module (DU-module) if for any two proper submod-
ules A and B of M with M/A ∼= M/B and A + B ≤ M , there exist two summands K and
L of M such that A lies over K, B lies over L and K ∩ L ⊆⊕ M . Dual-U-modules are strict
generalizations of quasi-discrete, pseudo-discrete and dual-square-free modules [16].

3 Main Results

3.1 Discussion on Equivalence

Lemma 3.1. Let M be an R-module with the finite exchange property and EndR(M) satisfies
the left cancellation property. Then M is a D2-module.

Proof. Let X be a submodule of M such that M/X ' Y ⊆⊕ M . Thus, there is an f ∈
EndR(M) with Imf = Y and Kerf = X . Now, it is enough to show that there exists a
g ∈ EndR(M) such that fg = 1M i.e, f is a retraction.

Since M has the finite exchange property, so f is divided on M . Thus there exists g ∈
EndR(M) such that gfg = g, which implies that fg = 1M . Thus Kerf is a direct summand of
M .
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Following this lemma it is easy to conclude the theorem as below:

Theorem 3.2. Let M be a left R-module with the finite exchange property such that EndR(M)
has left cancellation property. Then the following conditions are equivalent:

(i) M is a discrete module;

(ii) M is a pseudo-discrete module.

Proof. 1)⇔ 2) follows from lemma (3.1).

Remark 3.3. It has already been mentioned that R is a semisimple artinian ring if and only if
every direct sum of two D4-modules over a ring R is again a D4-module [10]. Then using the
result of (2.7), it can be concluded that if M is a module over a semisimple artinian ring, then M
is a pseudo-discrete module if and only if M is a discrete module.

Theorem 3.4. LetM be anR-module such that the ringEndR(M) is commutative. IfEndR(M)
has exactly one prime ideal with degree of each nilpotent element atmost 2, then M is a discrete
module iff M is a pseudo-discrete module.

Proof. Discrete⇒ pseudo-discrete is trivial.
Let X be a submodule of M such that M/X ∼= Y ⊆⊕ M . Therefore there exists an endo-

morphism f : M → M with Imf = Y and Kerf = X . From (2.18), f is either a unit or a
nilpotent. Now, if f is a unit, then it is obvious. If f is a nilpotent element with degree 2, then
f2 = 0. For x ∈ Imf implies x ∈ Kerf . Since M is a pseudo-discrete module, this implies
Kerf ⊆⊕ M . Hence M is a discrete module.

If we consider EndR(M) as a commutative ring with identity, then as a consequence of
theorem (3.4), we get the following about the equivalence:

Corollary 3.5. Let M be an LE − module such that the ring EndR(M) is commutative with
identity. If EndR(M) is a principal ideal domain with each nilpotent element of degree atmost
2, then M is a pseudo-discrete module iff M is a discrete module.

Proof. Let M be a pseudo-discrete module. The ring EndR(M) has exactly one maximal ideal.
Since EndR(M) is commutative ring with unity, it implies that it has exactly one prime ideal.
Now from (3.4), M is a discrete module.

Corollary 3.6. IfM is a simpleR-module, thenM is a pseudo-discrete module iffM is a discrete
module.

Proof. Since M is a simple R-module, so EndR(M) is a division ring. The rest is easy to
prove.

Theorem 3.7. Let M be an endoregular module. Then M is a pseudo-discrete module iff M is a
discrete module.

Proof. Follows from theorem (2.14) and theorem (2.15).

A module M is said to be a (CD)2 module if for every submodule A and B of M such that
A ∼= C ⊆⊕ M and M/B ∼= D ⊆⊕ M implies A ⊆⊕ M and B ⊆⊕ M . It is easy to show that if
M is a (CD)2-module, then M is a Ci-module iff M is a Di-module, for i = 2, 4. Thus if M is
a (CD)2-module with C1, D1 condition, then M satisfies both condition (*) and condition (**).

Lemma 3.8. Let M be a D4 module. Then M is indecomposable provided M is an SDSF-
module.

Proof. Assume to the contrary that M is decomposable i.e. there exists two summands D1 and
D2 such that M = D1

⊕
D2. Let f : D1 → D2 be a homomorphism such that Imf ⊆⊕ D2.

Thus D2 = Imf
⊕
K for K ≤ D2. Then D2/K ∼= Imf . Since M is a D4-module, thus

Kerf ⊆⊕ D1 and we have D1/Kerf ∼= D2/K. Hence D1 and D2 are not factor orthogonal
which is a contradiction (using theorem 2.9). Thus M is indecomposable.
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Lemma 3.9. Let M be a pseudo-discrete module. Then M is an amply supplemented module
and M = X ⊕ Y for any two submodules X and Y which are supplements of each other such
that X ∼= Y .

Proof. Consider M is a pseudo-discrete module. By (2.12), M is an amply supplemented mod-
ule. SinceX,Y are supplements of each other inM , it implies thatM = X+Y andX∩Y �M .
Again by (2.12), X,Y are direct summands of M . Now M = X + Y and X ∼= Y , hence by
(D4), X ∩ Y ⊆⊕ M and X ∩ Y = 0.

Lemma 3.10. Let Y be a supplement of a submodule X in a pseudo-discrete module M and Z
be a supplement submodule of M contained in X . Assume that for any two summands D1, D2
with M = D1 + D2, there exists a homomorphism f ∈ Hom(D1, D2) such that Imf ⊆⊕ M ,
then Y ∩ Z = 0 and Y

⊕
Z ⊆⊕ M .

Proof. Since M is a pseudo-discrete module, by (2.4) both Y and Z are direct summands.
Consider M = Z

⊕
Z∗. By the modularity condition, X = X ∩ Z∗

⊕
Z, it implies that

M = X ∩ Z∗ + Z + Y . Again by (2.4), X ∩ Z∗ contains a supplement U of Z + Y . Clearly
U
⊕
Z ⊆⊕ M .Now writing M = (U

⊕
Z) + Y , consider a map f : U

⊕
Z → Y such that

f(k) = m − k, where m = y + k,m ∈ M,y ∈ Y and k ∈ U
⊕
Z. Clearly this map is

well-defined and a homomorphism. For k ∈ Y,m = k implies that Kerf = (U
⊕
Z) ∩ Y .

By assumption, Imf ⊆⊕ M and M is a pseudo-discrete module, hence Kerf ⊆⊕ M . Now
(U
⊕
Z) ∩ Y ≤ X ∩ Y � M , so (Z

⊕
U) ∩ Y = 0. Thus we have Y ∩ Z = 0 and

Y
⊕
Z ⊆⊕ M .

Lemma 3.11. LetX be a summand and Y be an indecomposable summand of a pseudo- discrete
module M . Assume that for any two summands D1, D2 with M = D1 + D2, there exists a
homomorphism f ∈ Hom(D1, D2) such that Imf ⊆⊕ M .Then either X + Y ⊆⊕ M and
X ∩ Y = 0 or X + Y = X

⊕
Z with Z �M and Y is isomorphic to a summand of X .

Proof. Let Z be a supplement ofX+Y inM . ThereforeM = Z+X+Y and Z∩(X+Y )� Z.
By (3.10), X ∩ Z = 0. If Y � X

⊕
Z, then Y ∩ (X + Z)� Y and hence Y is a supplement of

X + Z. By (3.10), X ∩ Y = 0 and X
⊕
Y ⊆⊕ M .

If Y ≤ X
⊕
Z, then M = X

⊕
Z.By the modularity condition, X + Y = X

⊕
((X + Y ) ∩ Z)

where Z ∩ (X + Y ) � M . Writing M = Y
⊕
Y ′, we have M = X + Y + Y ′ = X + ((X +

Y ) ∩ Z) + Y ′ = X + Y ′. Since M is an amply supplemented, so by (3.9) M = X ′
⊕
Y ′ where

X ′ is a supplement of Y ′ contained in X . Therefore Y ∼= X ′ which is a summand of X .

Lemma 3.12. Let M be a pseudo-discrete module. Assume that for any two summands D1, D2
with M = D1 +D2, there exists a homomorphism f ∈ Hom(D1, D2) such that Imf ⊆⊕ M . If
M =

∑
i∈I Mi is an irredundant sum of indecomposable submodules Mi, then M =

⊕
i∈I Mi

Proof. It follows from theorem (2.5) and theorem (3.11).

Lemma 3.13. Let M be a pseudo-discrete module with DCC on summands and assume that for
any two summands D1, D2 with M = D1+D2, there exists a homomorphism f ∈ Hom(D1, D2)

such that Imf ⊆⊕ M . Let A and B be two direct summands of M. If
A

X
∼=
B

Y
with X � A and

Y � B, then A ∼= B.

Proof. Since M is a pseudo-discrete module with DCC on summands, so A and B are also
pseudo-discrete modules with DCC on summands. We can write A = Q

⊕
D where Q is a

quasi-projective module andD is a DSF-module (by 2.11). By (2.6), we can writeQ =
⊕

i∈I Hi,
where Hi’s are hollow. Thus A = (

⊕
i∈I Hi)

⊕
D.

Let A′ =
A

X
and B′ =

B

Y
. Let f : A′ → B′ is an isomorphism. Then B′ = f

(
A

X

)
.
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B′ = f

(
A

X

)
⇒B′ = f

(
⊕Hi ⊕D

X

)
⇒B′ = f

(
⊕i∈I

Hi

Hi ∩X
⊕ D

D ∩X

)
⇒B′ =

∑
i∈I

f

(
Hi

Hi ∩X

)
+ f

(
D

D ∩X

)

Consider H ′i = Hi/(Hi ∩X) and D′ = D/(D ∩X). Then we have B′ =
∑

i∈I f(H
′
i)+ f(D′).

Here, f(D′) and D′ are also DSF-modules. Since f is an isomorphism and X � A, so this sum
is irredundant.

Let f(H ′i) = C ′i ≤ B′ for i ∈ I , where C ′i = Ci/(Ci ∩ Y ) with Ci ≤ B. Clearly H ′i ∼= C ′i
and C ′i’s are hollow. Also, f(D′) = E′ ≤ B′ where E′ = E/(E ∩ Y ), E ≤ B. Similarly
D′ ∼= E′ and E′ is itself a DSF-module. It is easy to prove that B =

∑
Ci + E where Ci’s are

hollow and E is a DSF-module. This sum is irredundant.
Since B is lifting, Ci = Bi

⊕
Ki where Bi ⊆⊕ B and Ki � B. Since C ′i’s are hollow, so

either C ′i = Bi/(Bi ∩ Y ) or C ′i = Ki/(Ki ∩ Y ). If C ′i = Ki/(Ki ∩ Y ), then it is easy to show
that Ci � B, which is a contradiction to the fact that B =

∑
Ci + E is irredundant. Therefore,

the only possibility is C ′i = Bi/(Bi ∩ Y ) ∼= (Bi + Y )/Y which implies that Ci = Bi + Y .
Similarly D′ ∼= E′.
Claim: D′ is indecomposable.

If possible, consider D/(D ∩X) ∼= D1/(D1 ∩X)
⊕
D2/(D2 ∩X), implies D = (D1

⊕
D2) + (D ∩X) where D ∩X � D. Therefore D1

⊕
D2 = D. But D is indecomposable in A.

Thus D′ is indecomposable and E′ is indecomposable. Now let E = F
⊕
L where F ⊆⊕ B and

L� B. Since E′ is indecomposable, so either E′ = F/(F ∩ Y ) or E′ = L/(L ∩ Y ). Now it is
easy to show that E′ = L/(L ∩ Y ) is not possible and E = F + Y . Therefore

B =
∑

i∈I Ci +E =
∑

i∈I(Bi + Y ) + (F + Y ) =
∑

i∈I Bi + F .

and this sum is irredundant.
Claim: Each Bi, for i ∈ I , is hollow and F is a DSF-module.
Assume Bi = U+V . Then B′i = Bi/(Bi ∩ Y ) = U/(U ∩ Y )+V/(V ∩ Y ) = U ′+V ′.Then

B′i = U ′ orB′i = V ′. Now it is easy to show thatB′i is hollow for i ∈ I.As F is indecomposable,
so F is an SDSF-module i.e. a DSF-module.

Now using theorem (3.12), we can write B = (
⊕

i∈I Bi)
⊕
F.

Claim: Hi
∼= Bi for i ∈ I and D ∼= F .

Since Hi and Bi are hollow summands of M , so using theorem (3.11), either Hi
∼= Bi or

Hi + Bi is direct and it is a summand of M . For the second case, Hi

⊕
Bi is a pseudo-discrete

module. Using theorem (2.10), there exists an epimorphism αi : Hi → Bi such that the following
diagram is commutative:

[node distance=3cm] (A) Hi; (B) [right of=A] H ′i; (C) [below of=A] Bi; (D) [right of=C] B′i;
[-»] (A)to node (B); [->] (A) to node [left] αi (C); [-»] (C)to node (D); [->] (B) to node [right]

∼= (D);

Since Hi

⊕
Bi is pseudo-discrete and Hi and Bi are hollow, so αi is an isomorphism. Hence

Hi
∼= Bi. Similarly, we can show that D ∼= F .
Therefore,

(
⊕

i∈I Hi)
⊕
D ∼= (

⊕
i∈I Bi)

⊕
F ⇒ A ∼= B.

In [10], the decomposition theorem for pseudo-discrete module has already been prov-
ed. We now restate the decomposition theorem for pseudo-discrete module as follows:
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Theorem 3.14 (Decomposition Theorem). Let M be a pseudo-discrete module with DCC on
summands. Then M =

⊕
i∈I Hi where each Hi is hollow.

Proof. It follows from theorem (2.11) and theorem (3.8).

Theorem 3.15. Let M be a pseudo-discrete module with DCC on summands. Assume that for
any two summands D1, D2 with M = D1+D2, there exists a homomorphism f ∈ Hom(D1, D2)
such that Imf ⊆⊕ M . Then M is a discrete module if and only if every epimorphism M −→M
with small kernel is an isomorphism.

Proof. Let M f−→ M be an epimorphism with small kernel K. Then M/K ∼= M . As M is a
pseudo-discrete module, so K ⊆⊕ M . Let M = K

⊕
L where L is a summand of M . From this

we can conclude that M = L and K = 0. Thus f is a monomorphism, which implies that f is
an isomorphism.

To prove M is discrete,it is enough to show that M is a D2 module. Let N be a submodule
of M such that M/N ∼= K ⊆⊕ M . We need to show that N is also a direct summand of M .

Let f : M → K is an epimorphism with Kerf = N . Since M is lifting, so let M = A
⊕
B

with A� N and B∩N � B. Thus M = N+B and by (2.16), we get N = A
⊕

(B∩N). Now
K ∼= M/N ∼= (N +B)/N ∼= B/(N ∩B). K and B are both summands and N ∩ B � B. By
(3.13), we can write K ∼= B. Let g : N → B be an isomorphism. Then we get an epimorphism
as follows:

M = A
⊕
B

1⊕ f | B−→ A
⊕
N

1⊕ g−→ A
⊕
B =M

where its kernel is B ∩N which is small. Thus B ∩N = 0 and N = A ⊆⊕ M .

Theorem 3.16. Let M be a pseudo-discrete module with DCC on summands. Assume that for
any two summands D1, D2 with M = D1+D2, there exists a homomorphism f ∈ Hom(D1, D2)
such that Imf ⊆⊕ M . If5 = J and End(M)/5 is regular, then M is a discrete module.

Proof. Let f ∈ End(M) be an epimorphism with small kernel. To proveM is a discrete module,
it is enough to show that f is a monomorphism.

Since End(M)/5 is regular, so there exist g ∈ End(M) such that f − fgf ∈ 5. We prove
that f is a monomorphism. Consider (1 − gf)M + A = M . Now f(1 − gf)M + f(A) =
M implies f(A) = M . Thus M = A + Kerf from which we get M = A. Now we have
(1 − gf)M � M.Thus (1 − gf) ∈ 5 = J i.e. 1 − (1 − gf) is unit. This implies that f is a
monomorphism. Thus by (3.15), we can conclude that M is a discrete module.

3.2 (CD)2-modules

Definition 3.17. A module M is said to be a (CD)2-module if for every submodule A,B of M
such that A ∼= C ⊆⊕ M and M/B ∼= D ⊆⊕ M implies A ⊆⊕ M and B ⊆⊕ M .

In short, we can interpret it as a module which is both C2 and D2-module.

Example 3.18. (i) Every endoregular module is a (CD)2-module. To see this, first consider
that M is an endoregular module and A,B are two submodules of M such that A ∼= C ⊆⊕
M and M/B ∼= D ⊆⊕ M . Now, since M is an endoregular module, so A ∼= f(M) where
f2 = f ∈ EndR(M). Let g : f(M) → A be an isomorphism. Then Imgf = gf(M) =
A ⊆⊕ M . Again since M/B ∼= D ⊆⊕ M , there is an f ∈ EndR(M) such that Kerf = B,
a summand of M . But converse is not true. The converse is true if M is a (CD)2-module
and Imf is isomorphic to a direct summand of M for all f ∈ EndR(M). [3, Proposition
2.3].

(ii) Every semi simple module is a (CD)2-module.

(iii) A (CD)2-module is a C2-module, but the converse is not true in general. For example,
Zp∞ is a C2 module but not a (CD)2-module. This example also proves that every injective
module is not a (CD)2−module as Z-module Zp∞ is an injective module.
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(iv) A (CD)2-module is also a D2-module, but the converse is not true in general. For exam-
ple, Z-module Z is a D2-module, but not a (CD)2-module. This example also works for
projective module which is not (CD)2-module.

(v) Submodule of a (CD)2-module need not be a (CD)2-module. For example:Z-module Q
is a (CD)2-module but its submodule Z is not a (CD)2-module. In fact it is not even a
C2-module.

(vi) A module M is called an SSP -module (res. SIP -module) if the sum (res. intersection) of
any two direct summands of M is again a direct summand [10]. Now it is easy to show that
if M is a (CD)2-module, then M is an SSP -module iff M is an SIP−module.

(vii) Direct sum of (CD)2−module need not be a (CD)2-module.

(viii) Fully invariant submodule of a (CD)2-module need not be a (CD)2-module.

Theorem 3.19. Let M be a (CD)2-module over R. Then it satisfies the following properties:

(i) Every direct summand of M is also a (CD)2-module.

(ii) Every submodule A of M with M/A ∼= B ≤M , where B is isomorphic to some summand,
then A is a direct summand of M .

(iii) Every submodule A of M with A ∼= B ≤ M , where B is kernel of some epimorphism
φ : M → C ⊆⊕ M , then A is a direct summand of M .

Proof. (i) ⇒ Consider A is a direct summand of M . Assume A1, B1 are two submodules
of M such that A1 ∼= C and A/B1 ∼= D, where C,D are direct summands of M . Then
(A⊕A′)/(B1 ⊕A′) ∼= D implies B1 ⊕ A′ ⊆⊕ M.Then B1 ⊆⊕ A, which is easy to show.
At the same time, it is also easy to show that A1 ⊆⊕ A.Therefore, clearly A is also a (CD)2
module.

(ii) ⇒ Consider an arbitrary submodule A of M with M/A ∼= B ≤ M and B is isomorphic to
some summand of M . Since M is a (CD)2-module, B is itself a direct summand. But by
D2 condition, A is itself a direct summand.

(iii) ⇒ Consider an arbitrary submodule A of M with A ∼= B ≤ M and φ : M → C ⊆⊕ M .
SinceM is a (CD)2-module,B is a direct summand ofM . ThereforeA is a direct summand
of M .

Remark 3.20. (i) If M is a (CD)2-module, then for any two direct summands A,B of M and
A ∩B = 0 implies M = A1

⊕
B = A

⊕
B1 for submodules A1 ≥ A and B1 ≥ B.

(ii) If M is a (CD)2-module, then for any two direct summands A,B ⊆⊕ M and M = A+B
implies M = A1

⊕
B = A

⊕
B1 for submodules A1 ≤ A and B1 ≤ B.

(iii) If M is a (CD)2-module, then for any two summands A,B ⊆⊕ M and A ∩ B ⊆⊕ M
implies A+B ⊆⊕ M.

(iv) If M be a (CD)2-module, then for any two summands A,B ⊆⊕ M and A + B ⊆⊕ M
implies A ∩B ⊆⊕ M.

(v) (CD)2 +D1 ⇒ Dual Utumi Module.

(vi) (CD)2 + C1 ⇒ Utumi Module.

Proposition 3.21. Let M be a (CD)2-module. Then the following conditions are equivalent:

(i) For any two direct summand A,B ⊆⊕ M and A∩B = 0 implies M = A1
⊕
B = A

⊕
B1

for submodules A1 ≥ A and B1 ≥ B;

(ii) for any two direct summandA,B ⊆⊕ M andM = A+B impliesM = A1
⊕
B = A

⊕
B1

for submodules A1 ≤ A and B1 ≤ B.

Proof. (1) ⇒ (2) A,B ⊆⊕ M such that A ∩ B = 0.Clearly A
⊕
B ⊆⊕ M implies M =

A
⊕
B
⊕
T ,for some T ⊆⊕ M.There are two cases:
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• Case 1: When T is indecomposable, the proof is trivial.

• Case 2: When T is decomposable, M can be written as M = (A
⊕
K1) + (B

⊕
K2) for

some K1,K2 ⊆⊕ M ⇒ M = C
⊕
D,C := A

⊕
K1, D := B

⊕
K2. Then by assumption

there exists C1 := A
⊕
K ′1 such that M = C1

⊕
D = (A

⊕
K ′1)

⊕
(B
⊕

K2) = (A
⊕
K ′1
⊕
K2)

⊕
B = A1

⊕
B with A1 = A

⊕
K ′1
⊕
K2. Similarly there exists

D1 := B
⊕
K ′2 ≤ D such that M = C

⊕
D1 = (A

⊕
K1)

⊕
(B
⊕
K ′2) = (A

⊕
K1
⊕

K ′2)
⊕
B = A

⊕
B1 with B1 = A

⊕
K1
⊕
K ′2

(2) ⇒ (1)Consider A,B ⊆⊕ M with M = A + B. Then A ∩ B ⊆⊕ M implies A \ B
and B \ A are direct summands such that (A \ B) ∩ (B \ A) = 0. By assumption, there exists
C := A ≥ (A \ B) such that M = C

⊕
(B \ A) = A

⊕
B1 with B1 := (B \ A) ≤ B.

Similarly, there exists D := B ≥ (B \ A) such that M = (A \ B)
⊕
D = A1

⊕
B with

A1 := (A \B) ≤ B.

Remark 3.22. Let M be a (CD)2-module and M = A1
⊕
A2. If there is an R-homomorphism

from A1 to A2, then Kerf ⊆⊕ A1 if and only if Imf ⊆⊕ A2.
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