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Abstract. In this study, the necessary and sufficient conditions are provided to form a surface
family on which the alternative partner of any given curve lies as isogeodesic, isoasymptotic
and curvature line by using the vector elements of alternative frame. The conditions for these
surfaces to be minimal and developable are also examined by calculating the first and the second
fundamental forms, and the mean and Gaussian curvatures. Moreover, the idea is discussed for
the family of ruled surfaces defined with the alternative frame, as well. Finally a set of examples
are given with the illustrations of corresponding surfaces.

1 Introduction

In Euclidean space, geodesics are special curves which describe the shortest paths between two
points on a given surface. In other words, they take the role of straight lines on planes. According
to the general relativity theory going back to the beginning of 20th century, Einstein integrated
time as an another dimension with the three dimensional space and introduced the concept of
space-time. The theory states that a freely falling particle bends the surrounding space propor-
tional to its mass and it follows all along the geodesic paths [20]. Asymptotic curves, on the
other hand, is another special type of curves used in astronomy, astrophysics, and architectural
designs. Contopoulous [9] showed in his study that the motions of stars escaping from a galaxy
can be found by the asymptotic curves of Lyapunov orbits, and he defined the orbit sets of escap-
ing stars on asymptotic curves with some initial conditions. The asymptotic curves have also a
great potential use of architectural designs, especially in modeling grid structures [19]. Another
special characteristic for a curve is to be the curvature line on a given surface. The curvature lines
have been of interest to researchers for many years, and they have especially been used for the
process of extracting information from geometrical objects which is known in short as shape in-
terrogation. Such characteristics of curves are determined based on an orthonormal basis settled

Figure 1. The view of geodesic curves, asymptotic curves and curvature lines on surfaces
(adapted from [19])

at a point and moving all along the curve which is known as Frenet frame. To feature new aspects
on curves, researchers defined other frames by following the same idea. One of those is known



FAMILY OF SURFACES WITH ALTERNATIVE PARTNER CURVE 465

to be the alternative frame which was first introduced by Uzunoğlu et al. [25]. They denoted
the elements of the new frame as {N, C, W} where N is the normal vector, W is the Darboux
vector and C is defined to be the vector product of N and W . In [17], Özdoğan, established
the transitional relations between Frenet frame and alternative frame, and identified new curves
depending on some associations among the vector elements of this alternative frame. Similarly,
Kaya and Önder [12] studied the alternative frame to generate new special curves. They intro-
duced CN∗ partner curves whereas Yılmaz and Has [27] defined WC∗ partner curves. Both
studies provided some characteristics for these new partner curves. Moreover, Şenyurt [21] de-
fined the Darboux vector as the instantaneous rotational axis for the alternative frame.
Apart from these, another important subject of the differential geometry is to characterize curves
on a given surface. However, characterizing a curve to be as geodesic, asymptotic or a curvature
line on the surface was first questioned in a reverse approach by Wang et al. [26]. They defined
the ways to parameterize surfaces which possess a given curve as geodesic. Providing such an
insight into, Li et al. [13] gave the parametric representations for the surfaces that have a given
curve as a curvature line. Likewise, Bayram et al. [7] constructed the surface family with a com-
mon asymptotic curve. With the help of the procedure on generating such new surface families,
researchers began to examine the methods to construct new surfaces with some specific curves
lying on the surface as geodesic, asymptotic or curvature line ( [1–6, 8, 22–24]). By this study,
we construct the parametric representations of the family of surfaces with a common alternative
partner curve as of each geodesic, asymptotic and curvature line. We first recall some basic con-
cepts regarding to alternative frame in Section 2. Then, in Section 3, by referring the alternative
frame, the necessary and sufficient conditions are provided to form such surfaces, which is the
main objective of this paper. The fundamental forms and the curvatures of the constructed sur-
faces are also examined in this section. Section 4 is comprised of the same process for the ruled
surfaces. The necessary and sufficient conditions for these ruled surfaces to be minimal and de-
velopable are provided, as well. In addition, some examples of surfaces with their corresponding
graphs are given in section 4. Finally, we summarize the paper and touch upon the potentials of
generated surfaces, briefly, in Section 5.

2 Preliminaries

Let us recall some basic concepts which will be used throughout the paper.
Let α(s) : I ⊂ R → R3, s ∈ I be a curve at least twice differentiable in the three dimen-
sional Euclidean space E3. The general forms of Frenet vectors and formulae are given as

T (s) =
α′(s)

‖α′(s)‖
, B(s) =

α′(s)× α′′(s)
‖α′(s)× α′′(s)‖

, N(s) = B(s)× T (s), (2.1)

κ =
‖α′ × α′′‖
‖α′‖3 , τ =

〈α′ × α′′, α′′′〉
‖α′ × α′′‖2 , (2.2)

T ′ = κνN, N ′ = −κνT + τνB, B′ = −τνN, (2.3)

where ν = ‖α′‖, κ is the curvature and τ is the torsion of the curve [16]. At every point s on the
curve α the Frenet vectors has an instantaneous rotation of axis on the direction of a vector. This
vector is called as Darboux vector and formulated by the following

W̃ = τT + κB. (2.4)

If θ = ∠(W̃ ,B), then the unit Darboux vector can be written as

W =
τT + κB√
κ2 + τ 2

= sin θT + cos θB, (2.5)

where κ =
∥∥W̃∥∥ cos θ, τ =

∥∥W̃∥∥ sin θ [10]. By using the vector product of N and W , the unit
vector C can be given as

C =
−κT + τB√
κ2 + τ 2

= − cos θT + sin θB. (2.6)
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Such an orthonormal frame with the elements of {N, C, W} is called as the alternative frame
[25]. The transitions between the vectors of alternative frame and their derivatives are as follows:

N ′ = fC, C ′ = −fN + gW, W ′ = −gC, (2.7)

where
f = κ

√
1 + h2, h =

τ

κ
, g = σf, σ =

h′

κ(1 + h2)
3/2 . (2.8)

If h is constant, then the curve α is a helix and if σ is a constant then α is known to be a slant
helix [11]. Let us take α and α∗ as two regular unit speed space curves with the corresponding
Frenet apparatus {T,N,B, κ, τ} and {T ∗, N∗, B∗, κ∗, τ∗}, respectively.
Denote by {N,C,W}, f, g, and {N∗, C∗,W ∗}, f∗, g∗, as the alternative moving frame and the
alternative curvatures of the given curves in respective order. Then, the curves α and α∗ are
named as WC∗ -partner curves if the vector W of α coincides with the vector of C∗ of α∗ [27].
Thus the relations between two curves can be established by

α∗(s) = α(s) + λ(s)W (s),

where λ(s) is known to be the distance function and defined to be as λ(s) =
κ(s)

f(s)g(s)
. Since W

and C∗ are assigned to be equal, if ω = ω(s) is taken to be the angel between the vectors N and
W ∗ (i.e. ω = ∠(N,W ∗) ), the corresponding relations of alternative frames are given by N∗

C∗

W ∗

 =

 sinω cosω 0
0 0 1

− cosω sinω 0


 N

C

W

 ,

where ω =

∫ s

0
f(s)ds.

Now let us consider the surface ψ = ψ(s, v) on which the curve α∗ lies. If the normal curvature
is zero in the direction of the velocity vector α∗′(s), then α∗ is called to be as asymptotic curve
on the surface. On the other hand, the curve α∗ is named as geodesic if the acceleration vector
α∗′′ is parallel to the normal of surface [15]. Another specific curve on a surface is the line of
curvature. A curve is said to be the line of curvature on a surface if the surface normals along
that curve form a developable surface [14]. Moreover, if ψ(s, v0) = α∗(s) where v0 is constant,
then α∗ is named as isoparametric curve, and if α∗ is both isoparametric and asymptotic (or
geodesic), then it is called as isoasymptotic (or isogeodesic), respectively [7, 13, 26].
The first and second fundemental forms of the surface ψ = ψ(s, v) are

I = Eds2 + 2Fdsdv +Gdv2,

II = Lds2 + 2Mdsdv +Ndv2,
(2.9)

where the coefficients are calculated by

E = 〈ψs, ψs〉 , F = 〈ψs, ψv〉 , G = 〈ψv, ψv〉 ,
L = 〈ψss, n〉 , M = 〈ψsv, n〉 , N = 〈ψvv, n〉 .

(2.10)

The Gauss and the mean curvatures of the surface are given as:

K =
LN −M2

EG− F 2 , H =
EN − 2FM +GL

2 (EG− F 2)
. (2.11)

Moreover, a surface is called as ruled if it is formed with the locus of straight lines x(s) moving
along the curve α∗(s). The parametric representation is as follows:

∆(s, v) = α∗(s) + vx(s). (2.12)

In order for a ruled surface to be developable, the following relation must hold [18]:

det(α∗′, x, x′) = 0. (2.13)
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3 Family of Surfaces with a Common Alternative Partner Curve as
Asymptotic, Geodesic and Curvature Line

Let us denote the set of vectors {N∗, C∗,W ∗} as the alternative frame of α∗(s) which lies on
the surface ψ(s, v). It is of interest for us to determine the conditions such that α∗ is geodesic,
asymptotic and curvature line on ψ expressed by the alternative frame. Therefore we first pa-
rameterize the surface with the components of alternative frame as below:

ψ(s, v) = α∗(s) + x(s, v)N∗(s) + y(s, v)C∗(s) + z(s, v)W ∗(s). (3.1)

Here, x(s, v), y(s, v) and z(s, v) are known to be differentiable marching scale functions.

Theorem 3.1. The necessary and sufficient conditions for α∗ to be isogeodesic and isoasymptotic
on ψ are

x(s, v0) = y(s, v0) = z(s, v0) =
∂x(s, v0)

∂v
= 0,

∂y(s, v0)

∂v
= β(s) sin θ∗,

∂z(s, v0)

∂v
= β(s) cos θ∗,

(3.2)

and

x(s, v0) = y(s, v0) = z(s, v0) = 0,

∂x(s, v0)

∂v
6= 0, (3.3)

∂y(s, v0)

∂v
= −β(s) cos θ∗,

∂z(s, v0)

∂v
= β(s) sin θ∗,

respectively.

Proof. From the definition of isoparametric curve and by referring the relation (3.1), we have
x (s, v0) = y (s, v0) = z (s, v0) = 0, for a constant v = v0. On the other hand, the normal to ψ
denoted by n can be calculated as

~n(s, v0) =
∂ψ(s, v)

∂s
× ∂ψ(s, v)

∂v

=

(
− cos θ∗

∂z(s, v0)

∂v
− sin θ∗

∂y(s, v0)

∂v

)
N∗

+ sin θ∗
∂x(s, v0)

∂v
C∗ + cos θ∗

∂x(s, v0)

∂v
W ∗.

In order for α∗ to be geodesic on ψ, by definition, the normal vector N of α∗ must be a scalar
multiple of n. Therefore we can write

− cos θ∗
∂z(s, v0)

∂v
− sin θ∗

∂y(s, v0)

∂v
6= 0

and

sin θ∗
∂x(s, v0)

∂v
= cos θ∗

∂x(s, v0)

∂v
= 0.

By using trigonometric identities and referring an arbitrary function β(s) 6= 0, we may simply
rearrange the formulations given above as following:

∂x(s, v0)

∂v
= 0,

∂y(s, v0)

∂v
= β(s) sin θ∗,

∂z(s, v0)

∂v
= β(s) cos θ∗.

Now, by recalling the asymptoticity condition, it is clear to state that the binormal vector of α∗
is parallel to the normal vector of ψ. By using the relationships between the Frenet frame and
alternative frame given in [17], we first write

B∗ = sin θ∗C∗ + cos θ∗W ∗. (3.4)
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Then, since B∗ ‖ n, we have

cos θ∗
∂z(s, v0)

∂v
+ sin θ∗

∂y(s, v0)

∂v
= 0,

∂x(s, v0)

∂v
6= 0.

Similarly, we may reform the above relations with β(s) 6= 0 as

∂x(s, v0)

∂v
6= 0,

∂y(s, v0)

∂v
= −β(s) cos θ∗,

∂z(s, v0)

∂v
= β(s) sin θ∗.

This completes the proof.

Theorem 3.2. The necessary and sufficient conditions for α∗ to be a curvature line on the surface
ψ are

x(s, v0) = y(s, v0) = z(s, v0) = 0, γ = −
∫
f∗(s) sin θ∗ds, µ(s) 6= 0,

cos γ = −µ(s)
(

cos θ∗
∂z(s, v0)

∂v
+ sin θ∗

∂y(s, v0)

∂v

)
,

sin γ = µ(s)
∂x(s, v0)

∂v
.

Proof. Let us denote η(s) as the orthogonal vector field of the surface ψ embedded with the
curve α∗. By the definition of curvature line, η(s) ∈ Sp{N∗, B∗}. If γ = ](η(s), N∗), then

η(s) = cos γN∗(s) + sin γB∗(s).

Substituting the relation (3.4) into the last expression results

η(s) = cos γN∗(s) + sin γ sin θ∗C∗(s) + sin γ cos θ∗W ∗(s).

Now, by recalling the two fold conditions for a curve to be a curvature line, we consider first
η(s) ‖ n(s, v0). This results the following relations

− cos γ

cos θ∗ ∂z(s,v0)
∂v + sin θ∗ ∂y(s,v0)

∂v

=
sin γ sin θ∗

sin θ∗ ∂x(s,v0)
∂v

=
sin γ cos θ∗

cos θ∗ ∂x(s,v0)
∂v

= µ(s).

With some algebraic manipulations, we have

cos γ = −µ(s)
(

cos θ∗
∂z(s, v0)

∂v
+ sin θ∗

∂y(s, v0)

∂v

)
,

sin γ = µ(s)
∂x(s, v0)

∂v
.

Second, the surface defined as Φ(s, t) = α∗(s) + tη(s) must be developable that is to say that
det(α∗′, η, η′) = 0. We calculate each component as

α∗′ =− cos θ∗C∗ + sin θ∗W ∗,

η(s) = cos γN∗ + sin γ sin θ∗C∗ + sin γ cos θ∗W ∗,

η′(s) = (−γ′ sin γ − f∗ sin γ sin θ∗)N∗

+ (f∗ cos γ + γ′ cos γ sin θ∗ + κ∗ sin γ cos θ∗ − g∗ sin γ cos θ∗)C∗

+ (γ′ cos γ cos θ∗ − κ∗ sin γ sin θ∗ + g∗ sin γ sin θ∗)W ∗.

Finally, the result of the determinant is given as:

det(α∗′, η, η′) = 0⇒ γ′ + f∗ sin θ∗ = 0

⇒ γ = −
∫
f∗ sin θ∗ds,

which completes the proof.
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Theorem 3.3. The first and the second fundamental forms together with the Gauss and mean
curvatures of ψ = ψ(s, v) embedded with the curve α∗ are

I = ds2 + 2
(
−∂y
∂v

cos θ∗ +
∂z

∂v
sin θ∗

)
dsdv +

((
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2
)
dv2,

II = −κ∗Ads2 +

(
A

(
f∗
∂y

∂v
− ∂2x

∂s∂v

)
+ (B+C)

∂x

∂v

)
dsdv

+

(
−∂

2x

∂2v
A+

∂x

∂v

(
sin θ∗

∂2y

∂2v
+ cos θ∗

∂2z

∂2v

))
dv2,

K =
κ∗A2 ∂2x

∂2v
− κ∗A

(
sin θ∗ ∂

2y
∂2v

+ cos θ∗ ∂
2z
∂2v

)
−
(
A
(
f∗ ∂y∂v −

∂2x
∂s∂v

)
+ (B+C) ∂x∂v

)2

(
∂x
∂v

)2
+A2

,

H =

−∂
2x
∂2v

A+ ∂x
∂v

(
sin θ∗ ∂

2y
∂2v

+ cos θ∗ ∂
2z
∂2v

)
− κ∗A

((
∂x
∂v

)2
+
(
∂y
∂v

)2
+
(
∂z
∂v

)2
)

−2
(
−∂y∂v cos θ∗ + ∂z

∂v sin θ∗
)(

A
(
f∗ ∂y∂v −

∂2x
∂s∂v

)
+ (B+C) ∂x∂v

)
2
((

∂x
∂v

)2
+A2

) ,

where A, B and C are

A = cos θ∗
∂z

∂v
+ sin θ∗

∂y

∂v
, B = cos θ∗

∂y

∂v
− sin θ∗

∂z

∂v
,

C =

(
f∗
∂x

∂v
+

∂2y

∂s∂v

)
sin θ∗ +

∂2z

∂s∂v
cos θ∗.

Proof. We recall the coefficients given in (2.10) and calculate them as follows:

E = 〈ψs, ψs〉 = 1, F = 〈ψs, ψv〉 = −
∂y

∂v
cosθ∗ +

∂z

∂v
sinθ∗,

G = 〈ψv, ψv〉 =
(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

,

L = 〈ψss, ψs × ψv〉 = −κ∗A,

N = 〈ψvv, ψs × ψv〉 = −
∂2x

∂2v
A+

∂x

∂v

(
sin θ∗

∂2y

∂2v
+ cos θ∗

∂2z

∂2v

)
,

M = 〈ψsv, ψs × ψv〉 = A

(
f∗
∂y

∂v
− ∂2x

∂s∂v

)
+ (B+C)

∂x

∂v
.

By substituting these relations into both (2.9) and (2.11), we complete the proof.

Corollary 3.4. If α∗ is isogeodesic on ψ then its Gaussian and mean curvatures are given by

K = (f∗β(s) sin θ∗)2
, H = −1

2
κ∗β(s),

respectively.

Corollary 3.5. If α∗ is isoasymptotic on ψ then its Gaussian and mean curvatures are given by

K = −
(
f∗
∂x

∂v
sin θ∗ + β(s)θ∗′ − β(s)

)2

,

H = −β(s)
(
f∗
∂x

∂v
sin θ∗ + β(s)θ∗′ − β(s)

)(
∂x

∂v

)−1

,

respectively.
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4 Ruled Surfaces with a Common Isogeodesic and Isoasymptotic Curve by
Alternative Frame

The parametric form of the ruled surface accepting α as the base curve can be written

ψ(s, v) = α∗(s) + (v − v0)R(s). (4.1)

By considering the relations (3.1) and (4.1), we have

x(s, v)N∗(s) + y(s, v)C∗(s) + z(s, v)W ∗(s) = (v − v0)R(s). (4.2)

The inner production of the above by N , C and W results

x(s, v) = (v − v0) 〈R,N∗〉 ,
y(s, v) = (v − v0) 〈R,C∗〉 , (4.3)

z(s, v) = (v − v0) 〈R,W ∗〉 .

Now, consider the conditions given in Theorem 3.1. First, by using the relations (3.2), the family
of ruled surfaces with a common isogeodesic curve can be given as

ψigr(s, v) = α∗(s) + (v − v0)β(s) (sin θ∗C∗ + cos θ∗W ∗) , β(s) 6= 0. (4.4)

Second, when we refer the relations given at (3.3), we obtain the parametrization for the family
of ruled surfaces with a common isoasymptotic curve as

ψiar(s, v) = α∗(s) + (v − v0) (x(s)N
∗ − β(s)cosθ∗C∗ + β(s)sinθ∗W ∗) , (4.5)

where x(s), β(s) 6= 0.

Corollary 4.1. The necessary and sufficient condition for the ruled surface with a common iso-
geodesic curve to be developable is that f∗sinθ∗ = 0. However, since f∗, θ∗ 6= 0, there is no a
developable ruled surface with a common isogeodesic curve.

Corollary 4.2. The necessary and sufficient condition for the ruled surface with a common
isoasymptotic curve to be developable is

g∗β(s) + θ∗′β(s)sin2θ∗ = θ∗′β(s) + f∗x(s) sin θ∗.

Example 4.3. Let us consider the slant helix curve given by the following parametrization

α(s) =

(
−cos(3s)

12
− 3 cos(s)

4
, −sin(3s)

12
− 3 sin(s)

4
, −
√

3
2

cos(s)

)
.

The corresponding curvatures of α can be easily computed as

κ(s) =
√

3 cos(s), τ(s) =
√

3 sin(s), f =
√

3, g = 1.

We also note that θ = arctan
( τ
κ

)
= s.

Now, recall the distance function λ(s) =
κ(s)

f(s)g(s)
= −cos(s). Since α∗ is the WC∗ alternative

partner curve of α, the parametrization can alternatively be given as

α∗(s) = α(s)− cos(s)W (s).

Thus, we reach the parametric equation for the alternative partner curve as

α∗ =

(
1
3
(
2cos2(s)− 3

)
cos (s) ,−

2
3

sin3(s),−
√

3 cos (s)
)
,
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and curvature functions as

κ∗(s) =
1

2sin(s)
, τ∗(s) =

√
3

2 sin(s)
, f∗ =

1
sin(s)

, g∗ = 0.

After this line, throughout the example section, we will choose specific marching scale functions
that satisfy the corresponding conditions on the following parametric form for the surface ψ(s, v)
defined by

ψ(s, v) = α∗(s) + x(s, v)N∗(s) + y(s, v)C∗(s) + z(s, v)W ∗(s).

• First, in order for α∗ to be geodesic on the surface ψ(s, v), we choose the set of marching
scale functions as

x(s, v) = v2, y(s, v) = v sin(θ∗), z(s, v) = v cos(θ∗) and v0 = 0,

where θ∗ = arctan( τ
∗

κ∗ ). Fig. 2 illustrates this surface ψ.

(a) default orientation (b) oriented to z-axis

Figure 2. The surface ψ with a common geodesic curve α∗ from different angles

• Second, in order for α∗ to be asymptotic on the surface ζ(s, v), we use the following set of
marching scale functions

x(s, v) = v, y(s, v) = −v cos(θ∗), z(s, v) = v sin(θ∗) and v0 = 0.

The graph of the surface ζ is given in Fig. 3.

(a) default orientation (b) oriented to z-axis

Figure 3. The surface ζ with a common asymptotic curve α∗ from different angles
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• Third, by choosing the scale functions as x(s, v) = v sin(γ(s)), y(s, v) = v2,

z(s, v) = −v cos(γ(s))
cos(θ∗)

, v0 = 0, µ(s) = 1 where γ(s) = −
∫
f∗cos(θ∗)ds,

we can form the surface φ with a common alternative partner curve as a curvature line (see
Fig. 4).

(a) default orientation (b) oriented to z-axis

Figure 4. The surface φ with a common curvature line α∗ from different angles

• Similar to the previous ones but for the ruled surface with a common isogeodesic partner
curve α∗, we choose x(s) = 0, β(s) = s2, v0 = 0. Fig. 5 corresponds to the surface χ.

(a) default orientation (b) oriented to z-axis

Figure 5. The ruled surface χ with a common geodesic curve α∗ from different angles

• Lastly, for the ruled surface with a common isoasymptotic partner curve α∗, we choose
x(s) = s, β(s) = s2, v0 = 0. The graph of this surface Γ is given in Fig. 6.
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(a) default orientation (b) oriented to z-axis

Figure 6. The ruled surface Γ with a common asymptotic curve α∗ from different angles

5 Conclusion

Curves and surfaces have been the subject of many different fields, not only in terms of theo-
retical perspective but also in terms of their possible applications. For this reason, in this study,
we have introduced a way of generating new surface family where the alternative partner curve
of a given curve has a specific characteristic on the surface. Then, we have provided the re-
quired conditions for these surfaces to be developable and minimal, as well. It is for sure that
the constructed surfaces may have the potential to be used in related fields, and also providing
their mathematical language may enable researchers to easily adapt these to the computational
area. Researchers may also benefit from this paper and apply other orthonormal frames rather
than alternative frame to generate new kinds of surfaces with some other distinct marching scale
functions satisfying some different conditions corresponding to that frame. Moreover, this study
can be extended by considering different space forms.
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[1] G. Ş. Atalay and E. Kasap, Surfaces family with common null asymptotic. Applied Mathematics and

Computation 260, 135–139 (2015).
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[3] G. Ş. Atalay and E. Kasap, Surfaces family with common Smarandache geodesic curve, Journal of Science
and Arts 17(4), 651–664 (2017).
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[6] K. H. Ayvacı and G. Ş. Atalay, Surface Family With A Common Bertrand-B Isogeodesic Curve, Journal
of the Institute of Science and Technology 10(3), 1975–1983 (2020).

[7] E. Bayram, F. Güler and E. Kasap, Parametric representation of a surface pencil with a common asymp-
totic curve, Computer-Aided Design 44(7), 637-–643 (2012).

[8] E. Bayram and M. Bilici, Surface family with a common involute asymptotic curve, International Journal
of Geometric Methods in Modern Physics 13(5), 1650062 (2016).

[9] G. Contopoulos, Asymptotic curves and escapes in Hamiltonian systems, Astronomy and Astrophysics
231, 41–55 (1990).

[10] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bulletin of American Mathematical
Society 57, 44–54 (1951).

[11] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28, 153–163
(2004).
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[17] S. Özdoğan, O. Tuncer, İ. Gök and Y. Yaylı, Some new types of associated curves in Euclidean 3-space,
Analele Universitatii "Ovidius" Constanta-Seria Matematica 26(1), 205–221 (2018).

[18] B. Ravani and T. S. Ku, Bertrand Offsets of Ruled and Developable Surfaces, Comput Aided Geom Design
23(2), 145–152 (1991).

[19] E. Schling, D. Hitrec and R. Barthel, Designing grid structures using asymptotic curve networks, In Hu-
manizing Digital Reality Springer Singapore 125–140 (2018).

[20] B. Schutz, A first course in general relativity, Cambridge University press (2009).
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[23] S. Şenyurt, K. H. Ayvacı and D. Canlı, Family of Surfaces with A Common Mannheim D- Isoasymptotic
Curve Ordu Univ. J. Sci. Tech. 10(2), 143–153 (2020).

[24] S. Şenyurt, K. H. Ayvacı and D. Canlı, Family of Surfaces with a Common Special Involute and Evolute
Curves, International Electronic Journal of Geometry 15(1), 160–174 (2022).
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