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Abstract
Many autors have proposed Integral Basis of Biquadratic Number Fields, in 1984 Funakura was
interested in Quartic Number Fields. D. Marcus in his book 1977, using the Dirichlet theorem
proposed a theoretical method for Integral Basis of Number Field of degree n. In this paper
using an other method, we will show the integral Basis of Quartic Number K = Q( 4

√
p). where

p is any prime number.

1 Introduction

Let K be a number field of degree n and let R be the ring of integers of K. R is a free Z-module
of rank n.[4]. We call an integral basis of K any basis of the Z-module R. It is known how to
determine explicitly an integral basis of K, in the following cases : K = Q(

√
m)m ∈ Z without

quadratic factor), K = Q( 3
√
m) (m natural number without cubic factor), K cyclotomic field...

For the case n = 4, several authors have determined an integral basis of K ([1], [2], [5] ...).
For the general case, Daniel A.Marcus[3] gives a theoretical method for determining an integral
basis of K. Using the Marcus method, we propose to determine explicitly an integral basis of
K = Q( 4

√
p) where p is a prime number.

.

Theorem 1.1. [3]

LetK = Q(α) be a number field of degree n where α is an algebraic integer ofK. Then there
is an integral basis (1, f1(α)

d1
, ...,

fn−1(α)
dn−1

) where di are in Z and satisfying d1 | d2 | ... | dn−1, the
fi are monic polynomials over Z and fi has degree i, the di are uniquely determined.

Proposition 1.2.

With the same notations of the theorem1.1, we have

1) disc(α) = (d1d2...dn−1)2disc(R), R is the integer ring of K.

2) if i+ j 6 n then didj | di+j
3) for any i 6 n we have : di1 | di

4) dn(n−1)
1 | disc(α)

5) The fi can be replaced by any other monic polynomials gi ∈ Z[X] such that gi has degree i
and all gi(α)di

are algebraic integers.

Lemma 1.3.

Using the same notations of the theorem1.1, put for every i (1 6 i 6 n − 1) fi=Xi +∑i−1
j=0 ajiX

j

For any i (1 6 i 6 n− 1) and any j (0 6 j 6 i− 1) let qji and rji respectively be the quotient
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and the remainder of the euclidean division of aji by di and let gi = Xi +
∑i−1
j=0 rjiX

j . Then
fi(α)
di

is an algebraic integer if and only if gi(α)di
is an algebraic integer, Let t (0 6 t 6 i− 1) and

hi =Xi+
∑i−1
j=0 bjX

j for where any j 6= t, bj = aji and bt = ati+ δdi and δ = ±1. Then fi(α)
di

is an algebraic integer if and only if hi(α)
di

is an algebraic integer.
We annonce the main result :

Theorem 1.4.

Let p be a prime number, ω = 4
√
p and K= Q(ω) :

1 If p = 2 or p ≡ 3 mod 4 then B = [1, ω, ω2, ω3] is an integral basis of K.

2 If p ≡ 5 mod 8 then B = [1, ω, 1
2(ω

2 − 1), 1
2(ω

3 − ω)] is an integral basis of K.

3 If p ≡ 1 mod 8 then B = [1, ω, 1
2(ω

2 − 1), 1
4(ω

3 − ω2 + ω − 1)] is an integral basis of K.

Proof Using the theorem1.1, K have an integral basis with the form
[1; f1(ω)

d1
; f2(ω)

d2
; f3(ω)

d3
]

We will determine explicitly d1, d2 , d3 , f1, f2 and f3 , we will use the previous lemma.
we have : disc(ω) = −28p3 .
By proposition we have d12

1 divides disc(ω), we conclude that d1 = 1 for any p.
As ω is an algebraic integer, we take f1(ω) = ω for any p.
Then we determine the possible values of di. and we will start by the case : p > 3.

2 Determination of d2

From the proposition we have d2
4 divides 28p3

We conclude that d2 ∈ {1, 2, 4}
We suppose γ = ω2+aω+b

d2
with a and b are integer numbers satisfying : 0 6 a, b < d2.

γ is an algebraic integer ofK if and only if there are rational integers x, y, z, and t satisfying
: γ4 + xγ3 + yγ2 + zγ +t = 0. (E1)

By replacing γ in (E1), reducing to the same denominator and using that (1, ω, ω2, ω3) is
Q-libre. We obtain the system :

(S)



a(a2 + 6b)d2x+ 2ad2
2y + 12ab2 + 4a3b+ 4pa = 0 (1)

(3a2b+ 3b2 + p)d2x+ (a2 + 2b)d2
2y + d3

2z + 4b3

+6a2b2 + 6a2p+ 4bp = 0 (2)

(3ab2 + 3ap)d2x+ 2abd2
2y + ad3

2z + 4ab3 + 4a3p

+12abp = 0 (3)

(b3 + 3a2p+ 3bp)d2x+ (b2 + p)d2
2y + bd3

2z + d4
2t

+b4 + 12a2bp+ a4p+ 6b2p+ p2 = 0 (4)
- If a 6= 0 the system (S) becomes :

(S1)



(a2 + 6b)d2x+ 2d2
2y + 12b2 + 4a2b+ 4p = 0 (1)

(3a2b+ 3b2 + p)d2x+ (a2 + 2b)d2
2y + d3

2z

+4b3 + 6a2b2 + 6a2p+ 4bp = 0 (2)

(3b2 + 3p)d2x+ 2bd2
2y + d3

2z + 4b3 + 4a2p+ 12bp = 0 (3)

(b3 + 3a2p+ 3bp)d2x+ (b2 + p)d2
2y + bd3

2z + d4
2t+ b4

+12a2bp+ a4p+ 6b2p+ p2 = 0 (4)

2.1 Case d2 = 4

i) If a = 0



Integral bases of some families of quartic number fields. 477

We suppose β = ω2+b
4 =

√
p+b
4 with b ∈ {0, 1, 2, 3}.

β is an algebraic integer if and only if there are u, v ∈ Z such that : β2 + uβ + v = 0.
Using

{
1,√p

}
is Q-libre, we obtain u = −b

2 and v = b2−p
16 . As u, v ∈ Z we have 2 divides

b and 4 divides p, which is impossible because p is a prime number. Then β = ω2+b
4 is not an

algebraic integer.

ii) If a 6= 0.

In this case the system S1 becomes :

(a2 + 6b)x+ 8y + p+ 3b2 + a2b = 0 (1)

(3a2b+ 3b2 + p)2x+ (a2 + 2b)8y + 32z + 2b3 + 3a2b2 + 3a2p+ 2bp = 0 (2)

(3b2 + 3p)x+ 8by + ad3
2y + b3 + a2p+ 3bp = 0 (3)

(b3 + 3a2p+ 3bp)4x+ (b2 + p)16y + b43z + 44t+ b4 + 12a2bp+ a4p+ 6b2p+ p2 = 0(4)
By solving this system we obtain :

x = −b
y = 3b2−p

8

z = bp−b3−a2p
16

t = b4+p2+4a2bp−a4p−2b2p
256

We give in the table Tab1 the values of x, y, z and t for different values of a ∈ {1, 2, 3} and
b ∈ {0, 1, 2, 3}.

Tab1

(a, b) x y z t
(1,0) 0 −p

8
−p
16

p(p−1)
256

(1,1) −1 3−p
8

−1
16

p2+p+1
256

(1,2) −2 12−p
8

p−8
16

p2−p+16
256

(1,3) −3 27−p
8

2p−27
16

p2−7p+81
256

(2,0) 0 −p
8

−p
4

p2−16p
256

(2,1) −1 3−p
8

−3p−1
16

(p−1)2

256

(2,2) −2 12−p
8

−p−4
8

(p+4)2

256

(2,3) −3 27−p
8

−p−27
16

p2+14p+81
256

(3,0) 0 −p
8

−9p
16

p(p−81)
256

(3,1) −1 3−p
8

−8p−1
16

p2−47p+1
256

(3,2) −2 12−p
8

−7p−8
16

(p−4)2

256

(3,3) −3 27−p
8

−6p−27
16

p2−9p+81
256

None of the 12 cases of (x, y, z, t) is possible. We conclude that d2 6= 4 .

2.2 Case d2 = 2

- If d2 = 2 the system S1 becomes :

(a3 + 6ab)x+ 4ay + 6ab2 + 2a3b+ 2ap = 0 (1)

(3a2b+ 3b2 + p)x+ (a2 + 2b)y + 4z + 2b3 + 3a2b2 + 3a2p+ 2bp = 0 (2)

(3ab2 + 3ap)x+ 4aby + 4az + 2ab3 + 2a3p+ 6abp = 0 (3)

2(b3 + 3a2p+ 3bp)x+ 4(b2 + p)y + 8bz + 16t+ b4 + 12a2bp+ a4p+ 6b2p+ p2 = 0(4)
with a, b ∈ {0, 1}
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i) a = b = 0.

(E1) becomes :

 px+ 4z = 0 (1)

4py + 16t+ p2 = 0(2)
from equation (2), 4 divides p, which is impossible.

ii) a = 0 and b = 1. We have α = ω2+1
2 =

√
p+1
2 . α is an algebraic integer if and only if

p ≡ 1mod4.

iii) a = 1 and b = 0.

The resolution of the system (S1) gives :


x = 0
y = −p

2
z = −p

2

t = p2−p
16

But this solution is not in Z4, so

α = ω2+ω
2 is not an algebraic integer.

iv) a = b = 1.

By resolving (S3) we obtain :


x = −2
y = 3−p

2
z = −1

2

t = p2+p+1
16

Observing that x = −2, y = 3−p
2 , z = −1

2 , t = p2+p+1
16 /∈ Z4 , we can deduce that α = ω2+ω+1

2 is
not an algebraic integer.

Conclusion1: If p ≡ 1mod4 we have d2 = 2.

2.3 Case d2 = 1.

From the previous paragraph, if p ≡ 3mod4 we have d2 = 1.

3 Determination of d3

We suppose γ = ω3 +aω2 + bω+ c. and α = ω3+aω2+bω+c
d3

, α is an algebraic integer if and only
if the rational integers x, y, z and t exist

such that : α4 + xα3 + yα2 + zα +t = 0
γ4

d4
3
+ xγ

3

d3
3
+ y γ

2

d2
3
+ γ

d3
α +t = 0

We reduce to the same denominator and simplify by 1
d4

3
, we obtain :

γ4 + xd3γ
3 + yd2

3γ
2 + zd3

3γ +td4
3 = 0

We replace in this equation γ by its expression and using that
{

1, ω, ω2, ω3
}

is Q-libre, we
obtain the following system (S)
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(3a2p+ 3bp+ 6abc+ b3 + 3c2)d3x+ (2bc+ 2c)d2
3y + d3

3z + 4ap2 + 12bcp
+12a2cp+ 12ab2p+ 4c3 + 4a3bp+ 12abc2 + 4b3c = 0 (1)

(6abp+ 3cp+ a3p+ 3b2c+ 3ac2)d3x+ (b2 + 2ac+ p)d2
3y + ad3

3z + 6a2p2

+6a2b2 + 4bp2 + 24abcp+ 4b3p+ 6c2p+ 6a2b2p+ 4a3cp+ 4ac3 + 6b2c2 = 0 (2)

(3b2p+ 6acp+ 3a2bp+ 3bc2 + p2)d3x+ (2ap+ 2bc)d2
3y + bd3

3z + 12abp2

+4cp2 + 12b2cp+ 4a3p2 + 12ac2p+ 12a2bcp+ 4ab3p+ 4bc3 = 0 (3)

(3ap2 + 6bcp+ 3ab2p+ 3a2cp+ c3)d3x+ (a2p+ c2 + 2bp)d2
3y + cd3

3z + td4
3

+6b2p2 + 12acp2 + 12a2bp2 + 12bc2p+ p3 + a4p2 + 12ab2cp+ 6a2c2p+ b4p+ c4 = 0(4)

with 0 6 a, b, c < d3.
Using 1) in the proposition, we have : d2

3 divides disc(ω) = −28p3.
it follows that d3 ∈ {1, 2, 4, 8, 16, p, 2p, 4p, 8p, 16p}
So we have 10 cases to distinguish.

3.1 Case d3 = 16p

Let α = ω3+aω2+bω+c
16p . If α is an algebraic integer then

αω = aω3+bω2+cω+p
16p is also an algebraic integer and his trace T (αω) = 1

4 will be a rational
integer.

So α is not an algebraic integer and d3 6= 16p.

3.2 Case d3 = 8p

Let α = ω3+aω2+bω+c
8p

We have T (αω) = 1
2 then it follows that αω is not an algebraic integer and also for α.

Then we conclude that d3 6= 8p.

3.3 Case d3 = 4p

The resolution of the system (S) with d3 = 4p gives :
x = −c

p

y = 3c2−2bp−a2p
8p2

z = a2cp+2bcp−c3−ab2p−ap2

16p3

t = 2b2p2+a4p2+4ab2cp+c4+4acp2−4a2bp2−4bc2p−p3−2a2c2p−b4p
256p4

We suppose that x, y, z, and t are the rational integers.
Knowing that x ∈ Z we have p divides c so c ∈ { 0, p, 2p, 3p} We do the same for y ∈ Z

and p divides c, we have p divides a2 + 2b We have z ∈ Z and p divides c, so we have p divides
ab3, then p divides a or p divides b. So p divides a or p divides b and p divides a2 + 2b. It follows
that p divides a and p divides b.

In the conclusion, we have p divides a, p divides b and p divides c, So we deduce that a, b and
c ∈ {0, p, 2p, 3p}.

We suppose a = ps, b = pu, c = p = v , and we replace in the expression of t, we obtain :
t = p(2u2+p2s4+4psu2v+v4+4sv−4ps2u−4uv2−2ps2v2−pu4)−1

256p
Knowing that t ∈ Z we deduce that p divides 1, what is a contradicton.
Then d3 6= 4p.

3.4 Case d3 = 2p

We replace d3 by 2p in the system (S) and we solve it :
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x = −2c

p

y = 3c2−2bp−a2p
2p2

z = a2cp+2bcp−c3−ab2p−ap2

2p3

t = 2b2p2+a4p2+4ab2cp+c4+4acp2−4a2bp2−4bc2p−p3−2a2c2p−b4p
16p4

We suppose that x, y, z, and t are the rational integers.
We have x ∈ Z and p 6= 2, so p divides c. It follows that c ∈ {0, p} As the same y ∈ Z and p

divides c we have p divides a2 + 2b,
knowing that z = (a2+2b)cp−c3−ab2p−ap2

2p3 ∈ Z, p divides c and p divides a2 + 2b, so we have p
divides a2b. It follows that p divides a or b . Then p divides a2 + 2b and ( p divides a or b ). We
deduce that p divides a and b as the following a, b, c ∈ { 0, p}.

We suppose a = ps, b = pu , c = pv and we replace theses values in the expression of t, we
have : t = 2p4u2+p6s4+4p5su2v+p4v4+4p4sv−4p5s2u−4p4uv2−p5u4−2p5s2v2−p3

16p4

knowing that t ∈ Z we deduce that p4 divides p3, so this is a contradiction.
Then d3 6= 2p.

3.5 Case d3 = p

Let α = ω3+aω2+bω+c
p with a, b, c ∈ {0, 1, ..., p− 1}.

If α is an algebraic integer then its trace T (α) = 4c
p ∈ Z, It follows that p divides c so c = 0.

We replace d3 by p and c by 0, the system (S) becomes :

(3a2p+ 3bp+ b3)x+ 2abpy + p2z + 12ab2 + 4a3b+ 4ap = 0 (1)

(6ab+ a3)px+ (b2 + p)py + ap2z + 4b3 + 6a2b2 + 6a2p+ 4bp = 0 (2)

(3b2 + 3a2bp+ p)px+ 2ap2y + bp2z + 4ab3 + 4a3p+ 12abp = 0 (3)

(3ap+ 3ab2)px+ (a2 + 2p)p2y + p3t+ b4 + 12a2bp+ a4p+ 6b2p+ p2 = 0(4)
From equation (4) we deduce that p divides b, then b = 0.
So the equation (4) becomes : 3apx+ a2py + p2t+ p+ a4 = 0
We deduce that p divides a, then a = 0, So a = b = c = 0. The system (S) becomes :
p2z = 0
p2y = 0
p2x = 0
p3t = 0
It follows that x = y = z = t = 0. So α4 = 0
We deduce that 0 = (ω

3

p )
4 = p3

p4 = 1
p is impossible .

Then d3 6= p.

3.6 Case d3 = 16

Let α = ω3+aω2+bω+c
16

We suppose that α is an algebraic integer, we have also αω is an algebraic integer, We
deduce that his trace T (αω) = p

4 is a rational integer,
Then 4 divides p, is a contradiction .
Then α is not an algebraic integer and we deduce that d3 6= 16.

3.7 Case d3 = 8

Let α = ω3+aω2+bω+c
8 , We suppose that α is an algebraic integer, then αω = p+aω3+bω2+cω

8 will
be also an algebraic integer,

We deduce that its trace T (αω) = 4p
8 = p

2 is in Z, so we have a contradiction. Then d3 6= 8.
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3.8 Case d3 = 4

If d3 = 4, the system (S) becomes :

(3a2p+ 3bp+ 6abc+ b3 + 3c2)x+ (2ab+ 2c)4y + 16z + ap2 + 3bcp
+3a2cp+ 3ab2p+ c3 + a3bp+ 3abc2 + b3c = 0 (1)

(6abp+ 3cp+ a3p+ 3b2c+ 3ac2)2x+ (b2 + 2ac+ p)8y + 32az + 3a2p2

+3a2b2 + 2bp2 + 12abcp+ 2b3p+ 3c2p+ 3a2b2p+ 2a3cp+ 2ac3 + 3b2c2 = 0 (2)

(3b2p+ 6acp+ 3a2bp+ 3bc2 + p2)x+ (ap+ bc)8y + 16bz + 3abp2 + cp2

+3b2cp+ a3p2 + 3ac2p+ 3a2bcp+ ab3p+ bc3 = 0 (3)

(3ap2 + 6bcp+ 3ab2p+ 3a2cp+ c3)4x+ (a2p+ c2 + 2bp)16y + 64cz + 256t
+6b2p2 + 12acp2 + 12a2bp2 + 12bc2p+ p3 + a4p2 + 12ab2cp+ 6a2c2p+ b4p+ c4 = 0(4)

After solving this system, we obtain :
x = −c
y = 3c2−2bp−a2p

8

z = a2cp+2bcp−c3−ab2p−ap2

16

t = 2b2p2+a4p2+4ab2cp+c4+4acp2−4a2bp2−4bc2p−p3−2a2c2p−b4p
256

By using the lemma we will take a, b and c in {−1, 0, 1, 2}
We suppose that x, y, z, and t are the rational integers.

i) If c is even ( c ∈ {0, 2} )

Using y = 3c2−2bp−a2p
8 ∈ Z we have 2 divides a2p and p > 2 so 2 divides a The same for t

∈ Z, we deduce that 2 divides p(p2 + b4) so b is odd ( b ∈ {−1, 1}).

- if b = −1 we have y = 3c2+2p−a2p
8 It follows that 8 divides p(2−a2) so 8 divides 2−a2

we deduce that 4 divides 2, so it’s a contradiction.

- if b = 1 we have y = 3c2−2p−a2p
8 . we deduce that 4 divides 2 + a2 so 4 divides 2. Then

it’s a contradiction. We conclude that c is odd.

ii) If c is odd ( c ∈ {−1, 1} )

Using y = 3c2−2bp−a2p
8 ∈ Z, we have 2 divides 3c2 − a2p, it follows that a is odd.

as the same z = a2cp+2bcp−c3−ab2p−ap2

16 ∈ Z, so we deduce that b is odd, Then a, b and c are
odds.

We give the values of x, y, z, t in the table Tab2 for a, b, c ∈ {−1, 1}.

Tab2

(a,b,c) x y z t

(-1,-1,-1) 1 3+p
8

(p+1)2

16
−p3+11p2+5p+1

256

(-1,-1,1) −1 3+p
8

p2−1
16

−(p−1)3

256

(-1,1,-1) 1 3−3p
8

(p−1)2

16
−(p−1)3

256

(-1,1,1) −1 3−3p
8

p2+4p−1
16

−p3−5p2−11p+1
256

(1,-1,-1) 1 3+p
8

1−p2

16
−(p−1)3

256

(1,-1,1) −1 3+p
8

−(p+1)2

16
−p3+11p2+5p+1

256

(1,1,-1) 1 3−3p
8

−p2−4p+1
16

−p3−5p2−11p+1
256

(1,1,1) −1 3−3p
8

−(p−1)2

16
−(p−1)3

256

Conclusion2:

i) If p ≡ 1mod8, we suppose p = 8k + 1, then we have :
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3−3p
8 = −3k ∈ Z.

(p−1)2

16 = 4k2 ∈ Z.

(p−1)3

256 = 2k3 ∈ Z.

It follows for (a, b, c) = (1, 1, 1) that : x = −1, y = 3−3p
8 , z = (p−1)2

16 and t = (p−1)3

256 are
rational integers. As the following α = ω3+ω2+ω+1

4 is an algebraic integer. Then if p ≡ 1mod8,
we have d3 = 4.

If p ≡ 3mod8, we suppose p = 8k + 3, then we have :
- for (a, b, c) ∈ {(−1,−1,−1), (−1,−1, 1), (1,−1,−1), (1,−1, 1)}

y = 3+p
8 = k + 3

4 /∈ Z.
- for (a, b, c) ∈ {(−1, 1,−1), (−1, 1, 1), (1, 1,−1), (1, 1, 1)} .
y = 3−3p

8 = −3k − 3
4 /∈ Z.

It follows that : for p ≡ 3mod8, d3 6= 4.
If p ≡ 5mod8, we suppose p = 8k + 5, then we have :
(p+1)2

16 = 4k2 + 6k + 9
4 /∈ Z. p

2−1
16 = 4k2 + 5k + 3

2 /∈ Z.

p2+4p−1
16 = 4k2 + 7k + 11

4 /∈ Z. frac3− 3p8 = −3k − 3
2 /∈ Z. It follows that : - for (a, b, c)

∈ {(−1, 1,−1), (−1, 1, 1), (1, 1,−1), (1, 1, 1)}
y = 3−3p

8 /∈ Z. so α = ω3+aω2+bω+c
4 is not an algebraic integer.

- for (a, b, c) ∈ {(−1,−1, 1), (1,−1,−1)} .
z = p2−1

16 or z = −p
2−1
16 is not a rational integer.

As the following α = ω3+aω2+bω+c
4 is not an algebraic integer. - for (a, b, c) ∈

{(−1, 1, 1), (1, 1,−1)} . y = p2+4p−1
16 or y = −p

2+4p−1
16 is not a rational integer. Then

in this case α = ω3+aω2+bω+c
4 is not an algebraic integer. So for p ≡ 5mod8, we have d3 6= 4.

iv) If p ≡ 7mod8, we pose p = 8k + 7, then we have : 3+p
8 = k + 5

4 /∈ Z. et 3−3p
8

= −3k − 9
4 /∈ Z.

It follows that : for any triplet (a, b, c) y /∈ Z. Then α = ω3+aω2+bω+c
4 is not an algebraic

integer.

We conclude that : if p ≡ 7mod8, d3 6= 4.

3.9 Case d3 = 2

Let α = ω3+aω2+bω+c
16 with a, b, c ∈ {0, 1}

The Q-isomorphisms of K = Q(ω) are defined by :
σ1(ω) = ω.

σ2(ω) = −ω.
σ3(ω) = iω.

and σ4(ω) = −iω.
Let α1, α2, α3, α4 denote the conjugates of α over Q, then we have
α1 = σ1(α) =

ω3+aω2+bω+c
2

α2 = σ2(α) =
−ω3+aω2−bω+c

2

α3 = σ3(α) =
c−aω2−i(ω3−bω)

2

α4 = σ4(α) =
c−aω2+i(ω3−bω)

2
The minimal polynomial P of α over Q is :
P = X4 − S1X

3 + S2X
2 − SX + S4.

where S1 = α1 + α2 + α3 + α4 S2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4
S3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4
S4 = α1α2α3α4
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After calculating, we have : S1 = −2c, S2 = 3c2−2bp−a2p
2 , S3 = ap2+c3+ab2p−a2cp−2bcp

2 ,

S4 =
2b2p2+a4p2+4ab2cp+c4+4acp2−4a2bp2−4bc2p−p3−2a2c2p−b4p

16
α is an algebraic integer if and only if S1, S2, S3 and S4 are rational integers.
We give in the table Tab3 the values of S1, S2, S3 and S4 when the values of a, b, c are in

{0, 1}.
Tab3

(a,b,c) S1 S2 S3 S4

(0,0,0) 0 0 0 −p3

16

(0,0,1) −2 3
2

1
2

1−p3

16

(0,1,0) 0 −p 0 −p(p−1)2

16

(0,1,1) −2 3−2p
2

1−2p
2

−p3+2p2−5p+1
16

(1,0,0) 0 −p
2

p2

2
p2(1−p)

16

(1,0,1) −2 3−p
2

p2+1−p
2

−p3+5p2−2p+1
16

(1,1,0) 0 −3p
2

p(p+1)
2

−p3−p2−p
16

(1,1,1) −2 3−3p
2

(p−1)2

2
−(p−1)3

16

Conclusion3:

i) If p ≡ 1mod4, we have : for the triplet (a, b, c) = (0, 1, 0).

(S1 = 0 , S2 = −p, S3 = 0, S4 =
p(p−1)2

16 ) ∈ Z4.

It follows that : α = ω3+ω
2 is an algebaic integer, so d3 = 2.

ii) If p ≡ 3mod4, we have for any (a, b, c) (S1, S2, S3, S4) /∈ Z4. Then for p ≡ 3mod4, we have
d3 6= 2.

4 Particular Case : p = 2.

Let ω =
√

2 .
We have disc(ω) = −211.

i) we know that d12
1 divides disc(ω), It follows that d1 = 1.

ii) d4
2 divides disc(ω) = −211 . It follows that d2 ∈ {1, 2, 4}.

4.1 Determination of d2.

1- Case d2 = 4

Let γ = ω2+aω+b and α = γ
4 with a, b ∈ {0, 1, 2, 3}. α is an algebraic integer if and only

if there are four rational integers x, y, z and t, such that : α4 + xα3 + yα2 + zα+ t = 0.

By replacing α by γ
4 we obtain the equation :

γ4 + 4xγ3 + 42yγ2 + 43zγ + 44t = 0 By replacing γ by ω2 + aω + b and using that{
1, ω, ω2, ω3

}
is Q-libre, we obtain the system :

(a3 + 6ab)x+ 8ay + 3ab2 + a3b+ 2a = 0 (1)

2(3a2b+ 3b2 + 2)x+ 8(a2 + 2b)y + 32z + 2b3 + 3a2b2 + 6a2 + 4b = 0 (2)

(3ab2 + 6a)x+ 8aby + 16az + ab3 + 2a3 + 6ab = 0 (3)

4(b3 + 6a2 + 6b)x+ 42(b2 + 2)y + 43bz + 44t+ b4 + 24a2b+ 2a4 + 12b2 + 4 = 0(4)
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We suppose that x, y, z and t are in Z.

(4) =⇒ 2 divides b =⇒ 2 divides a.

So a, b ∈ {0, 2}.

i) a = b = 0

(4) becomes 8y+ 64t+ 1 = 0 it is a contradiction.

ii) a = 0 and b = 2

The equation (4) becomes :

20x+ 24y + 32z + 64t+ 17 = 0

it’s also a contradiction.

iii) a = 2 and b = 0

The equation (4) becomes :

24x+ 8y + 64t+ 9 = 0 we have also a contradiction.

iv) a = b = 2

In this case the equation (4) becomes : 8x+ 4y + 11 = 0 so it’is a contradiction.

In conclusion d2 6= 4.

2- Case d2 = 2.

Let γ = ω2 + aω + b and α = γ
2 with a, b ∈ {0, 1}. α is an algebraic integer if and

only if there are four rational integers x, y, z and t so that : α4 + xα3 + yα2 + zα + t = 0.
γ4

24 + xγ
3

23 + y γ
2

22 + z γ2 + t = 0. γ4 + 2xy3 + 4yγ2 + 8zγ + 16t = 0.
In the last equation we replace γ by its expression and using

{
1, ω, ω2, ω3

}
is Q-libre we

obtain the system :

2(3ab2 + a3 + 2a) + (a3 + 6ab)x+ 4ay + 4z = 0 (1)

2b3 + 3a2b2 + 6a2 + 4b+ (3a2b+ 3b2 + 2)x+ 2(a2 + 2b)y + 4z = 0 (2)

2ab3 + 4a3 + 12ab+ (3ab2 + 6a)x+ 4aby + 4az = 0 (1)

b4 + 24a2b+ 2a4 + 12b2 + 4 + 2(b3 + 6a2 + 6b)x+ 4(b2 + 2)y + 8bz + 16t = 0(4)
we suppose that x, y, z and t are in Z, with equation (4) we deduce that 2 divides b it

follows that b ∈ {0, 1} so b = 0.
Replacing b by 0, the equation (4) becomes : a4 + 2 + 6a2x+ 4y + 8t = 0 It follows that 2

divides a and so a = 0.Then a = b = 0. and α =
√

2
2 .

As
√

2
2 is not an algebraic integer, we conclude that d2 6= 2.

Conclusion4: We have d2 = 1.

4.2 Determination of d3.

We distinguish d3 in {1, 2, 22, 23, 24, 25}

1- Case d3 = 32
Let β = αω = aω3+b2+cω+2

32 , if α is an algebraic integer, it’s the same for β and his trace
T (β) is a rational integer. But T (β) = 1

4 is a contradiction. Then d3 6= 32.

2- Case d3 = 16.
Let β = αω = aω3+bω2+cω+2

16 , if α is an algebraic integer, it’s the same for β and his trace
T (β) is a rational integer. But T (β) = 1

2 . Then we have a contradiction. So d3 6= 16.
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3- Case d3 = 8
Let α = ω3+aω2+bω+c

8 ( Using the calculs of paragraph 3-7) with p = 2 we have the
following expressions:

x = −c
2

y = 3c2−4b−2a2

32

z = 2a2c+4bc−c3−2ab2−4a
128

t = 8b2+4a4+8ab2c+c4+16ac−16a2b−8bc2−8−4a2c2−2b4

4096

with a, b, c ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Know-

ing x ∈ Z and x = T (α) = − c2 we have c is even, y is in Z and c is even, we deduce that a
is even. t ∈ Z, a and c are evens, we deduce that b is also even. We suppose that a = 2s, b =
2u, c = 2v and we replace in t, we obtain : t = 2(2u2+4s2+8su2v+v4+4sv−8s2u−4uv2−4s2v2−2u4)−1

512
What is a contradiction because the numerator of t is odd. Then d3 6= 8.

4) Case d3 = 4
Let α = ω3+aω2+bω+c

4 ( Using the calculs of paragraph 3-8 ) with p = 2 we have the
following expressions:

x = c

y = 3c2−4b−2a2

/ 8

z = 2a2c+4bc−c3−2ab2−4a
16

t = 8b2+4a4+8ab2c+c4+16ac−16a2b−8bc2−8−4a2c2−2b4

256

with a, b, c ∈ {0, 1, 2, 3}, If c is even,

from y ∈ Z we deduce that a is even, and from t ∈ Z we obtain b is even. We suppose that

a = 2s, b = 2u, c = 2v and replace this in t, we obtain : t = 2(2u2+4s2+8su2v+v4+4sv−8s2u−4uv2−4s2v2−2u4)−1
64

This is a contradiction because the numerator of t is odd. If c is odd then y = 3c2−4b−2a2

8 /∈
Z because the numerator of y is odd. We deduce that : d3 6= 4.

5) Case d3 = 2
Let α = ω3+aω2+bω+c

2 (Using the calculs of paragraph 3-9) ( with p = 2) we have the
following solutions:

x = −2c
y = 3c2−4b−2a2

2

z = 2a2c+4bc−c3−2ab2−4a
2

t = 8b2+4a4+8ab2c+c4+16ac−−16a2b−8bc2−8−4a2c2−2b4

16

with a, b, c ∈ {0, 1}, If c= 0 then t = 4b2+2a4−−8a2b−4−b4

8 ∈ Z this implies that b is even. So
b = 0, we deduce that t = 6a4−1

2 . So it’s a contradiction. If c = 1 then y = 3−4b−2a2

2 /∈ Z
because 3− 4b− 2a2 is odd. Then d3 6= 2. In conclusion we have d3 = 1.

Corollary 4.1. Let p be a prime number, ω = 4
√
p and K = Q(ω) then :

1) If p = 2 or p ≡ 3 mod 4 we have : disc(K) = −28p3.

2) If p ≡ 5 mod 8 we have : disc(K) = −24p3.

3) If p ≡ 1 mod 8 we have : disc(K) = −22p3.

Remark 4.2. Let m be an integer number without quartic factors,
ω = 4

√
m andK = Q(ω). By theorem1,K admits an integral basis of the form : (1; f1(ω)

d1
; f2(ω)

d2
; f3(ω)

d3
)

Let’s putm = fg2h3 where f, g and h are integers mutualy coprimes f = a1a2...ar, g = b1b2...bs
and h = c1c2...ct where a1, .., ar, b1, ..., bs, c1, ...ct are prime numbers We have disc(ω) =
−28m3 = −28a3

1...a
3
rb

6
1...b

6
sc

9
1...c

9
t . Under the proposal we have d4

2 divides disc(ω). It follows
that d2 ∈ {1, 2, 4, a1, ..., ar, b1, ..., bs, c1, ..., cs, ...}Which proves the complexity of the determi-
nation of d2. This is how limited ourselves to the case m = p where p is a prime integer.
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