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Abstract. The main aim of this paper is to present an analytic result which characterizes
the primitive Pythagorean triples via a cathetus. This way has the convenience to find easily all
primitive Pythagorean triples x, y, z ∈ N where x is a predetermined integer.

1 Introduction

Let x, y and z be positive integers satisfying

x2 + y2 = z2 .

Such a triple (x, y, z) is called a Pythagorean triple and if, in addition, x, y and z are coprime,
then it is called primitive Pythagorean triple. We recall, the Euclid’s formula, that a primitive
Pythagorean triple (x, y, z) can be parameterized by

x = m2 − n2, y = 2mn, z = m2 + n2 (1.1)

if and only if m and n are coprime positive integers of different parities with m > n > 0.
We also recall, the variant of the Euclid’s formula, that a primitive Pythagorean triple (x, y, z)
can be parametrized by

x = mn, y =
m2 − n2

2
, z =

m2 + n2

2
(1.2)

if and only if m and n are coprime positive odd integers with m > n > 0.
The main aim of this paper is to characterize all the primitive Pythagorean triples by a formula
which is completely different from (1.1), (1.2) and involves a predetermined integer x.

First, let us recall a recent novel formula that allows to obtain all Pythagorean triples as
follows.

Theorem 1.1. [1] (x, y, z) is a Pythagorean triple if and only if there exists d ∈ C(x) such that

x = x, y =
x2

2d
− d

2
, z =

x2

2d
+

d

2
, (1.3)

with x positive integer, x ≥ 1, and where

C(x) =


D(x), if x is odd,

D(x) ∩ P (x), if x is even,

with
D(x) =

{
d ∈ N such that d ≤ x and d divisor of x2} ,

and if x is even with x = 2nk, n ∈ N and k ≥ 1 odd fixed, with

P (x) =
{
d ∈ N such that d = 2sl, with l divisor of x2 and s ∈ {1, 2, . . . , n− 1}

}



PRIMITIVE PYTHAGOREAN TRIPLES 525

where x is a predetermined integer, which means finding all right triangles whose sides have
integer measures and one cathetus is predetermined.
Moreover in [1], based on Theorem 1.1, we have proved the following theorem.

Theorem 1.2. Each x ∈ N can be found as cathetus in at least one Pythagorean triple.
Every x ∈ N can be represented in the form x =

√
z2 − y2 with y, z, x ∈ N.

Taking into account Theorem 1.1, in [2] we found relations between the primitive Pythagorean
triple (x, y, z) generated by any predetermined positive odd integer x using (1.3) and the primi-
tive Pythagorean triple generated by xm with m ∈ N and m ≥ 2. In [2] we took care of relations
only for the case in which the primitive triple (x, y, z) is generated whith d ∈ C(x) only with
d = 1 and the primitive triple (xm, y′, z′) is generated with dm ∈ C(xm) only with dm = 1
obtaining formulas that give us y′ and z′ directly from x, y, z.

Theorem 1.3. ([2]) Let (x, y, z) be the primitive Pythagorean triple generated by any predeter-
minated positive odd integer x ≥ 1 using (1.3) with z − y = d = 1 and let (xm, y′, z′) be the
primitive Pythagorean triple generated by xm, m ∈ N, m ≥ 2, using (1.3) with z′−y′ = dm = 1,
we have the following formulas

y′ = y

1 +
m−1∑
p=1

x2p

 ,

(1.4)

z′ = y

1 +
m−1∑
p=1

x2p

+ 1 ,

for every m ∈ N and m ≥ 2.
Moreover we have also

z

(−1)m−1 +
m−1∑
p=1

(−1)m−1−px2p

 =

{
y′ if m is even,
z′ if m is odd,

and

z

(−1)m−1 +
m−1∑
p=1

(−1)m−1−px2p

+ (−1)m−2 =

{
z′ if m is even,
y′ if m is odd.

This was the first step to investigate on other relations between Pythagorean triples.

Afterwards some relations among Pythagorean triples were established in [3]. The main
tool was the fundamental characterization of the Pythagorean triples through a cathetus of the
Theorem 1.1 that allows to determine the relationships between two Pythagorean triples with an
assigned cathetus a and b and the Pythagorean triple with cathetus a · b.

Theorem 1.4. ([3]) Let (a, a1, a2), (b, b1, b2), (a · b, y, z) be the Pythagorean triples generated by
a, b, a · b respectively using (1.3) with a2 − a1 = d1 ∈ C(a), b2 − b1 = d2 ∈ C(b), z − y = d3 ∈
C(a · b). Then

y = a1b2 + a2b1 , z = a1b2 + a2b1 + d1d2

and moreover
y = a1b1 + a2b2 − d1d2 , z = a1b1 + a2b2

with d3 = d1 · d2 ∈ C(a · b).

Our main result, that is, Theorem 2.1, is in Section 2. Moreover, in the same section, an
immediate consequence (Lemma 2.2) is pointed out, as well as a table of examples. Lemma 2.2
is a new variant of the Euclid’s formulas and involves a predetermined integer x.
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2 Results

The following theorem holds.

Theorem 2.1. Let (x, y, z) be all the Pythagorean triples generated by any predetermined posi-
tive integer x ≥ 1 using (1.3), d ∈ C(x), then (x, y, z) is a primitive Pythagorean triple if and
only if following both conditions are verified

if x is odd then


d is a square (2.1)

x2

d
with d are coprime positive odd integers (2.2)

if x is even then


d

2
is a square (2.3)

x2

2d
with

d

2
are coprime positive integers of different parities (2.4)

Proof. Let x,m, n be positive integers, x odd, m > n > 0 such that (x, y, z) is a Pythagorean
triple, that is m and n are coprime positive odd integers.

Taking into account (1.2) and Theorem 1.1 it exists d ∈ C(x), d ≤ x, d odd such that

x = mn

y =
m2 − n2

2
=

x2 − d2

2d

z =
m2 + n2

2
=

x2 + d2

2d
and adding the third relation to the second we have

z + y = m2 =
x2

d
(2.5)

while subtracting the second relation from the third we have

z − y = n2 = d (2.6)

that is d is a square.

Let us observe that since m,n ∈ N, if m and n are coprime positive odd integers then also m2

and n2 are coprime positive odd integers and from (2.5) and (2.6), it must be

x2

d
and d are coprime positive odd integers (2.7)

that is
x√
d

and
√
d are coprime positive odd integers with

x√
d
>

√
d > 0 (2.8)

Taking into account (2.6) and (2.7) we have the conditions (2.1) and (2.2).
Therefore Theorem 1.2 holds if x ∈ N is odd.

Now, in a similar way, we prove that Theorem 2.1 holds also if x ∈ N is even.
Let x,m, n be positive integers, x even, m > n > 0 such that (x, y, z) is a Pythagorean triple,
that is m and n are coprime positive of different parities.
Taking into account (1.1) and Theorem 1.1 it exists d ∈ C(x), d ≤ x, d even such that

x = 2mn

y = m2 − n2 =
x2 − d2

2d

z = m2 + n2 =
x2 + d2

2d



PRIMITIVE PYTHAGOREAN TRIPLES 527

and adding the third relation to the second we have

m2 =
x2

2d
(2.9)

while subtracting the second relation from the third we have

n2 =
d

2
(2.10)

that is
d

2
is a square.

With the same observations made before and from (2.5) and (2.6), it must be

x2

2d
and

d

2
are coprime positive integers of different parities (2.11)

that is

x√
2d

and

√
d

2
are coprime positive integers of different parities with

x√
2d

>

√
d

2
> 0. (2.12)

Taking into account (2.10) and (2.11) we have the conditions (2.3) and (2.4).
Therefore Theorem 2.1 holds if x ∈ N is even.
Consequently, Theorem 2.1 have thus been proved.

Let us observe that Theorem 2.1 gives us a new variant of the Euclid’s formulas (1.1) and
(1.2). In fact thanks to (2.8) and (2.12) we have the following result in the style of the Euclid’s
formulas.

Lemma 2.2. Let (x, y, z) be all the Pythagorean triples generated by any predetermined positive
integer x ≥ 1 using

x = x, y =
x2

2d
− d

2
, z =

x2

2d
+

d

2

and d ∈ C(x), then (x, y, z) is a primitive Pythagorean triple if and only if

with x odd, then
x√
d

and
√
d are coprime positive odd integers with

x√
d
>

√
d > 0

with x even, then
x√
2d

and

√
d

2
are coprime positive odd integers of different parities

with
x√
2d

>

√
d

2
> 0

To prove the completeness of the Theorem 2.1, we consider the following examples.

Example 2.3. To demonstrate our method, we give the following table with some x ∈ N. Obvi-
ously, the table can be extended for each x ∈ N.
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x odd triples primitive triple condition (2.1) condition (2.2)
x=9, C(x)={1, 3, 9}
for d=1 (9, 40, 41) Y Y Y
for d=3 (9, 12, 15) N N —-
for d=9 (9, 0, 9) trivial
x=15, C(x)={1, 3, 5, 9, 15}
for d=1 (15, 112, 113) Y Y Y
for d=3 (15, 36, 39) N N —-
for d=5 (15, 20, 25) N N —-
for d=9 (15, 8, 17) Y Y Y
for d=15 (15, 0, 15) trivial
x=21, C(x)={1, 3, 7, 9, 21}
for d=1 (21, 220, 221) Y Y Y
for d=3 (21, 72, 75) N N —-
for d=7 (21, 28, 35) N N —-
for d=9 (21, 20, 29) Y Y Y
for d=21 (21, 0, 21) trivial
x=45, C(x)={1, 3, 5, 9, 15, 45}
for d=1 (45, 1012, 1013) Y Y Y
for d=3 (45, 336, 339) N N —-
for d=5 (45, 200, 205) N N —-
for d=9 (45, 108, 117) N Y N
for d=15 (45, 60, 75) N N —-
for d=45 (45, 0, 45) trivial
x even triples primitive triple condition (2.3) condition (2.4)
x=8, C(x)={2, 4, 8}
for d=2 (8, 15, 17) Y Y Y
for d=4 (8, 6, 10) N N —-
for d=8 (8, 0, 8) trivial
x=16, C(x)={2, 4, 8, 16}
for d=2 (16, 63, 65) Y Y Y
for d=4 (16, 30, 34) N N —-
for d=8 (16, 12, 20) N Y N
for d=16 (16, 0, 16) trivial
x=18, C(x)={2, 6, 18}
for d=2 (18, 80, 82) N N —-
for d=6 (18, 24, 30) N N —-
for d=18 (18, 0, 18) trivial
x=20, C(x)={2, 4, 8, 10, 20}
for d=2 (20, 99, 101) Y Y Y
for d=4 (20, 48, 52) N N —-
for d=8 (20, 21, 29) Y Y Y
for d=10 (20, 15, 25) N N —-
for d=20 (20, 0, 20) trivial

3 Conclusion and Remarks

We remember that the Euclid’s formulas do not give all Pythagorean triples that involves a pre-
determined positive integer x, for example the triples (12, 9, 15), (33, 180, 183) and (33, 44, 55),
and moreover it can be laborious to find m and n such that x = m2 − n2 while using Theorem
1.1 it is enough to find all the d ∈ C(x) to obtain all Pythagorean triples.
In particular if we need to find all primitive Pythagorean triples that involves a predetermined
positive integer x now we can use only the d ∈ C(x) that satisfy the conditions of the Theorem
2.1 or the Lemma 2.2.
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The discovery of the parametrization and relations among Pythagorean triples that we have found
shows the fundamental role of d ∈ C(x) and characterizing the results.
This way could be used to study other arithmetic problems, some of which are perhaps still open.

An example could be the Jeśmanowicz’ conjecture. Considered the exponential Diophantine
equation

xa + yb = zc (3.1)

with x, y, z, a, b, c positive integers, Jeśmanowicz proposed the following conjecture:

Conjecture 3.1: Equation (3.1) has only the positive integer solution (a, b, c) = (2, 2, 2).

Recently, the conjecture has been proved for infinitely many triples (x, y, z) in the paper [7].
Precisely, by using (1.1), Conjecture 3.1 has been proved for the triples (m2−n2, 2mn,m2+n2)
with n = 2 and without any assumption on m (see [7, Theorem 1]).

One of the next steps will be to study the parametrizations of Pythagorean quadruples, that is
quadruples of integers (a, b, c, d) that are solution of the equation

a2 + b2 + c2 = d2

looking for a representation similar to (1.3) and finding all Pythagorean quadruples.

Mainly it will be interesting to find other parametrizations, relations and characterizations regard
to the Pythagorean n-uples dependent by d ∈ C(x).
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