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Abstract In this manuscript, we study a generalized type of Meir-Keeler type contractive
mappings, where prove new fixed point theorem for such mappings which will generalize many
results in the literature. Moreover, we present an application of our result to coupled α-Meir-
Keeler fixed points.

1 Introduction

Metric space concept introduced by Maurice Frechet in 1906 is the milestone for many sciences
including mathematics. Generalizations of metric space came into existence just by modifying or
reducing the metric axioms by many researchers over the past years. Then the concept of fixed-
point theory gave more opportunity by opening new branches of non-linear analysis dealing with
finding solutions of various problems of social and natural sciences. One of the pivotal results
of analysis which gave scope to many researchers to use the idea of fixed-point theory in several
generalized metric space was the introduction of Banach contraction principle in 1922[2]. Billy
E. Rhoades in 1977[8] was the first one to classify various definitions of contractive mappings.
In 1980 many researchers continued to classify such definitions with fixed-point theorems. In the
period 1979- 1993, Billy and many other authors published several papers,generalizing or uni-
fying many of the known fixed point theorems on metric spaces. In 1992, Matthews introduced
partial metric space which is a generalized metric space[33]. In partial metric is interesting as
the self-distance of any point in such space may not be zero. Banach contraction principle is
valid in partial metric spaces which has been proved by Matthews . The concept of dislocated
space to generalize the partial metric spaces was introduced by Hitzler and Seda[26]. Then
Amini-Harandi introduced the name metric-like space[24]. In the same manner, with some spe-
cific characteristics, the generalizations of metric-like space: b-metric-like space and rectangular
metric-like spaces were introduced by Alghamdi et al[29].and Mlaiki et al[30].respectively.The
Meir-Keeler type contraction mappings attracted many researchers in recent years[19].The fixed-
point theorem was established for a generalized Meir-Keeler contraction by Hegedus[20], which
deals with the diameter of orbits and the Meir-Keeler type condition. Fixed-point theorems for
Meir-Keeler type contraction mappings were introduced by Park and Rhoades[3].

2 Preliminaries

∀ε > 0, ∃δ > 0 : ε ≤ L($,ϑ) < δ + ε⇒ L(H$,Hϑ) < ε. (2.1)

In 1978 Maiti and Pal [5] generalized a fixed point for maps satisfying the following condition

∀ε > 0, ∃δ > 0 : ε ≤ max{L($,ϑ),L($,H$),L(ϑ,Hϑ)} < δ + ε⇒ L(H$,Hϑ) < ε. (2.2)

Later in 1981, Park and Rhoades in [3] established fixed point theorems for a pair of mappings
H,G satisfying the following contractive condition that can be reduced to the following general-
ization of (2.3) when H = G.
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∀ε > 0 ∃δ > 0 :

ε ≤ max{L($,ϑ),L($,H$),L(ϑ,Hϑ), L($,Hϑ) + L(ϑ,H$)

2
} < δ + ε⇒ L(H$,Hϑ) < ε.

(2.3)

3 Fixed and common fixed point theorems for generalized Meir-Keeler
α−contractive maps and pairs

The first part of the following definition was introduced in [6].

Definition 3.1. Let HG : ϒ → ϒ be self mappings of a set ϒ and α : ϒ × ϒ → R ∪ {0} be a
mapping, then the mapping H is called α−admissible if

$,ϑ ∈ ϒ, α($,ϑ) ≥ 1⇒ α(H$,Hϑ) ≥ 1

and the pair (HG) is called α−admissible if

$,ϑ ∈ ϒ, α($,ϑ) ≥ 1⇒ α(H, $Gϑ) ≥ 1 and α(G$,Hϑ) ≥ 1.

Example 3.2.

Let ϒ = R and α($,ϑ) =
{ 1 $,ϑ ∈ [0, 1]

0 otherwise
. Then the pair ($1/2, $1/3) is α−admissible

but the pair ($1/2, $ + 1) is not α−admissible.

Definition 3.3. Let(ϒ,L) be a metric like space and H : ϒ → ϒ be a self mapping, α : ϒ ×
ϒ → R ∪ {0} be a mapping. Then, H is called Meir-Keeler α−contractive if, given an ε >
0, there exists a δ > 0 such that

ε ≤ L($,ϑ) < ε+ δ ⇒ α($,ϑ)L(H$,Hϑ) < ε.

Definition 3.4. Let(ϒ,L) be a metric like space and H : ϒ → ϒ be a self mapping, α : ϒ ×
ϒ → R ∪ {0} be a mapping. Then, H is called generalized Meir-Keeler α−contractive if,
given an ε > 0, there exists a δ > 0 such that

ε ≤MH($,ϑ) < ε+ δ ⇒ α($,ϑ)L(H$,Hϑ) < ε,

where

MH($,ϑ) = max{L($,ϑ),L($,H$),L(ϑ,Hϑ), L($,Hϑ) + L(ϑ,H$)

2
}

Definition 3.5. Let(ϒ,L) be a metric like space and HG : ϒ→ ϒ be self mappings, α : ϒ×ϒ→
R ∪ {0} be a mapping. Then, the pair (HG) is called generalized Meir-Keeler α−contractive if,
given an ε > 0, there exists a δ > 0 such that

ε ≤M(HG)($,ϑ) < ε+ δ ⇒ α($,ϑ)L(H$Gϑ) < ε, (3.1)

where

M(HG)($,ϑ) = max{L($,ϑ),L($,H$),L(ϑGϑ), L($Gϑ) + L(ϑ,H$)

2
}.

We write MH($,ϑ) =M(H,H)($,ϑ).

Clearly, H is generalized Meir-Keeler α−contractive if and only if (H,H) is generalized
Meir-Keeler α−contractive.

Definition 3.6. Let ϒ be any set, $0 ∈ ϒ and HG be self-maps of ϒ. Define $2n+1 = H$2n and
$2n+2 = G$2n, n = 0, 1, 2, .... Then {$n} is called the (HG)−orbit of $0. If L is a metric on
ϒ then (ϒ,L) is called (HG)−orbitally complete if every Cauchy sequence in the (HG)−orbit
of $0 is convergent and the map H or g is called orbitally continuous if it is continuous on the
orbit.
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The proof of the following lemma is immediate.

Lemma 3.7. Let HG : ϒ → ϒ be self mappings of a set ϒ, α : ϒ × ϒ → R ∪ {0} be a mapping
and {$n} be the (HG)−orbit of $0 with α($0,H$0) ≥ 1. If the pair (HG) is α−admissible,
then α($n, $n+1) ≥ 1 for all n = 0, 1, 2, ....

Theorem 3.8. Let (ϒ,L) be an (HG)−orbitally complete metric like space, where HG are self-
mappings of ϒ. Also, let α : ϒ× ϒ→ R ∪ {0} be a mapping. Assume the following:

(i) (HG) is α−admissible and there exists an $0 ∈ ϒ such that α($0,H$0) ≥ 1;

(ii) the pair (HG) is generalized Meir-Keeler α−contractive.

Then the sequence Ln = L($n, $n+1) is monotone decreasing. If. moreover we assume
that

(iii) on the (HG)−orbit of $0, we have α($n, $j) ≥ 1 for all n even and j > n odd and that
H and g are continuous on the (HG)−orbit of $0.

Then either (1) H or g has a fixed point in the (HG)− orbit {$n} of $0 or (2) H and g have a
common fixed point p and lim$n = p. If moreover, we assume that the following condition (H)
holds: If {$n} is a sequence in ϒ such that α($n, $n+1) ≥ 1 for all n and $n → x implies
α($n, $) ≥ 1 for all n, then uniqueness of the fixed point is obtained.

Proof. Define Ln = L($n, $n+1), for n = 0, 1, 2, .... If Ln = 0 for some even integer n, then
H has a fixed point. If Ln = 0 for some odd integer n, then g has a fixed point. Hence, we may
assume that Ln 6= 0 for each n. That the pair (HG) is generalized Meir-Keeler α−contractive
implies that,

α($,ϑ)L(H$Gϑ) <MH($,ϑ), for each $,ϑ ∈ ϒ, $, y 6= 0. (3.2)

Note that assumption (3) implies that α($0,H$0) ≥ 1. Hence, since (HG) is α−admissible
then Lemma 3.7 implies that α($n, $n+1) ≥ 1 for all n = 0, 1, 2, ... and hence by (3.2) we have

L2n = L(H$2n,G$2n−1)

≤ α($2n, $2n−1)L(H$2n,G$2n−1)

< max{L2n−1,
L($2n−1, $2n+1)

2
}

≤ max{L2n−1,
L2n−1 + L2n

2
}, (3.3)

whence L2n < L2n−1.

Similarly, it can be shown that L2n+1 < L2n. Thus {Ln} is monotone decreasing in n and
converges to a limit, say %.

Suppose % > 0. Then, for each δ > 0 there exists a positive integer N = N(δ) such that
% ≤ LN = L($N .$N+1) < %+ δ, where N can be chosen even. Thus from assumption (1) and
Lemma 3.7 we have LN+1 ≤ α($N , $N+1)L(H$N ,G$N+1) < %, a contradiction. Therefore
% = 0. To show that {$n} is Cauchy we assume the contrary. Thus there exists an ε′ > 0 such
that, for each integer N there exist integers m > n > N such that L($m, $n) ≥ ε′. Define ε by
ε′ = 2ε. Choose a number δ, 0 < δ < ε for which (3.1) is satisfied. Since % = 0, there exists an
integer N = N(δ) such that Li < δ

6 for i ≥ N . With this choice of N , pick integers m > n > N
such that

L($m, $n) ≥ 2ε > δ + ε. (3.4)

In which it is clear that m− n > 6. For, otherwise, L($m.$n)) ≤
∑5
i=0 Li+n < δ < δ + ε,

contradicting (3.4). Without loss of generality we may assume that n is even, since, from (3.4),
it follows that L($m, $n+1) > ε+ δ

3 . From (3.4) there exists a smallest odd integer j > n such
that

L($n, $j) ≥ ε+
δ

3
. (3.5)
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Hence, L($n, $j−2) < ε+ δ
3 , and so L($n.$j) ≤ L($n, $j−2)+Lj−1 +Lj < ε+ δ

3 +2( δ6 ) =
ε+ 2δ

3 . Therefore, we have

ε < L($n, $j) ≤M(HG)($n, $j)

≤ max{L($n.$j),
L($n, $j+1) + L($j , $n+1)

2
}

≤ L($n.$j) + Lj + L($j , $n) + Ln
2

≤ L($n.$j) +
δ

6
≤ ε+ δ,

so that, by (3.4) and assumption 3, L($n+1, $j+1) ≤ α($n, $j)L($n+1, $j+1) < ε. Then, we
have

L($n.$j) ≤ Ln + L($n+1,Lj+1) + Lj <
δ

6
+ ε+

δ

6
= ε+

δ

3
.

This contradicts the choice of j in (3.5). Therefore, {$n} is Cauchy.
Since ϒ is (HG)−orbitally complete, {$n} converges to some point p ∈ ϒ. since H and g are

orbitally continuous then p is a common fixed point of H and G. To prove uniqueness, assume
p is the common fixed point obtained as $n → p and q is another common fixed point. Then,
(3.2) and the condition (H) yield to

L(p, q) = L(Hp, q) ≤ L(Hp,G$n) + L(G$n, q)

≤ α($n, p)L(Hp,G$n) + L(G$n, q)

< M(HG)($n, p) + L(G$n, q).

If we let n→∞, then we reach at L(p, q) < L(p, q) which implies that p = q.

Corollary 3.9. Let (ϒ,L) be an H−orbitally complete metric like space, where H is a self-
mappings of ϒ. Also, let α : ϒ× ϒ→ R ∪ {0} be a mapping. Assume the following:

(i) H is α−admissible and there exists an $0 ∈ ϒ such that α($0,H$0) ≥ 1;

(ii) H is generalized Meir-Keeler α−contractive.

Then the sequence Ln = L($n, $n+1) is monotone decreasing. If, moreover we assume
that

(iii) on the f−orbit of $0, we have α($n, $j) ≥ 1 for all n even and j > n odd.

Then either (1) H has a fixed point in the H− orbit {$n} of $0 or (2) H has a fixed point p
and lim$n = p. If moreover, we assume that the following condition (H) holds: If {$n} is a
sequence in ϒ such that α($n, $n+1) ≥ 1 for all n and $n → x then α($n, $) ≥ 1 for all n,
then uniqueness of the fixed point is obtained.

Since generalized Meir-Keeler α−contractions are Meir-Keeler α−contractions, then Corol-
lary 3.9 is valid also for Meir-Keeler α−contractions. In the following example the existence
and uniqueness of the fixed point can not be proved in the category of Meir-Keeler contractions,
but can be proved by means of Corollary 3.9.

Example 3.10. Let ϒ = [0, 2] with the absolute value metric L($,ϑ) = |$ − ϑ|. Define H :
ϒ→ ϒ by

H($) = {
0 $ = 1

4
1 $ ∈ [0, 1

2)− {
1
4}

3
2 $ ∈ [ 1

2 , 2]
.
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Then, for ε = 1
2 , $ = 1

4 and any δ > 0 we have 1
2 ≤ |

1
4 − ϑ| < δ + 1

2 implies y ∈ [ 1
2 , 2] and

hence L(H$,Hϑ) = L(0, 3
2) =

3
2 > ε. Hence, H is not Meir-Keeler contraction. However, H is

Meir-Keeler α−contraction, where

α($,ϑ) = { 1 $,ϑ ∈ [ 1
2 , 2]

0 otherwise
.

Indeed, for 0 < ε < 1 (the case ε ≥ 1 is trivial, since |H$ − Hϑ| ≤ 1), let δ = (1 − ε), then
ε ≤ α($,ϑ)L($,ϑ) < δ + ε = 1 implies that $,ϑ ∈ [ 1

2 , 2] and hence L(H$,Hϑ) = | 32 −
3
2 | =

0 < ε. Also, notice that H is continuous on the orbit of $0 = 1 and that α($n, $j) ≥ 1 for all
n, j. Clearly, p = 3

2 is the unique fixed point.

4 Generalized Meir-Keeler α − H−contractive fixed points

Definition 4.1. Let H be a continuous self-map of a metric like space (ϒ,L) , CH = {g : g :
ϒ → ϒ, such that Hg = GH and Gϒ ⊆ Hϒ}, the sequence {H$n} defined by H$n+1 =
G$n, n = 0, 1, 2, ..., with the understanding that, if H$n = H$n+1 for some n, then H$n+j =
H$n for each j ≥ 0, is called the H−iteration of $0 under g.

Definition 4.2. Let H be a self-map of a metric like space (ϒ,L) and G ∈ CH. Then g is called a
generalized Meir-Keeler α−H−contractive map if for each ε > 0 there exists a δ > 0 such that
for all $,ϑ ∈ ϒ,

ε ≤ L(H$,Hϑ) < ε+ δ ⇒ α($,ϑ)L(G$Gϑ) < ε. (4.1)

Definition 4.3. Let H be a self-map of a metric like space (ϒ,L) and G ∈ CH. Then g is called a
generalized Meir-Keeler α−H−contractive map if for each ε > 0 there exists a δ > 0 such that
for all $,ϑ ∈ ϒ,

ε ≤Mg(H)($,ϑ) < ε+ δ ⇒ α($,ϑ)L(G$Gϑ) < ε, (4.2)

where Mg(H)($,ϑ) = max{L(H$,Hϑ),L(H$G$),L(HϑGϑ), L(H$Gϑ)+L(HϑG$)
2 }.

Lemma 4.4. Let HG be continuous self-maps of a metric like space (ϒ,L) such that G ∈ CH.
Assume g is a generalized Meir-Keeler α−H−contractive map such that α($n, $n+1) ≥ 1 for
all n. Then inf{L(H$n,H$n+1) : n = 0, 1, 2, ...} = 0.

Proof. Let σ = inf{L(H$n,H$n+1) : n = 0, 1, 2, ...}, and σ > 0. From the definition of the
H−iteration of $0 under g and that g is a generalized Meir-Keeler α −H−contractive map, for
each n we have

L(H$n+1,H$n+2) = L(G$n,G$n+1) ≤ α($n, $n+1)L(G$n,G$n+1)

< max{L(H$n,H$n+1),L(H$n,G$n),L(H$n+1,

G$n+1),
L(H$n,G$n+1)+L(H$n+1,G$n)

2 }
= max{L(H$n,H$n+1),L(H$n,H$n+1),L(H$n+1,

H$n+2),
L(H$n,H$n+2)+0

2 }

= max{L(H$n,H$n+1),
L(H$n,H$n+2)

2 }
≤ max{L(H$n,H$n+1),

L(H$n,H$n+1)+L(H$n+1,H$n+2)
2 }.

Hence, L(H$n+1,H$n+2) < L(H$n,H$n+1) and {L(H$n,H$n+1)} is monotone decreas-
ing, so that σ = limn→∞ L(H$n,H$n+1). From the assumption that g is Meir-Keeler α −
H−contractive map, for ε = σ find δ > 0 such that (4.2) is satisfied. For the chosen δ pick N so
that σ ≤ L(H$n,H$n+1) < σ + δ. Noting that for $ = $n and y = $n+1, Mg(H)($,ϑ) =
L(H$n,H$n+1), we by (4.2), conclude that L(G$n,G$n+1) ≤ α($n, $n+1)L(G$n,G$n+1) <
σ. But L(G$n,G$n+1) = L(H$n+1,H$n+2) < σ, a contradiction.
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Theorem 4.5. Let HG be continuous self-maps of a metric like space (ϒ,L) such that G ∈ CH.
Assume α($n, $m) ≥ 1 for allm > n. If g is a generalized Meir-Keeler α−H−contractive map
such that α satisfies the condition (f-H): If {$n} is a sequence in ϒ such that α($n, $m) ≥ 1
for all m > n and H$n → z then α(H$n, z) ≥ 1 and α(H$n,Hz) ≥ 1 for all n. Then H and
g have a unique common fixed point.

Proof. Let $0 ∈ ϒ for which its H−iteration under g satisfies the assumptions of the theorem.
The proof will be divided into 4 steps.

• Step 1 : By Lemma 4.4, inf{L(H$n,H$n+1) : n = 0, 1, 2, ...} = 0.

• Step 2 : We find a coincidence point for H and g. That is to find a z ∈ ϒ such that Hz = Gz.
If there exists an n such that L(H$n,H$n+1) = 0, then H$n+1 = G$n = H$n and we
are finished. Hence, we may assume that L(H$n,H$n+1) 6= 0 for each n. We claim to
show that {H$n} is Cauchy. Suppose not. Then there exists an ε > 0 and a subsequence
{H$ni} of {H$n} such that L(H$ni ,H$ni+1) > 2ε. From (4.2), there exists a δ satisfying
0 < δ < ε for which (4.2) is true. Since limn→∞ L(H$n,H$n+1)=0, there exists an N
such that

L(H$m,H$m+1) <
δ

6
for allm > N.

Let ni ≥ N . We shall show that there exists an integer j satisfying ni < j < ni+1, such
that

ε+
δ

3
≤ L(H$ni

,H$j) < ε+
2δ
3
. (4.3)

First of all, there exist values of j such that L(H$ni ,H$j) ≥ ε+ δ
3 . For example, choose

j = ni+1. The inequality is also true for j = ni+1 − 1. For, if not then L(H$ni
,H$j) <

ε+ δ
3 and hence

L(H$ni
,H$ni+1) ≤ L(H$ni

,H$ni+1 − 1) + L(H$ni+1 − 1,H$ni+1)

< ε+
δ

3
+
δ

6
< 2ε,

a contradiction. There are also values of j such that L(H$ni
,H$j) < ε+ δ

3 . For example
choose j = ni + 1 and j = ni + 2. Pick j to be the smallest integer greater than ni such
that L(H$ni

,H$j) ≥ ε+ δ
3 . Then L(H$ni

,H$i − 1) < ε+ δ
3 , and hence

L(H$ni
,H$j) ≤ L(H$ni

,H$j − 1) + L(H$j − 1,H$j) < ε+
δ

3
+
δ

6
< ε+

2δ
3
.

Thus (4.3) is established. Now note that

ε+
δ

3
≤ L(H$ni

,H$j) ≤ max{L(H$ni
,H$j),L(H$ni

,G$ni
),

L(H$j ,G$j),
L(H$ni

,G$j) + L(H$j ,G$ni
)

2
}.

Then from the choice of j and that H$ni
+ 1 = G$ni

, H$j + 1 = G$j we reach at

ε ≤ L(H$ni
,H$j) < δ + ε.

Hence,

L(H$ni+1,H$j+1) = L(G$ni ,G$j) ≤ α($ni , $j)L(G$ni ,G$j) < ε.

On the other hand,

L(H$ni ,H$j) ≤ L(H$ni ,Hni+1)+L(Hni+1,H$j+1)+L(H$j+1,H$j) <
δ

6
+ε+

δ

6
= ε+

δ

3
,

contradicting (4.3). Therefore, {H$n} is Cauchy, hence convergent to z ∈ ϒ. Since
HH$n = HG$n−1 = GH$n−1, the continuity of H and g implies that Hz = Gz.
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• Step 3: We show that η = Hz = Gz is a common fixed point for H and g: Assume Hη 6= η.
Then H2z 6= Hz and by the help of the (f-H) condition we have

L(η,Hη) = L(Gz,HGz) = L(Gz,GHz)
≤ L(Gz,GH$n) + L(GH$nGHz)
≤ α(H$n, z)L(Gz,GH$n) + α(H$n,Hz)L(GH$nGHz)
< max{L(Hz,HH$n),L(HzGz),L(HH$n,GH$n),

L(Hz,GH$n) + L(HH$n,GHz)
2

}

+ max{L(HH$n,HHz),L(HH$n,GH$n),L(HHz,GHz),
L(HH$n,GHz) + L(HHz,GH$n)

2
}

If we let n → ∞ above and use continuity and commutativity of H and g then we reach at
L(η,Hη) < L(η,Hη) and hence Hη = η. Moreover, Gη = GHz = Hη = η.

• Step 4: Uniqueness of the common fixed point: Assume η = Hz = Gz is our common
fixed point for H and g where H$n → z and ω is another common fixed point. Then by the
(f-H) condition we have

L(η, ω) = L(Gη, ω) ≤ L(Gη,GH$n) + L(GH$n, ω)

≤ α(η,H$n)L(Gη,GH$n) + L(GH$n, ω)

< max{L(Hη,HH$n),L(Hη,Gη),L(HH$n,GH$n),
L(Hη,GH$n) + L(HH$n,Gη)

2
}

If we let n→∞ above and use continuity of H and g, we conclude that L(η, ω) < L(η, ω)
and hence η = ω.

5 Application to coupled α-Meir-Keeler fixed points

Let F : ϒ × ϒ → ϒ be a mapping. We say that ($,ϑ) ∈ ϒ × ϒ is a coupled fixed point
of F if F ($,ϑ) = x and F (ϑ,$) = y. If we define T : ϒ × ϒ → ϒ × ϒ by T ($,ϑ) =
(F ($,ϑ), F (ϑ,$)), then clearly ($,ϑ) is a coupled fixed point of F if and only if ($,ϑ) is a
fixed point of T . If ($0, ϑ0) ∈ ϒ × ϒ then the F -orbit of ($0, ϑ0) means the orbit {($n, ϑn) :
n = 0, 1, 2, ...} where ($n+1, ϑn+1) = T ($n, ϑn).

If (ϒ,L) is a metric like space then ρ : ϒ× ϒ→ R defined by ρ(($,ϑ), (u, v)) = L($,u) +
L(ϑ, v) is a metric on ϒ× ϒ.

Theorem 5.1. Let (ϒ,L) be a complete metric like space, and F : ϒ × ϒ → ϒ be a continuous
mapping. Also, let α : ϒ2 × ϒ2 → R ∪ {0} be a mapping. Assume the following:

(i) For all ($,ϑ), (u, v) ∈ ϒ× ϒ, we have

α(($,ϑ), (u, v)) ≥ 1 implies α((F ($,ϑ), (F (ϑ,$)), (F (u, v), F (v, u))) ≥ 1.

Also assume there exists ($0, ϑ0) ∈ ϒ× ϒ such that

α((F (ϑ0, $0), F ($0, ϑ0)), (ϑ0, $0)) ≥ 1

and
α(($0, ϑ0), (F ($0, ϑ0), F (ϑ0, $0))) ≥ 1;
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(ii) For each ε > 0 there exists δ > 0 such that

ε ≤ 1
2
[L($,u) + L(ϑ, v)] < δ + ε⇒ α(($,ϑ), (u, v))L(F ($,ϑ), F (u, v)) < ε.

Then the sequence ρn = ρ(($n, ϑn), ($n+1, ϑn+1)) is monotone decreasing. Moreover, if

(iii) on the F−orbit of ($0, ϑ0), we have

α(($n, ϑn), ($j , ϑj)) ≥ 1

and
α((ϑj , $j), (ϑn, $n)) ≥ 1 for all n, j.

Then either (1) F has a coupled fixed point in the F− orbit {($n, ϑn)} of ($0, ϑ0) or (2) F has a
coupled fixed point (p, q) and lim ρ($n, ϑn) = (p, q). If moreover, we assume that the following
condition (H) holds: If {($n, ϑn)} is a sequence in ϒ×ϒ such that α(($n, ϑn), ($n+1, ϑn+1) ≥
1 for all n and L($n, $)→ 0,L(ϑn, ϑ)→ 0 then α(($n, ϑn), ($,ϑ)) ≥ 1 and α((ϑ,$), (ϑn, $n)) ≥
1 for all n, then uniqueness of the coupled fixed point is obtained.

Proof. The proof will follow by applying Corollary 3.9 with H = T as above, on the metric like
space (ϒ× ϒ, ρ). The controlling function will be β : ϒ2 × ϒ2 → R ∪ {0} given by

β(($,ϑ), (u, v)) = min{α(($,ϑ), (u, v)), α((ϑ,$), (v, u))}.

In fact, if ε > 0 is given then by the assumption 2, find δ′ > 0 such that

ε

2
≤ 1

2
[L($,u) + L(ϑ, v)] < δ′ +

ε

2
⇒ α(($,ϑ), (u, v))L(F ($,ϑ), F (u, v)) <

ε

2
.

Let δ = 2δ′ and assume ε ≤ ρ(($,ϑ), (u, v)) < δ + ε. Then

ε

2
≤ 1

2
[L($,u) + L(ϑ, v)] < δ′ +

ε

2

and
ε

2
≤ 1

2
[L(v, u) + L(u,$)] < δ′ +

ε

2
.

Hence,

α(($,ϑ), (u, v))L(F ($,ϑ), F (u, v)) <
ε

2

and
α((v, u), (ϑ,$))L(F (ϑ,$), F (v, u)) <

ε

2
.

Which leads to that
β(($,ϑ), (u, v))ρ(T ($,ϑ), T (u, v)) < ε.

6 Conclusion

In this manuscript, we have proved new fixed point theorem for generalized Meir-Keeler α−contractive
mappings which is generalization of many results in the literature. Also, we presented an appli-
cation of our result to coupled α-Meir-Keeler fixed points. In closing, we would like to bring to
the reader’s attention the following open question;
Question1:
Can we prove Theorem 3.8 and Theoem 4.5, in double controlled metric like spaces?
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