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Abstract Let n ∈ N. An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1
and |P (x)| = ‖P‖, where P(nE) denotes the space of all continuous n-homogeneous polyno-
mials on E. For P ∈ P(nE), we define

Norm(P ) =
{
x ∈ E : x is a norming point of P

}
.

Norm(P ) is called the norming set of P . We classify Norm(P ) for every P ∈ P(2R2
h(1/2)),

where R2
h(1/2) = R2 with the hexagonal norm of weight 1

2 .

1 Introduction

Let us introduce a brief history of norm attaining multilinear forms and polynomials on Banach
spaces. In 1961 Bishop and Phelps [2] showed that the set of norm attaining functionals on a
Banach space is dense in the dual space. Shortly after, attention was paid to possible extensions
of this result to more general settings, specially bounded linear operators between Banach spaces.
The problem of denseness of norm attaining functions has moved to other types of mappings
like multilinear forms or polynomials. The first result about norm attaining multilinear forms
appeared in a joint work of Aron, Finet and Werner [1], where they showed that the Radon-
Nikodym property is sufficient for the denseness of norm attaining multilinear forms. Choi and
Kim [3] showed that the Radon-Nikodym property is also sufficient for the denseness of norm
attaining polynomials. Jiménez-Sevilla and Payá [5] studied the denseness of norm attaining
multilinear forms and polynomials on preduals of Lorentz sequence spaces.

Let n ∈ N, n ≥ 2. We write SE for the unit sphere of a real Banach space E. A mapping
P : E → R is a continuous n-homogeneous polynomial if there exists a continuous n-linear
form L on the product E×· · ·×E such that P (x) = L(x, . . . , x) for every x ∈ E. We denote by
P(nE) the Banach space of all continuous n-homogeneous polynomials from E into R endowed
with the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details about the theory of multilinear mappings
and polynomials on a Banach space, we refer to [4].

An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1 and |P (x)| = ‖P‖.
For P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.

Norm(P ) is called the norming set of P . Notice that x ∈ Norm(P ) if and only if −x ∈
Norm(P ). Indeed, if x ∈ Norm(P ), then

|P (−x)| = |(−1)nP (x)| = |P (x)| = ‖P‖,

which shows that −x ∈ Norm(P ). If −x ∈ Norm(P ), then x = −(−x) ∈ Norm(P ). The
following examples show that it is possible that Norm(P ) be empty, a finite or an infinite set.

Examples. (a) Let

P ((xi)i∈N) =
∞∑
i=1

1
2i
x2
i ∈ P(2c0).
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Then, Norm(P ) = ∅.
(b) Let

P ((xi)i∈N) = x2
1 −

∞∑
i=2

1
2i
x2
i ∈ P(2c0).

Then,
Norm(P ) = {±e1}.

(c) Let
P ((xi)i∈N) = x2

1 ∈ P(2c0).

Then,
Norm(P ) = {((±1, x2, x3, . . .) ∈ c0 : |xj | ≤ 1 for j = 2, 3, . . .}.

If Norm(P ) 6= ∅, P ∈ P(nE) is called a norm attaining polynomial (see [3]).
It seems to be natural and interesting to study Norm(P ) for P ∈ P(nE). For m ∈ N, let

lm∞ := Rm with the supremum norm. Notice that for every P ∈ P(nlm∞), Norm(P ) 6= ∅ since
Slm∞

is compact. Kim [7] classified Norm(P ) for every P ∈ P(2l2∞).

Let R2
h(1/2) denote the plane with the hexagonal norm

‖(x, y)‖h(1/2) = max
{
|y|, |x|+ 1

2
|y|
}
.

In this paper, we classify Norm(P ) for every P ∈ P(2R2
h(1/2)).

2 Main results

Kim [6] presented an explicit formulae for the norm of P ∈ P(2R2
h(1/2)).

Theorem 2.1. ([6]). Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) with a ≥ 0, c ≥ 0 and

a2 + b2 + c2 6= 0. Then:

Case 1: c < a

If a ≤ 4b, then

‖P‖ = max
{
a, b, |1

4
a+ b|+ 1

2
c,

4ab− c2

4a
,

4ab− c2

2c+ a+ 4b
,

4ab− c2

|2c− a− 4b|

}
= max

{
a, b, |1

4
a+ b|+ 1

2
c
}
.

If a > 4b, then ‖P‖ = max
{
a, |b|,

∣∣∣ 1
4a+ b

∣∣∣+ 1
2c,
|c2−4ab|

4a

}
.

Case 2: c ≥ a

If a ≤ 4b, then ‖P‖ = max
{
a, b,

∣∣∣ 1
4a+ b

∣∣∣+ 1
2c,
|c2−4ab|
2c+a+4b

}
.

If a > 4b, then ‖P‖ = max
{
a, |b|,

∣∣∣ 1
4a+ b

∣∣∣+ 1
2c,

c2−4ab
2c−a−4b

}
.

Notice that if P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a, b, c ∈ R with ‖P‖ = 1,

then |a| ≤ 1, |b| ≤ 1 and |c| ≤ 2.

In order to classify Norm(P ) for every P ∈ P(2R2
h(1/2)) we need some Lemmas.

Lemma 2.2. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. Let c < a and 4b < a.
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(1) If b < 0, then(∣∣∣1
4
a+ b

∣∣∣+ 1
2
c < 1,

|c2 − 4ab|
4a

< 1
)
,
(∣∣∣1

4
a+ b

∣∣∣+ 1
2
c = 1,

|c2 − 4ab|
4a

< 1
)

or
(∣∣∣1

4
a+ b

∣∣∣+ 1
2
c < 1,

|c2 − 4ab|
4a

= 1
)
.

(2) If b ≥ 0, then |c
2−4ab|

4a < 1
2 .

Proof. (1). Assume that

(∗)
∣∣∣1
4
a+ b

∣∣∣+ 1
2
c = 1 =

|c2 − 4ab|
4a

.

Case 1. |b| ≤ a
4

Adding two equalities in (∗), we get 1
4a + 1

2c +
c2

4a = 2, so a2 + 2a(c − 4) + c2 = 0. Thus
a = 4− c− 2

√
4− 2c. Since c < a = 4− c− 2

√
4− 2c, we have 0 < c(c− 2) < 0, which is a

contradiction.

Case 2. |b| > a
4

Subtracting two equalities in (∗), we get − 1
4a+

1
2c−

c2

4a = 0, so 0 < (a− c)2 = 0, which is
a contradiction.

(2). Since b < 1
4a ≤

1
4 , it follows that

|c2 − 4ab|
4a

≤ c2 + 4ab
4a

=
c2

4a
+ b

<
c

4

( c
a

)
+

1
4
<

c

4
+

1
4

<
a

4
+

1
4
≤ 1

2
. �

Lemma 2.3. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. If c ≥ a, 0 < a ≤ 4b, then |c
2−4ab|

2c+a+4b < | 14a+ b|+ 1
2c.

Proof. Let l := | 14a+ b|+ 1
2c.

Case 1. c2 − 4ab ≥ 0

It follows that
|c2 − 4ab|

2c+ a+ 4b
=

c2 − 4ab
4l

<
c2

4l
<

4l2

4l
= l.

Case 2. c2 − 4ab < 0

By the arithmetic and geometric mean inequality,
√
ab ≤ 1

4a+ b ≤ l. Since c > 0, we have

|c2 − 4ab|
2c+ a+ 4b

=
4ab− c2

4l
<

4ab
4l

=
ab

l
=

(
√
ab)2

l
≤ l2

l
= l.

This completes the proof.

Corollary 2.4. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. Suppose that c ≥ a, 0 < a ≤ 4b. If | 14a+ b|+ 1
2c = 1, then |c

2−4ab|
2c+a+4b < 1.

Proof. This follows from Lemma 2.3.
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Lemma 2.5. Let P (x, y) = ax2+by2+cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R with

‖P‖ = 1. Suppose that a ≤ c < 2, 4b < a and
(
b ≥ 0 or (b < 0, |b| ≤ a

4 )
)
. If | 14a+ b|+ 1

2c = 1,

then c2−4ab
2c−a−4b < 1.

Proof. Assume that c2−4ab
2c−a−4b = 1.

Case 1. b ≥ 0

Notice that c = 2− 1
2a− 2b and 0 = 1

4a
2 − 2ab+ 4b2 = ( 1

2a− 2b)2, 4b < a = 4b. This is a
contradiction.

Case 2. b < 0

Notice that if |b| ≤ a
4 , by an analogous argument as in the case 1, 4b < a = 4b. This is a

contradiction. This completes the proof.

Let

L1 =
{
(t, 1) : 0 ≤ t ≤ 1

2

}
, L2 =

{
(t,−2t+ 2) :

1
2
< t ≤ 1

}
,

L3 =
{
(t, 2t− 2) :

1
2
< t ≤ 1

}
, L4 =

{
(t,−1) : 0 ≤ t ≤ 1

2

}
.

Lemma 2.6. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. Then Norm(P ) = {±(x, y) : (x, y) ∈
⋃

1≤j≤4 Lj , |P (x, y)| = 1}.

Proof. This is obvious.

Lemma 2.7. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1 and abc 6= 0. Then the following assertions hold:
(a) If a = | 14a+ b|+ 1

2c = 1 and (b > 0 or 1
4a > |b| = −b), then

Norm(P ) =
{
± (1, 0),±(1

2
, 1)
}
.

If a = | 14a+ b|+ 1
2c = 1 and 1

4a = |b| = −b, then

Norm(P ) =
{
± (1, 0),±(1

2
,±1)

}
.

If a = | 14a+ b|+ 1
2c = 1 and 1

4a < |b| = −b, then

Norm(P ) =
{
± (1, 0),±(1

2
,−1)

}
.

(b) If c < a, 4b < a, and a = |c2−4ab|
4a = 1 > | 14a+ b|+ 1

2c, then

Norm(P ) =
{
± (1, 0),±

( c

2a
,−1

)}
.

(c) If c ≥ a, 4b < a, and a = c2−4ab
2c−a−4b = 1 > | 14a+ b|+ 1

2c, then

Norm(P ) =
{
± (1, 0)

}
.

Proof. Notice that ∣∣∣P(1
2
, 1
)∣∣∣ = ∣∣∣1

4
a+ b+

1
2
c
∣∣∣, ∣∣∣P( c

2a
, − 1

)∣∣∣ = |c2 − 4ab|
4a

,∣∣∣P( c− 4b
2c− a− 4b

,
2(c− a)

2c− a− 4b

)∣∣∣ = ∣∣∣ c2 − 4ab
2c− a− 4b

∣∣∣.
Let (x, y) ∈ Norm(P ). By Lemma 2.6, we may assume that (x, y) ∈

⋃
1≤j≤4 Lj . Notice that

P (x, y) = ±1 are quadratic equations of the variable 0 ≤ t ≤ 1. Solving the quadratic equations
P (x, y) = ±1 by the arguments in the proof of Theorem A of [6], we complete the proof.
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Lemma 2.8. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. Then the following assertions hold:
(a) Suppose that (1

4
a+ b

)
+

1
2
c =

c2 − 4ab
2c− a− 4b

= 1.

If c ≥ a, then ( c− 4b
2c− a− 4b

,
2(c− a)

2c− a− 4b

)
=
(1

2
, 1
)
.

(b) Suppose that
|c2 − 4ab|

4a
= −

(1
4
a+ b

)
+

1
2
c = 1.

If c ≤ a, then ( c

2a
,−1

)
=
(1

2
,−1

)
.

Proof. (a). By Theorem 2.1, c ≥ a = 4b. Thus,( c− 4b
2c− a− 4b

,
2(c− a)

2c− a− 4b

)
=
(1

2
, 1
)
.

(b). We claim that c = a. Suppose not. By Theorem 2.1, c < a = 4b. Since

1 =
∣∣∣1
4
a+ b

∣∣∣+ 1
2
c =

1
4
a+ b+

1
2
c,

2− a = c < a, so a > 1. This is a contradiction. Hence, c = a. This shows (b).

We are in position to prove the main result of this paper.

Theorem 2.9. Let P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h(1/2)) for some a ≥ 0, c ≥ 0 and b ∈ R

with ‖P‖ = 1. Then the following assertions hold:

Case 1. abc = 0
If a = 1, b = c = 0 then Norm(P ) =

{
± (1, 0)

}
.

If b = 1, a = c = 0, then Norm(P ) =
{
± (t,±1) : 0 ≤ t ≤ 1

2

}
.

If c = 2, a = b = 0, then Norm(P ) =
{
± ( 1

2 ,±1)
}
.

Let ab 6= 0, c = 0.
Suppose that b > 0.
Let a ≤ 4

3b.

If a = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 ,±1)
}
.

If 0 < a < 1, then Norm(P ) =
{
± ( 1

2 ,±1)
}
.

If a > 4
3b, then Norm(P ) =

{
± (1, 0)

}
.

Suppose that b < 0.
If a > |b|, then Norm(P ) =

{
± (1, 0)

}
.

If a < |b|, then Norm(P ) =
{
± (0, 1)

}
.

If a = |b|, then Norm(P ) =
{
± (1, 0),±(0, 1)

}
.

Let ac 6= 0, b = 0.
If c ≤ a, then Norm(P ) =

{
± (1, 0)

}
.

If c > a, then Norm(P ) =
{
±
(

c
2c−a ,

2(c−a)
2c−a

)}
.

If bc 6= 0, b > 0, a = 0 then Norm(P ) =
{
± ( 1

2 , 1)
}
.
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If bc 6= 0, b < 0, a = 0 then Norm(P ) =
{
± ( 1

2 ,−1)
}
.

Case 2. abc 6= 0

Subcase 1. 0 < c < a and 0 < a ≤ 4b

Suppose that a = 1.
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}
.

If | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)}.

Suppose that a < 1. Then Norm(P ) =
{
± ( 1

2 , 1)
}
.

Subcase 2. 0 < c < a and a > 4b

Let b > 0.

Suppose that a = 1.
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}
.

If | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)}.

Suppose that a < 1. Then Norm(P ) =
{
± ( 1

2 , 1)
}
.

Let b < 0.

Suppose that a = 1.
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}
.

If |c
2−4ab|

4a = 1, then Norm(P ) =
{
± (1, 0),±

(
c

2a , − 1
)}

.

If | 14a+ b|+ 1
2c < 1 and |c

2−4ab|
4a < 1, then Norm(P ) =

{
± (1, 0)

}
.

Subcase 3. c ≥ a > 0 and 0 < a ≤ 4b

If a = 1, b < 1 and | 14a+ b|+ 1
2c = 1, then Norm(P ) =

{
± (1, 0),±( 1

2 , 1)
}
.

If a = 1, b < 1 and | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)}.

If a < 1, b < 1 and | 14a+ b|+ 1
2c = 1, then Norm(P ) =

{
± ( 1

2 , 1)
}
.

Subcase 4. c ≥ a and a > 4b

Suppose that a = 1.
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}
.

If c2−4ab
2c−a−4b = 1, then Norm(P ) =

{
± (1, 0),±

(
c−4b

2c−a−4b ,
2(c−a)

2c−a−4b

)}
.

If c2−4ab
2c−a−4b < 1, | 14a+ b|+ 1

2c < 1, then Norm(P ) = {±(1, 0)}.

Suppose that 0 < a < 1.
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± ( 1

2 , 1)
}
.

If c2−4ab
2c−a−4b = 1, then Norm(P ) =

{
±
(

c−4b
2c−a−4b ,

2(c−a)
2c−a−4b

)}
.

Proof. We use Theorem 2.1 and Lemmas 2.2, 2.3, 2.5–2.8.
Let (x, y) ∈ Norm(P ). By Lemma 2.6, we may assume that (x, y) ∈

⋃
1≤j≤4 Lj .

Case 1. abc = 0

Let P (x, y) = x2. It is obvious that Norm(P ) =
{
± (1, 0)

}
.

Let P (x, y) = ±y2, It is obvious that Norm(P ) =
{
± (t,±1) : 0 ≤ t ≤ 1

2

}
.

Let P (x, y) = 2xy. It is obvious that Norm(P ) =
{
± ( 1

2 ,±1)
}
.

Let P (x, y) = ax2 + by2 for ab 6= 0.
Suppose that b > 0.
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Let a ≤ 4
3b. Notice that P (x, y) = ax2 + (1− 1

4a)y
2 for 0 < a ≤ 1. If a = 1, then P (x, y) =

x2 + 3
4y

2 and Norm(P ) =
{
± (1, 0),±( 1

2 ,±1)
}
. If 0 < a < 1, then Norm(P ) =

{
± ( 1

2 ,±1)
}
.

Suppose that b < 0. Notice that if a > |b|, then Norm(P ) =
{
± (1, 0)

}
, if a < |b|, then

Norm(P ) =
{
± (0, 1)

}
, and that if a = |b|, then Norm(P ) =

{
± (1, 0),±(0, 1)

}
.

Let P (x, y) = ax2 + cxy for ac 6= 0. If c < a, then P (x, y) = x2 + cxy for 0 < c < 1. Thus,
Norm(P ) =

{
± (1, 0)

}
. If c = a, then P (x, y) = x2 + xy and Norm(P ) =

{
± (1, 0)

}
. Notice

that if c > a, then Norm(P ) =
{
±
(

c
2c−a ,

2(c−a)
2c−a

)}
.

Let P (x, y) = by2 + cxy for bc 6= 0, b > 0. Notice that P (x, y) = by2 + 2(1 − b)xy for
0 < b < 1. Hence, Norm(P ) =

{
± ( 1

2 , 1)
}
.

Let P (x, y) = by2 + cxy for bc 6= 0, b < 0. Notice that P (x, y) = by2 + 2(1 + b)xy for
−1 < b < 0. Thus, Norm(P ) =

{
± ( 1

2 ,−1)
}
.

Case 2. abc 6= 0

We claim that |b| < 1. Indeed, note that if b = 1, then P (x, y) = y2. Thus a = c = 0. This is
a contradiction. Note also that if b = −1, then c = 0. This is a contradiction.

Subcase 1. 0 < c < a and 0 < a ≤ 4b

Suppose that a = 1. By Lemma 2.7, the following hold:
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}

;

If | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)};

If a < 1, then Norm(P ) =
{
± ( 1

2 , 1)
}
.

Subcase 2. 0 < c < a and a > 4b

Let b > 0.

Suppose that a = 1.
By Lemma 2.7, the following hold:
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}

;

If | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)};

If a < 1, then Norm(P ) =
{
± ( 1

2 , 1)
}
.

Let b < 0.

Suppose that a = 1. By Lemma 2.2(1),(∣∣∣1
4
a+ b

∣∣∣+ 1
2
c < 1,

|c2 − 4ab|
4a

< 1
)
,
(∣∣∣1

4
a+ b

∣∣∣+ 1
2
c = 1,

|c2 − 4ab|
4a

< 1
)

or
(∣∣∣1

4
a+ b

∣∣∣+ 1
2
c < 1,

|c2 − 4ab|
4a

= 1
)
.

By Lemma 2.7, the following hold:
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}

;

If |c
2−4ab|

4a = 1, then Norm(P ) =
{
± (1, 0),±

(
c

2a , − 1
)}

.

Subcase 3. c ≥ a > 0 and 0 < a ≤ 4b

Note that c < 2.
By Lemma 2.3, |c

2−4ab|
2c+a+4b < | 14a+ b|+ 1

2c ≤ 1. By Lemma 2.7, the following hold:

If a = 1, b < 1 and | 14a+ b|+ 1
2c = 1, then Norm(P ) =

{
± (1, 0),±( 1

2 , 1)
}

;

If a = 1, b < 1 and | 14a+ b|+ 1
2c < 1, then Norm(P ) = {±(1, 0)};

If a < 1, b < 1 and | 14a+ b|+ 1
2c = 1, then Norm(P ) =

{
± ( 1

2 , 1)
}
.
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Subcase 4. c ≥ a and a > 4b

Suppose that a = 1. The following hold:
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± (1, 0),±( 1

2 , 1)
}

;

If c2−4ab
2c−a−4b = 1, then Norm(P ) =

{
± (1, 0),±

(
c−4b

2c−a−4b ,
2(c−a)

2c−a−4b

)}
;

If c2−4ab
2c−a−4b < 1, | 14a+ b|+ 1

2c < 1, then Norm(P ) = {±(1, 0)}.

Suppose that 0 < a < 1.
By Lemma 2.7, the following hold:
If | 14a+ b|+ 1

2c = 1, then Norm(P ) =
{
± ( 1

2 , 1)
}

;

If c2−4ab
2c−a−4b = 1, then Norm(P ) =

{
±
(

c−4b
2c−a−4b ,

2(c−a)
2c−a−4b

)}
.

This completes the proof.
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