General Dissection Formula for Ramanujan Quantity
B. N. Dharmendra and P. S. Guruprasad

Communicated by V. Lokesha

MSC 2020 Classifications: Primary 33D15, 40A15, 11A55, 30B70.

Keywords and phrases: Continued fraction, Quantities, Theta functions.

Abstract. In this paper, we study the several General Dissection Formula of degree 4, 8, 12 and 16 for Ramanujan Quantity \(R(a, b; p, q) \) when \(b \) is a positive even integer. Also, we obtain some applications to theory of partitions of general dissection that we obtain in this paper itself.

1 Introduction

In Chapter 16 of his second notebook [2, 8], Ramanujan develops the theory of theta-function and is defined by

\[
f(a, b) := \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q; -q)_\infty}{(q; -q)_\infty}, \quad (1.1)
\]

where \((a; q)_0 = 1\) and \((a; q)_{\infty} = (1 - a)(1 - aq)(1 - aq^2)\ldots\).

Also, we define

\[
(q^{r\pm}; q^s)_{\infty} := (q^r, q^{s-r}; q^s)_{\infty},
\]

where \(r\) and \(s\) are positive integers with \(r < s\). We use this particular notation in the last section of this paper.

Following Ramanujan, we defined

\[
\varphi(q) := f(q, q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q^2; -q^2)_\infty}{(q^2; -q^2)_\infty},
\]

\[
\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{n^2} = \frac{(q^2; q^2)_\infty}{(q^3; q^3)_\infty},
\]

\[
f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2} = \frac{(-q^2; -q^2)_\infty}{(q^2; -q^2)_\infty},
\]

and

\[
\chi(q) := \frac{(-q; -q^2)_\infty}{(q^2; -q^2)_\infty}.
\]

In [6],[7] Nikos Bagis define Ramanujan Quantities \(R(a, b; p, q) \) as

\[
R(a, b; p, q) = q^{-(a-b)/2+(a^2-b^2)/(2p)} \prod_{n=0}^{\infty} (1 - q^{np})(1 - q^{p-np}) \prod_{n=0}^{\infty} (1 - q^{pnp})(1 - q^{np^2}),
\]

where \(a, b,\) and \(p\) are positive rationales such that \(a + b < p\). General Theorem such

\[
\frac{q^{B-A} \left(a-bq_1 \right)(b_1-a_1q_1) \left(a_1-b_1q_1^2 \right)(b_1-a_1q_1^2) \ldots}{1-a_1b_1 (1-a_1b_1)(q_1^2 + 1)}
\]
\[
\prod_{n=0}^{\infty} \frac{(1 - q^n q^{2n}) (1 - q^{2n+1})}{(1 - q^{2n+1}) (1 - q^{2n+2})} = \prod_{n=0}^{\infty} \frac{(1 - q^n a q^{2n}) (1 - q^{2n+1})}{(1 - q^{2n+1}) (1 - q^{2n+2})}
\]

(1.7)

where \(a_1 = q^A, b_1 = q^B, q_1 = q^{A+B}, a = 2A + 3p/4, 2B + p/4, \) and \(p = 4(A + B), |q| < 1, \)
are proved.

In this paper, we study the several General Dissection Formula for Ramanujan Quantity \(R(a, b, p; q) \).

The 2-dissections, 4-dissections and 8-dissections are studied by several mathematicians including
S. Ramanujan. For details one may refer [9, p. 50], [1] and [4].

In the last section, we extract partition theoretic interpretations of some identities that we
obtain in the other sections.

Definition. “A positive integer \(n \) has \(k \) colors if there are \(k \) copies of \(n \) available and all of
them are viewed as distinct objects. Partitions of positive integer into parts with colors are called
colored partitions.”

For example, if 1 is allowed to have two colors, say \(r \) (red) and \(g \) (green), then all the colored
partitions of 2 are 2, 1\(_r\) + 1\(_r\), 1\(_r\) + 1\(_g\) and 1\(_g\) + 1\(_g\). Note that

\[
\frac{1}{(q^u, q^v)^k}\]

is the generating function for the number of partitions of \(n \) where all the parts are congruent to
\(u \) (mod \(v \)) and have \(k \) colors. Also rewriting the same modular relation in different ways results
in different partition theoretic interpretations.

2 Preliminary results

[7] [a, p; q] = (q^{p-a}; q^p)_{\infty}(q^a; q^p)_{\infty}

(2.1)

where \(q = e^{-\pi \sqrt{r}} \) and \(a, p, r > 0. \)

[7] \(R(a, b, p; q) := q^{-(a-b)/2 + (a^2-b^2)/(2p)} [a, p; q] [b, p; q]. \)

(2.2)

Lemma 2.1. [2, Entry 29(i), (ii), p. 45] If \(p = ab = cd, \) then

\[
f(a, b) f(c, d) + f(-a, -b) f(-c, -d) = 2f(ac, bd) f(ad, bc),
\]

(2.3)

\[
f(a, b) f(c, d) - f(-a, -b) f(-c, -d) = 2af\left(\frac{b}{c}, \frac{c}{b}, abcd\right) f\left(\frac{b}{d}, \frac{d}{b}, abcd\right),
\]

(2.4)

Lemma 2.2. [2, Entry 30(ii), (iii), (v), (vi), p. 46]

\[
f(a, b) + f(-a, -b) = 2f(a^2 b, ab^3),
\]

(2.5)

\[
f(a, b) - f(-a, -b) = 2af\left(\frac{b}{a}, \frac{a}{b}, a^4 b^4\right),
\]

(2.6)

\[
f^2(a, b) + f^2(-a, -b) = 2f(a^2, b^2) \varphi(ab),
\]

(2.7)

\[
f^2(a, b) - f^2(-a, -b) = 4af\left(\frac{b}{a}, \frac{a}{b}, a^2 b^2\right) \psi(a^2 b^2).
\]

(2.8)
Lemma 2.3. [2, Entry 25(iii), p.40] We have,
\[\varphi^2(-q^2) = \varphi(q)\varphi(-q), \quad \varphi(-q^2)\psi(q^2) = \psi(q)\psi(-q). \quad (2.9) \]

Lemma 2.4. [2, Entry 25(iv), p.40] We have,
\[\psi^2(q^2) = \psi(q^2)\varphi(q), \quad (2.10) \]

Lemma 2.5. [5]
\[f(-q, -q^{11}) = \frac{\varphi(q) - \varphi(q^2)}{2q\chi(q)} \quad (2.11) \]

3 Ramanujan Quantities of \(R(a, b, p; q) \)

In this section, we obtain certain Ramanujan Quantities of \(R(a, b, p; q) \) in terms of Ramanujan’s theta–function.

Theorem 3.1. We have
\[R(q) := R(1, k, 2k; q) = q^{(k-1)^2/4k} \frac{f(-q, -q^{2k-1})}{f(-q^k, -q^k)}. \quad (3.1) \]

Proof. Employing equations (2) and (2) with \(a = 1, b = k, \) a positive even integer and \(p = 2k, \) we get
\[R(1, k, 2k; q) = q^{-(1-k)/2+(1-k^2)/(4k)} \frac{(q; q^{2k})_\infty(q^{2k-1}; q^{2k})_\infty}{(q^{2k-1}; q^{2k})_\infty(q^k; q^{2k})_\infty}. \quad (3.2) \]

Using Ramanujan’s Theat–function definition in above equation (3.2), we obtain (3.1). \(\Box \)

4 General \(n \)-Dissections of \(R^*(q) \)

4.1 The 2-dissection of \(R^*(q) \)

Theorem 4.1. If \(R^*(q) := \frac{f(-q, -q^{2k-1})}{f(-q^k, -q^k)} = \sum_{n=0}^{\infty} a_n q^n, \) then
\[\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^{k+1}, q^{3k-1})}{\varphi(-q^{k/2})}, \quad (4.1) \]
\[\sum_{n=0}^{\infty} a_{2n+1} q^n = -\frac{f(q^{k-1}, q^{3k+1})}{\varphi(-q^{k/2})}. \quad (4.2) \]

Proof. We have
\[\sum_{n=0}^{\infty} a_n q^n = \frac{f(-q, -q^{2k-1})}{f(-q^k, -q^k)}, \]
\[= \frac{f(-q, -q^{2k-1})f(q^k, q^k)}{f(-q^k, -q^k)f(q^k, q^k)}. \quad (4.3) \]

Putting \(a = -q, b = -q^{2k-1} \) and \(c = d = q^k \) in Lemma 2.1, we obtain
\[f(-q, -q^{2k-1})f(q^k, r^k) = f^2(-q^{k+1}, -q^{3k-1}) - qf^2(-q^{k-1}, -q^{3k+1}). \quad (4.4) \]

Putting \(a = q^k \) and \(b = q^k \) in Lemma 2.2, we get
\[f(q^k, q^k)f(-q^k, -q^k) = f^2(-q^{2k}, -q^{2k}). \quad (4.5) \]
Employing (4.4) and (4.5) in (4.3), we deduce that
\[R^*(q) = \sum_{n=0}^{\infty} a_n q^n = \frac{f^2(-q^{k+1}, -q^{3k-1}) - qf^2(-q^{k-1}, -q^{3k+1})}{\varphi^2(-q^{2k})}. \] (4.6)

Hence
\[R^*(q) + R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n} q^{2n} = \frac{f^2(-q^{k+1}, -q^{3k-1}) + f^2(q^{k+1}, q^{3k-1}) - q [f^2(-q^{k-1}, -q^{3k+1}) - f^2(q^{k-1}, q^{3k+1})]}{\varphi^2(-q^{2k})}. \] (4.7)

Putting \(a = q^{k+1} \) and \(b = q^{3k-1} \) in (2.7), \(a = -q^{k-1} \) and \(b = -q^{3k+1} \) in (2.8), we get
\[f^2(q^{k+1}, q^{3k+1}) + f^2(-q^{k+1}, -q^{3k-1}) = 2f(q^{2(k+1)}, q^{2(3k-1)}) \varphi(q^{4k}), \] (4.8)
\[f^2(-q^{k-1}, -q^{3k+1}) - f^2(q^{k-1}, q^{3k+1}) = -4q^{k-1} f(q^{2(k+1)}, q^{2(3k-1)}) \psi(q^{8k}). \] (4.9)

Employing the above equations (4.8) and (4.9) in (4.7), we deduce that
\[R^*(q) + R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n} q^{2n} = 2f(q^{2(k+1)}, q^{2(3k-1)}) \left[\varphi(q^{4k}) + 2q^k \psi(q^{8k}) \right]. \] (4.10)

Putting \(a = q^k \) in Lemma 2.3, we get
\[\varphi(q^k) = \varphi(q^{4k}) + 2q^k \psi(q^{8k}). \] (4.11)

Substituting equation (4.11) in the equation (4.10), we obtain
\[R^*(q) + R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n} q^{2n} = 2f(q^{2(k+1)}, q^{2(3k-1)}) \varphi(q^k). \] (4.12)

Using (2.9) in the above equation, we get
\[2 \sum_{n=0}^{\infty} a_{2n} q^{2n} = 2f(q^{2(k+1)}, q^{2(3k-1)}) \varphi(q^k). \] (4.13)

Replace \(q \) by \(q^{1/2} \) in (4.13), we obtain (4.1).

Similarly
\[R^*(q) - R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n+1} q^{2n+1} \]
\[= \frac{f^2(-q^{k+1}, -q^{3k-1}) - f^2(q^{k+1}, q^{3k-1}) - q [f^2(-q^{k-1}, -q^{3k+1}) + f^2(q^{k-1}, q^{3k+1})]}{\varphi^2(-q^{2k})}. \] (4.14)

Putting \(a = -q^{k+1} \) and \(b = -q^{3k-1} \) in (2.8), \(a = q^{k-1} \) and \(b = q^{3k+1} \) in (2.7), we get
\[f^2(-q^{k+1}, -q^{3k-1}) - f^2(q^{k+1}, q^{3k-1}) = -4q^{k+1} f(q^{2(k+1)}, q^{2(3k+1)}) \psi(q^{8k}), \] (4.15)
\[f^2(-q^{k-1}, -q^{3k+1}) + f^2(q^{k-1}, q^{3k+1}) = 2f(q^{2(k-1)}, q^{2(3k+1)}) \varphi(q^{4k}). \] (4.16)
Employing the above equations (4.15) and (4.16) in (4.14), we deduce that

$$R^*(q) - R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n+1} q^{2n+1} = -2q \left(q^{2(2k-1)} + q^{2(3k+1)} \right) \frac{\varphi(q^{4k}) + 2q^{k}\psi(q^{4k})}{\varphi^2(-q^{2k})}.$$

(4.17)

Substituting equation (4.11) in the above equation, we get

$$R^*(q) - R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n+1} q^{2n} = -2q \left(q^{2(2k-1)} + q^{2(3k+1)} \right) \frac{\varphi(q^{k})}{\varphi^2(-q^{k})}.$$

(4.18)

Using (2.9) in the above equation, we get

$$R^*(q) - R^*(-q) = 2 \sum_{n=0}^{\infty} a_{2n+1} q^{2n} = -2q \left(q^{2(2k-1)} + q^{2(3k+1)} \right) \frac{\varphi(q^{k})}{\varphi(-q^{k})}.$$

(4.19)

Replace q by $q^{1/2}$ in (4.19), we obtain (4.2).

\[\square \]

4.2 The 4-dissection of $R^*(q)$

Theorem 4.2. We have

$$\sum_{n=0}^{\infty} a_{4n} q^n = \frac{f(q^{3k+1}, q^{5k-1})}{\varphi(-q^{k/2})},$$

(4.20)

$$\sum_{n=0}^{\infty} a_{4n+1} q^n = -\frac{f(q^{3k-1}, q^{5k+1})}{\varphi(-q^{k/2})},$$

(4.21)

$$\sum_{n=0}^{\infty} a_{4n+2} q^n = q^{k/2} \frac{f(q^{k-1}, q^{5k+1})}{\varphi(-q^{k/2})},$$

(4.22)

$$\sum_{n=0}^{\infty} a_{4n+3} q^n = -q^{(k-2)/2} \frac{f(q^{k+1}, q^{7k-1})}{\varphi(-q^{k/2})}.$$

(4.23)

Proof. From (4.1), We have

$$\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^{k+1}, q^{3k-1})}{\varphi(-q^{k/2})}.$$

(4.24)

Putting $a = q^{k+1}$ and $b = q^{3k-1}$ in (2.5) and (2.6), we obtain

$$f(q^{k+1}, q^{3k-1}) = f(q^{2(3k+1)}, q^{2(5k-1)}) + q^{k+1} f(q^{2(k-1)}, q^{2(7k-1)}).$$

(4.25)

Employing the above equation (4.25) in (4.24), we have

$$\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^{2(3k+1)}, q^{2(5k-1)}) + q^{k+1} f(q^{2(k-1)}, q^{2(7k+1)})}{\varphi(-q^{k/2})}.$$

(4.26)

This implies

$$\sum_{n=0}^{\infty} a_{4n+1} q^n = \frac{f(q^{2(3k+1)}, q^{2(5k-1)})}{\varphi(-q^{k/2})},$$

$$\sum_{n=0}^{\infty} a_{4n+2} q^{2n+1} = q^{k+1} \frac{f(q^{2(k-1)}, q^{2(7k+1)})}{\varphi(-q^{k/2})}.$$

Changing q by $q^{1/2}$ in the above equations, we obtain (4.20) and (4.22).

Proofs of (4.21) and (4.23) are similar.

\[\square \]
4.3 The 8-dissection of $R^*(q)$

Theorem 4.3. We have

\[\sum_{n=0}^{\infty} a_{8n} q^n = \frac{f(q^{7k+1}, q^{9k-1})}{\varphi(-q^{k/8})}, \]
(4.27)

\[\sum_{n=0}^{\infty} a_{8n+1} q^n = \frac{f(q^{7k-1}, q^{9k+1})}{\varphi(-q^{k/8})}, \]
(4.28)

\[\sum_{n=0}^{\infty} a_{8n+2} q^n = q^{k/4} \frac{f(q^{3k-1}, q^{11k+1})}{\varphi(-q^{k/8})}, \]
(4.29)

\[\sum_{n=0}^{\infty} a_{8n+3} q^n = -q^{(k-2)/4} \frac{f(q^{5k+1}, q^{11k-1})}{\varphi(-q^{k/8})}, \]
(4.30)

\[\sum_{n=0}^{\infty} a_{8n+4} q^n = q^{3k/2} \frac{f(q^{-1}, q^{15k+1})}{\varphi(-q^{k/8})}, \]
(4.31)

\[\sum_{n=0}^{\infty} a_{8n+5} q^n = -q^{(3k-2)/2} \frac{f(q^{k+1}, q^{15k-1})}{\varphi(-q^{k/8})}, \]
(4.32)

\[\sum_{n=0}^{\infty} a_{8n+6} q^n = q^{(3k-4)/4} \frac{f(q^{3k+1}, q^{15k-1})}{\varphi(-q^{k/8})}, \]
(4.33)

\[\sum_{n=0}^{\infty} a_{8n+7} q^n = -q^{(3k-2)/4} \frac{f(q^{3k-1}, q^{13k+1})}{\varphi(-q^{k/8})}. \]
(4.34)

Proof. From (4.20), we have

\[\sum_{n=0}^{\infty} a_{4n} q^n = \frac{f(q^{3k+1}, q^{5k-1})}{\varphi(-q^{k/4})}. \]
(4.35)

Putting $a = q^{3k+1}$ and $b = q^{5k-1}$ in (2.5) and (2.6), we obtain

\[f(q^{3k+1}, q^{5k-1}) = f(q^{2(7k+1)}, q^{2(9k-1)}) + q^{3k+1} f(q^{2(k-1)}, q^{2(15k+1)}). \]
(4.36)

Employing the above equation (4.36) in (4.35), we have

\[\sum_{n=0}^{\infty} a_{8n} q^n = \frac{f(q^{2(7k+1)}, q^{2(9k-1)}) + q^{3k+1} f(q^{2(k-1)}, q^{2(15k+1)})}{\varphi(-q^{k/4})}. \]
(4.37)

This implies

\[\sum_{n=0}^{\infty} a_{8n} q^{2n} = \frac{f(q^{2(7k+1)}, q^{2(9k-1)})}{\varphi(-q^{k/4})}, \]

\[\sum_{n=0}^{\infty} a_{8n+4} q^{2n+1} = q^{3k+1} \frac{f(q^{2(k-1)}, q^{2(15k+1)})}{\varphi(-q^{k/4})}. \]

Changing q by $q^{1/2}$ in the above equations, we obtain (4.27) and (4.31). Proofs of (4.28), (4.29), (4.30), (4.32), (4.33) and (4.34) are similar. \hfill \square

5 Dissections of $R^*_4(q)$ of degree 4

In this section, we obtain certain Ramanujan Quantities of $R(1, 2, 4; q)$ in terms of Ramanujan’s theta–function.

Theorem 5.1. We have

\[R_4(q) := R(1, 2, 4; q) = q^{1/8} \frac{f(-q, -q^3)}{f(-q^2, -q^2)}. \]
(5.1)

Proof. Employing (3.1) with $k = 2$, we get (5.1). \hfill \square
5.1 The 2-dissection of $R_{8}^{*}(q)$ of degree 4

Theorem 5.2. If $R_{8}^{*}(q) := \frac{f(-q, -q^{3})}{f(-q^{2}, -q^{2})} = \sum_{n=0}^{\infty} a_{n}q^{n}$, then

\begin{align*}
\sum_{n=0}^{\infty} a_{2n}q^{n} & = \frac{f(q^{3}, q^{5})}{\varphi(-q)}. \quad (5.2) \\
\sum_{n=0}^{\infty} a_{2n+1}q^{n} & = -\frac{f(q, q^{7})}{\varphi(-q)}. \quad (5.3)
\end{align*}

Proof. Employing equations (4.20)–(4.22) with $k = 2$, we get (5.2) and (5.3). \hfill \Box

5.2 The 4-dissection of $R_{8}^{*}(q)$ of degree 4

Theorem 5.3. We have

\begin{align*}
\sum_{n=0}^{\infty} a_{4n}q^{n} & = \frac{f(q^{7}, q^{9})}{\varphi(-q^{1/2})}, \quad (5.4) \\
\sum_{n=0}^{\infty} a_{4n+1}q^{n} & = -\frac{f(q^{5}, q^{11})}{\varphi(-q^{1/2})}, \quad (5.5) \\
\sum_{n=0}^{\infty} a_{4n+2}q^{n} & = q^{1/2}\frac{f(q^{9}, q^{23})}{\varphi(-q^{1/4})}, \quad (5.6) \\
\sum_{n=0}^{\infty} a_{4n+3}q^{n} & = -\frac{f(q^{11}, q^{21})}{\varphi(-q^{1/4})}. \quad (5.7)
\end{align*}

Proof. Employing equations (4.20)–(4.22) with $k = 2$, we get (5.4) – (5.7). \hfill \Box

5.3 The 8-dissection of $R_{8}^{*}(q)$ of degree 4

Theorem 5.4. We have

\begin{align*}
\sum_{n=0}^{\infty} a_{8n}q^{n} & = \frac{f(q^{15}, q^{17})}{\varphi(-q^{1/4})}, \quad (5.8) \\
\sum_{n=0}^{\infty} a_{8n+1}q^{n} & = -\frac{f(q^{13}, q^{19})}{\varphi(-q^{1/4})}, \quad (5.9) \\
\sum_{n=0}^{\infty} a_{8n+2}q^{n} & = q^{1/2}\frac{f(q^{9}, q^{23})}{\varphi(-q^{1/4})}, \quad (5.10) \\
\sum_{n=0}^{\infty} a_{8n+3}q^{n} & = -\frac{f(q^{11}, q^{21})}{\varphi(-q^{1/4})}, \quad (5.11) \\
\sum_{n=0}^{\infty} a_{8n+4}q^{n} & = q^{3}\frac{f(q, q^{31})}{\varphi(-q^{1/4})}, \quad (5.12) \\
\sum_{n=0}^{\infty} a_{8n+5}q^{n} & = -q^{2}\frac{f(q^{7}, q^{29})}{\varphi(-q^{1/4})}, \quad (5.13) \\
\sum_{n=0}^{\infty} a_{8n+6}q^{n} & = q^{1/2}\frac{f(q^{7}, q^{25})}{\varphi(-q^{1/4})}, \quad (5.14) \\
\sum_{n=0}^{\infty} a_{8n+7}q^{n} & = -q\frac{f(q^{5}, q^{27})}{\varphi(-q^{1/4})}. \quad (5.15)
\end{align*}

Proof. Employing equations (4.27)–(4.34) with $k = 2$, we get (7.14) and (5.15). \hfill \Box
6 Dissections of \(R_8^*(q) \) of degree 8

In this section, we obtain certain Ramanujan Quantities of \(R(1, 4, 8; q) \) in terms of Ramanujan’s theta–function.

Theorem 6.1. If

\[
R(q) := R(1, 4, 8; q) = q^{9/16} f\left(\frac{-q, -q^7}{f(-q^4, -q^8)}\right)
\]

(6.1)

then

\[
R(q) = \left\{ \frac{\varphi^{1/8}(q^2)}{2\varphi(q)} \left[\frac{\varphi(q)}{\varphi(q^2)} - 1 \right] \right\}^{1/2}
\]

(6.2)

Proof. Employing (7.1) with \(k = 4 \), we get

\[
R(1, 4, 8; q) = q^{9/16} \frac{(q; q^8)_\infty(q^7; q^8)_\infty}{(q^4; q^8)_\infty(q^8; q^8)_\infty} = q^{9/16} \frac{f(-q, -q^7)}{f(-q^4, -q^8)}
\]

(6.3)

Employing the Lemma (2.1) with \(a = q, b = q^3 \) and \(c = d = q^2 \), we obtain

\[
f(q, q^3)f(q^2, q^7) - f(-q, -q^3)f(-q^2, -q^7) = 2qf(q, q^7)f(q, q^7)
\]

(6.4)

using Theta-function definitions (1.1), (1.2) and (1.3) in (6.4), we obtain

\[
\psi(q)\varphi(q^2) - \psi(-q)\varphi(-q^2) = 2qf^2(q, q^7)
\]

(6.5)

then above equation can be written with replace \(q \) by \(-q\) as

\[
\psi(q)\varphi(-q^2) - \psi(-q)\varphi(q^2) = 2qf^2(-q, -q^7)
\]

(6.6)

Consider

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi(q)\varphi(-q^2) - \psi(-q)\varphi(q^2)}{2q\varphi(-q^4)} \right\}^{1/2}
\]

(6.7)

Using (2.9) with replace \(q \) by \(q^2 \) then (6.7) can be written as

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi(q)\varphi(-q^2) - \psi(-q)\varphi(q^2)}{2q\varphi(-q^4)} \right\}^{1/2}
\]

(6.8)

Employing the equation (2.9) in (6.9), we obtain

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi(q)}{2q\varphi(q^2)} - \frac{\psi(q^2)}{2q\varphi(q)} \right\}^{1/2}
\]

(6.10)

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi^2(q) - \varphi(q^7)\psi(q^2)}{2q\psi(q)\varphi(q^2)} \right\}^{1/2}
\]

(6.11)

Using the Lemma (2.4) in equation (6.12), we get

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi(q^2)\varphi(q) - \varphi(q^2)\psi(q)}{2q\psi(q)\varphi(q^2)} \right\}^{1/2}
\]

(6.12)

\[
\frac{f(-q, -q^7)}{f(-q^4, -q^8)} = \left\{ \frac{\psi(q^2)\varphi(q) - \varphi(q^2)\psi(q)}{2q\psi(q)\varphi(q^2)} \right\}^{1/2}
\]

(6.13)

Using the above identity (6.13) in (6.3) we obtain required result.
6.1 The 2-dissection of $R^*_2(q)$ of degree 8

Theorem 6.2. If $R(q) := \frac{f(-q, -q^7)}{f(-q^4, -q^4)} = \sum_{n=0}^{\infty} a_n q^n$, then

$$\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^5, q^{11})}{\varphi(-q^2)}.$$ \hspace{1cm} (6.14)

$$\sum_{n=0}^{\infty} a_{2n+1} q^n = -\frac{f(q^3, q^{13})}{\varphi(-q^2)}. \hspace{1cm} (6.15)$$

Proof. Employing equations (4.1) and (4.2) with $k = 4$, we get (6.14) and (6.15). \hfill \Box

6.2 The 4-dissection of $R^*_4(q)$ of degree 8

Theorem 6.3. We have

$$\sum_{n=0}^{\infty} a_{4n} q^n = \frac{f(q^{13}, q^{19})}{\varphi(-q)}.$$ \hspace{1cm} (6.16)

$$\sum_{n=0}^{\infty} a_{4n+1} q^n = -\frac{f(q^{11}, q^{21})}{\varphi(-q)}.$$ \hspace{1cm} (6.17)

$$\sum_{n=0}^{\infty} a_{4n+2} q^n = q^2 \frac{f(q^3, q^{29})}{\varphi(-q)}.$$ \hspace{1cm} (6.18)

$$\sum_{n=0}^{\infty} a_{4n+3} q^n = -q^2 \frac{f(q^5, q^{27})}{\varphi(-q)}.$$ \hspace{1cm} (6.19)

Proof. Employing equations (4.20)–(4.22) with $k = 4$, we get (6.16) – (6.19). \hfill \Box

6.3 The 8-dissection of $R^*_8(q)$ of degree 8

Theorem 6.4. We have

$$\sum_{n=0}^{\infty} a_{8n} q^n = \frac{f(q^{39}, q^{33})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.20)

$$\sum_{n=0}^{\infty} a_{8n+1} q^n = -\frac{f(q^{27}, q^{37})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.21)

$$\sum_{n=0}^{\infty} a_{8n+2} q^n = q \frac{f(q^{19}, q^{45})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.22)

$$\sum_{n=0}^{\infty} a_{8n+3} q^n = -q^{1/2} \frac{f(q^{21}, q^{43})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.23)

$$\sum_{n=0}^{\infty} a_{8n+4} q^n = q^6 \frac{f(q^3, q^{61})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.24)

$$\sum_{n=0}^{\infty} a_{8n+5} q^n = -q^5 \frac{f(q^5, q^{59})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.25)

$$\sum_{n=0}^{\infty} a_{8n+6} q^n = q^2 \frac{f(q^{13}, q^{51})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.26)

$$\sum_{n=0}^{\infty} a_{8n+7} q^n = -q^{5/2} \frac{f(q^{11}, q^{53})}{\varphi(-q^{1/2})}.$$ \hspace{1cm} (6.27)

Proof. Employing equations (4.27)–(4.34) with $k = 2$, we get (6.20) – (7.7). \hfill \Box
7 Dissections of $R_{12}^*(q)$ of degree 12

Theorem 7.1. If

$$R_{12}(q) := R(1, 6, 12; q) = q^{25/24} \frac{f(-q, -q^{11})}{f(-q^6, -q^6)},$$

then

$$R_{12}(q) = q^{1/24} \frac{\varphi(q) - \varphi(q^3)}{2\chi(q)\varphi(-q^6)}.$$ \hspace{1cm} (7.2)

Proof. Employing (3.1) with $k = 8$, we get

$$R(1, 6, 12; q) = q^{25/24} \frac{(q; q^{12})_{\infty}(q^{11}; q^{12})_{\infty}}{(q^6; q^{12})_{\infty}(q^6; q^{12})_{\infty}} = q^{25/24} \frac{f(-q, -q^{11})}{f(-q^6, -q^6)}.$$ \hspace{1cm} (7.3)

Employing equation (2.11) in the above equation (7.3), we obtain (7.2).

7.1 The 2-dissection of $R_{12}^*(q)$ of degree 12

Theorem 7.2. If $R_{12}^*(q) := \frac{f(-q, -q^{11})}{f(-q^6, -q^6)} = \sum_{n=0}^{\infty} a_n q^n$, then

$$\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^7, q^{17})}{\varphi(-q^3)}.$$ \hspace{1cm} (7.4)

$$\sum_{n=0}^{\infty} a_{2n+1} q^n = -\frac{f(q^5, q^{19})}{\varphi(-q^3)}.$$ \hspace{1cm} (7.5)

Proof. Employing equations (4.1) and (4.2) with $k = 4$, we get (7.4) and (7.5).

7.2 The 4-dissection of $R_{12}^*(q)$ of degree 12

Theorem 7.3. We have

$$\sum_{n=0}^{\infty} a_{4n} q^n = \frac{f(q^{19}, q^{29})}{\varphi(-q^{1/2})},$$ \hspace{1cm} (7.6)

$$\sum_{n=0}^{\infty} a_{4n+1} q^n = -\frac{f(q^7, q^{41})}{\varphi(-q^{3/2})},$$ \hspace{1cm} (7.7)

$$\sum_{n=0}^{\infty} a_{4n+2} q^n = q^3 \frac{f(q^5, q^{43})}{\varphi(-q^{3/2})},$$ \hspace{1cm} (7.8)

$$\sum_{n=0}^{\infty} a_{4n+3} q^n = -q^3 \frac{f(q^{17}, q^{31})}{\varphi(-q^{3/2})}.$$ \hspace{1cm} (7.9)

Proof. Employing equations (4.20)–(4.22) with $k = 4$, we get (7.6) – (7.9).

7.3 The 8-dissection of $R_{12}^*(q)$ of degree 12

Theorem 7.4. We have

$$\sum_{n=0}^{\infty} a_{8n} q^n = \frac{f(q^{43}, q^{53})}{\varphi(-q^{3/4})},$$ \hspace{1cm} (7.10)

$$\sum_{n=0}^{\infty} a_{8n+1} q^n = -\frac{f(q^{41}, q^{55})}{\varphi(-q^{3/4})},$$ \hspace{1cm} (7.11)

$$\sum_{n=0}^{\infty} a_{8n+2} q^n = q^{3/2} \frac{f(q^{29}, q^{67})}{\varphi(-q^{3/4})}.$$ \hspace{1cm} (7.12)
\[
\sum_{n=0}^{\infty} a_{8n+3} q^n = -q \frac{f(q^{31}, q^{65})}{\varphi(-q^{3/4})}, \tag{7.13}
\]
\[
\sum_{n=0}^{\infty} a_{8n+4} q^n = q^9 \frac{f(q^5, q^{91})}{\varphi(-q^{3/4})}, \tag{7.14}
\]
\[
\sum_{n=0}^{\infty} a_{8n+5} q^n = -q^8 \frac{f(q^7, q^{89})}{\varphi(-q^{3/4})}, \tag{7.15}
\]
\[
\sum_{n=0}^{\infty} a_{8n+6} q^n = q^{7/2} \frac{f(q^{19}, q^{77})}{\varphi(-q^{3/4})}, \tag{7.16}
\]
\[
\sum_{n=0}^{\infty} a_{8n+7} q^n = -q^4 \frac{f(q^{17}, q^{79})}{\varphi(-q^{3/4})}. \tag{7.17}
\]

Proof. Employing equations (4.27)–(4.34) with \(k = 2\), we get (7.10) – (7.17).

8 The dissection of \(R_{16}^*(q)\) of degree 16

In this section, we obtain certain Ramanujan Quantities of \(R(1, 8, 16; q)\) in terms of Ramanujan’s theta–function.

Theorem 8.1. We have

\[
R_{16}(q) := R(1, 8, 16; q) = q^{49/32} \frac{f(-q, -q^{15})}{f(-q^8, -q^8)}, \tag{8.1}
\]

Proof. Employing (3.1) with \(k = 2\), we get (8.1).

8.1 The 2-dissection of \(R_{16}^*(q)\) of degree 16

Theorem 8.2. If \(R_{16}^*(q) := \frac{f(-q, -q^{15})}{f(-q^8, -q^8)} = \sum_{n=0}^{\infty} a_n q^n\), then

\[
\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^9, q^{23})}{\varphi(-q^4)}. \tag{8.2}
\]
\[
\sum_{n=0}^{\infty} a_{2n+1} q^n = -\frac{f(q^7, q^{25})}{\varphi(-q^4)}. \tag{8.3}
\]

Proof. Employing equations (4.1) and (4.2) with \(k = 4\), we get (8.2) and (8.3).

8.2 The 4-dissection of \(R_{16}^*(q)\) of degree 16

Theorem 8.3. We have

\[
\sum_{n=0}^{\infty} a_{4n} q^n = \frac{f(q^{25}, q^{59})}{\varphi(-q^2)}, \tag{8.4}
\]
\[
\sum_{n=0}^{\infty} a_{4n+1} q^n = -\frac{f(q^3, q^{41})}{\varphi(-q^2)}, \tag{8.5}
\]
\[
\sum_{n=0}^{\infty} a_{4n+2} q^n = q^4 \frac{f(q^7, q^{57})}{\varphi(-q^2)}, \tag{8.6}
\]
\[
\sum_{n=0}^{\infty} a_{4n+3} q^n = -q^3 \frac{f(q^9, q^{55})}{\varphi(-q^2)}. \tag{8.7}
\]

Proof. Employing equations (4.20)–(4.22) with \(k = 4\), we get (8.4) – (8.7).
8.3 The 8-dissection of $R_{16}^*(q)$ of degree 16

Theorem 8.4. We have

\[\sum_{n=0}^{\infty} a_{8n} q^n = \frac{f(q^{37}, q^{71})}{\varphi(-q)}, \]
\[(8.8) \]

\[\sum_{n=0}^{\infty} a_{8n+1} q^n = -\frac{f(q^{55}, q^{73})}{\varphi(-q)}, \]
\[(8.9) \]

\[\sum_{n=0}^{\infty} a_{8n+2} q^n = q^2 \frac{f(q^{39}, q^{89})}{\varphi(-q)}, \]
\[(8.10) \]

\[\sum_{n=0}^{\infty} a_{8n+3} q^n = -q^{3/2} \frac{f(q^{41}, q^{87})}{\varphi(-q)}, \]
\[(8.11) \]

\[\sum_{n=0}^{\infty} a_{8n+4} q^n = q^{12} \frac{f(q^{7}, q^{121})}{\varphi(-q)}, \]
\[(8.12) \]

\[\sum_{n=0}^{\infty} a_{8n+5} q^n = -q^{11/2} \frac{f(q^9, q^{119})}{\varphi(-q)}, \]
\[(8.13) \]

\[\sum_{n=0}^{\infty} a_{8n+6} q^n = q^5 \frac{f(q^{25}, q^{101})}{\varphi(-q)}, \]
\[(8.14) \]

\[\sum_{n=0}^{\infty} a_{8n+7} q^n = -q^{11/2} \frac{f(q^{33}, q^{105})}{\varphi(-q)}. \]
\[(8.15) \]

Proof. Employing equations (4.27)–(4.34) with $k = 2$, we get (8.8) – (8.15).

\[\square \]

9 Applications to Partitions

Clearly equation (4.1) can be written as

\[\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^{k+1}, q^{3k-1})}{\varphi(-q^{k/2})} = \frac{(-q^{k+1}, -q^{3k-1}, q^{4k}; q^{4k})}{(q^{k/2}; q^{k/2})_{\infty} (q^{k/2}; q^{k})_{\infty}}. \]
\[(9.1) \]

\[= \frac{(q^{2(k+1)}, q^{2(3k-1)}, q^{4k}; q^{4k})_{\infty} (q^{k/2}; q^{k/2})_{\infty} (q^{k/2}; q^{k})_{\infty}}{(q^{2(k+1)}, q^{2(3k-1)}, q^{4k}; q^{4k})_{\infty} (q^{k/2}; q^{k/2})_{\infty} (q^{k/2}; q^{k})_{\infty}}, \]

where $0 \leq x \leq 7$, $1 \leq y \leq 16$.

\[\sum_{n=0}^{\infty} a_{2n} q^n = \frac{(q^{2(k+1)}, q^{2(3k-1)}, q^{8k})_{\infty} (q^{2k+1}; q^{2k+1})_{\infty} (q^{2k+1}; q^{2k})_{\infty}}{(q^{2(k+1)}, q^{2(3k-1)}, q^{8k})_{\infty} (q^{2k+1}; q^{2k+1})_{\infty} (q^{2k+1}; q^{2k})_{\infty}}, \]
\[(9.2) \]

where $0 \leq x \leq 7$, $1 \leq y \leq 7$, $9 \leq y \leq 15$.

If we put $k = 2$ in (9.1), we obtain equation (5.2) and that can be expressed as below using (9.2)

\[\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^3, q^5)}{\varphi(-q)} = \frac{1}{(q^{3\pm}, q^{5\pm}; q^{16})_{\infty} (q^{1\pm}, q^{7\pm}; q^{16})_{\infty} (q^{2\pm}, q^{4\pm}; q^{16})_{\infty}}. \]
\[(9.3) \]
Then a_{2n} denote the number of partitions of n into parts congruent to $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 7$ (mod 16) with $\pm 3, \pm 5$ (mod 16) having 3 colors and $\pm 1, \pm 7$ (mod 16) having 2 colors.

If we put $k = 4$ in (9.1), we obtain equation (6.14) and that can be expressed as below using (9.2)

$$
\sum_{n=0}^{\infty} a_{2n} q^n = \frac{f(q^5, q^{11})}{\varphi(-q^2)} = \frac{1}{(q^{2\pm}, q^{6\pm}, q^{14\pm}; q^{32})^2} (q^{4\pm}, q^{8\pm}, q^{10\pm}, q^{11\pm}, q^{12\pm}; q^{32})_{\infty}.
$$

(9.4)

Then a_{2n} denote the number of partitions of n into parts congruent to $\pm 2, \pm 4, \pm 5, \pm 6, \pm 10, \pm 11, \pm 12, \pm 14$ (mod 32) with $\pm 2, \pm 6, \pm 14$ (mod 32) having 2 colors.

Similarly equation (4.2) can be written as

$$
\sum_{n=0}^{\infty} a_{2n+1} q^n = \frac{f(q^{k-1}, q^{3k+1})}{\varphi(-q^{k/2})} = \frac{(-q^{k-1}, -q^{3k+1}, q^{4k}; q^{4k})_{\infty}}{(q^{k/2}; q^{k/2})_{\infty}} (q^{k/2}; q^{k})_{\infty}.
$$

(9.5)

$$
\sum_{n=0}^{\infty} a_{2n+1} q^n = \frac{f(q^{k-1}, q^{3k+1}, q^{8k})}{(q^{k-1}, q^{3k-1}, q^{3k+1}, q^{7k+1}; q^{8k})_{\infty}} (q^{xk+k/2}; q^{8k})_{\infty}.
$$

(9.6)

where $1 \leq y \leq 7$.

If we put $k = 2$ in (9.5), we obtain equation (5.3) and that can be expressed as below using (9.6)

$$
\sum_{n=0}^{\infty} a_{2n+1} q^n = \frac{f(q, q^7)}{\varphi(-q)} = \frac{1}{(q^{1\pm}, q^{7\pm}; q^{16})^3} (q^{3\pm}, q^{5\pm}; q^{16})^2 (q^{4\pm}, q^{6\pm}; q^{16})_{\infty}.
$$

(9.7)

Then a_{2n+1} denote the number of partitions of n into parts congruent to $\pm 1, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7$ (mod 16) with $\pm 1, \pm 7$ (mod 16) having 3 colors and $\pm 3, \pm 5$ (mod 16) having 2 colors.

If we put $k = 4$ in (9.5), we obtain equation (6.15) and that can be expressed as below using (9.6)

$$
\sum_{n=0}^{\infty} a_{2n+1} q^n = \frac{f(q^3, q^{13})}{\varphi(-q^2)} = \frac{1}{(q^{2\pm}, q^{10\pm}, q^{14\pm}; q^{32})^2} (q^{3\pm}, q^{4\pm}, q^{6\pm}, q^{8\pm}, q^{12\pm}, q^{13\pm}; q^{32})_{\infty}.
$$

(9.8)

Then a_{2n+1} denote the number of partitions of n into parts congruent to $\pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 10, \pm 12, \pm 13, \pm 14$ (mod 32) with $\pm 2, \pm 10, \pm 14$ (mod 32) having 2 colors.

References

Author information

B. N. Dharmendra, Post Graduate Department of Mathematics, Maharani’s Science College for Women, Mysuru - 570 005, Karnataka, India.
E-mail: bndharm@gmail.com

P. S. Guruprasad, Department of Mathematics, Government First Grade College, Chamarajanagar - 571 313, Karnataka, India (Corresponding author).
E-mail: guruprasad18881@gmail.com

Received: 2022-01-10
Accepted: 2022-03-15