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Abstract In this paper, we investigate strongly (∗)-ring and we conjecture that this class
of rings and the class of (∗)-rings are equivalent. Also, we study the transfer of weak π-ring
property, (∗)-ring property and strongly (∗)-ring property to some extensions of a ring.

1 Introduction

Throughout this paper, all rings considered are assumed to be commutative with an identity; in
particular, R denotes such a ring, and all modules are assumed to be unitary modules. Dedekind
domains are integral domains in which every ideal is a finite product of prime ideals and have
the property that every non-zero prime ideal is maximal. Dedekind rings with zero divisors are
defined by the same way for regular ideals [16, 17]. A ring R with zero divisors is said to be
general ZPI-ring if every ideal is a finite product of prime ideals. These rings has the property
that every prime ideal (or equivalently, every ideal) is finitely generated and locally principal.
General ZPI-rings are also characterized by the property that R is a finite direct product of
Dedekind domains and special principal ideal rings (SPIRs), that is, a local principal ideal ring,
not a field, whose maximal ideal is nilpotent. A ring R has the property that every principal ideal
is a finite product of prime ideals if and only if R is a finite direct product of (1) π-domains,
(2) SPIRs, and (3) fields. In this case, R called a π-ring [13, p. 572]. A weak π-rings is a
ring in which every regular principal ideal is a finite product of prime ideals [18]. R is called a
(∗)-ring if each regular principal ideal has a primary decomposition, that is, a finite intersection
of primary ideals [18]. R is said to be an almost weak π-ring if for each regular principal ideal
I , IM is a finite product of prime ideals in RM for all maximal ideals M containing I [18]. A
ring R is called arithmetical ring if every finitely generated ideal of R is locally principal.

We summarize the relationship that exists between the above-mentioned notions by the fol-
lowing implications noted in the following figure.
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We denote respectively by qf(R), Z(R), Jac(R), Reg(R), Max(R) and Ann(I) the quotien
field of R, the set of zero-divisor of R, the Jacobson radical of R, the set of all regular elements
of R, the set of all maximal ideals of R and the annihilator of an ideal I . I is said to be an
invertible ideal if II−1 = R, where I−1 = (R : I) = {x ∈ qf(R)|xI ⊆ R}.

We recall the Nagata’s idealization: let R be a ring, E be an R-module and R ∝ E be the
set of pairs (a, e) with pairwise addition and multiplication given by (r, e)(s, f) = (rs, rf + se).
R ∝ E is called the trivial ring extension of R by E (also called the idealization of E over R).
For instance, the reader may consult [4, 5, 19].

Let R and S be two rings, let J be an ideal of S and let f : R→ S be a ring homomorphism.
The subring of R× S, R ./f J := {(r, f(r) + j)|r ∈ R, j ∈ J} is called the amalgamation of R
with S along J with respect to f .
This construction is a generalization of the amalgamated duplication of a ring along an ideal
(introduced and studied in [7]), denoted by R ./ I , which is the subring of R × R given by
R ./ I := {(r, r + i)|r ∈ R, i ∈ I}. For instance, the reader may consult [6, 7, 8, 9, 10, 11, 21].

The purpose of this article is to introduce the strongly (∗)-ring property and study its transfer
to these extension of rings and the transfer of the two notions weak π-ring and (∗)-ring to the
amalgamated duplication along an ideal and the amalgamed algebra along an ideal.
.

2 General results

We start with the following definition:

Definition 2.1. A ring R is called a strongly (∗)-ring if every invertible ideal has a primary
decomposition.

Note that Laskerian rings [14] and Noetherian rings [12] are examples of strongly (∗)-rings.
Obviously, a strongly (∗)-ring is a (∗)-ring. We conjecture that these class of rings are equiva-
lent. Easily, we can see that are equivalent when R is principal or local.

By the next proposition, we prove that a weak π-ring is a strongly (∗)-ring.

Proposition 2.2. If R is a weak π-ring, then R is a strongly (∗)-ring.

Proof. Let I be an invertible ideal of R. Thanks to [15, Lemma 18.1, p. 110], I contains a
regular element, say r. Since R is a weak π-ring, < r >= Pα1

1 Pα2
2 ...Pαn

n where Pk’s are prime
ideals of R. Then I = Pα1

1 Pα2
2 ...Pαn

n . This can be seen by applying [18, Lemma 12], as I
is a multiplication ideal and Pk’s are distinct invertible prime ideals by [2, Lemma 2.3]. As it
now suffices to show that Pαk

k ’s are invertible Pk-primary ideals, an appeal to [3, Theorem 3]
completes the proof.

We note that the converse need not be true, as the following example shows.

Example 2.3. Let R = Z ∝ Z, we claim that R is not a weak π-ring.
Deny, let (a, b) be a regular element of R, we get < (a, b) >= (P1 ∝ Z)...(Pn ∝ Z), so each
regular principal ideal is homogenous and hence Z is divisible as a Z-module by [4, Theorem
3.9], which is a contradiction. Finally, R is not a weak π-ring, while R is a strongly (∗)-ring
since it is Noetherian.

Proposition 2.4. Let R =
∏n
i=1 Ri, then R is a strongly (∗)-ring if and only if so are Ri’s.

Proof. It suffices to show that the result hold for a pairs of rings R and S. Suppose that R × S
is a strongly (∗)-ring. Let I and J be two invertible ideals respectively of R and S. By our
assumption, I × J = (P1×S)∩ ...∩ (Pn×S)∩ (R×Q1)∩ ...∩ (R×Qm) where Pl’s and Ql’s
are respectively primary ideals of R and S with P1 6= R and Q1 6= S. Hence I = P1 ∩ ... ∩ Pn
and J = Q1 ∩ ... ∩Qm.
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Conversly, let K be an invertible ideal of R × S. Then K = I × J , clearly I(resp. J) is an
invertible ideal of R(resp. S). By hypothesis, I = P1 ∩ ... ∩ Pn and J = Q1 ∩ ... ∩ Qm where
Pl’s and Ql’s are respectively primary ideals of R and S, thus K = (P1 × S) ∩ ... ∩ (Pn × S) ∩
(R×Q1) ∩ ... ∩ (R×Qm), as desired.

For a multiplicative set S of a ring R, we obtain the next result:

Proposition 2.5. Let R be a ring and S a multiplicative set of R such that S ⊆ Reg(R). If R is
a strongly (∗)-ring , then so is S−1R.

Proof. Let J be an invertible ideal of S−1R. By [15, Lemma 18.1], J =< a1
s1
, ..., ansn >= S−1 <

a1, ..., an >= S−1I where I =< a1, ..., an >. Since JMS−1R = (S−1I)MS−1R = IM for all
M ∈ Max(R, I), it follows that I is locally principal. Also I is regular since J is regular and
S ⊆ Reg(R), then I is invertible. As R is a strongly (∗)-ring, we get I = P1 ∩ ... ∩ Pn where
Pl’s are primary ideals of R. Therefore, J = S−1I = S−1(P1 ∩ ...∩Pn) = S−1P1 ∩ ...∩S−1Pn.
As Pl is a primary ideal, then so is S−1Pl for all l, as desired.

3 The transfer to the trivial extension ring

Now, we provide a result which translates the strongly (∗)-ring property of A ∝ E in terms of A
and E.

Theorem 3.1. Let A be a ring, E an A-module and R = A ∝ E such that E = aE for all
a ∈ S = A− (Z(A) ∪ Z(E)). Then R is a strongly (∗)-ring if and only if every invertible ideal
of A not disjoint from S has a primary decomposition.

Proof. Suppose that R is a strongly (∗)-ring and let I be an invertible ideal of A such that
I ∩ S 6= ∅. By hypothesis and [1, Theorem 7(1),(2)], I ∝ IE = I ∝ E is an invertible ideal of
R. As R is a strongly (∗)-ring, then I ∝ E = (P1 ∝ E) ∩ ... ∩ (Pn ∝ E) = (P1 ∩ ... ∩ Pn) ∝ E
where Pk’s are primary ideals of A, therefore I = P1 ∩ ... ∩ Pn, as desired.
Conversly, let J be an invertible ideal of R. By hypothesis, J = I ∝ E where I is an invertible
ideal not disjoint from S and I = P1 ∩ ... ∩ Pn such that Pk’s are primary ideals of A. So,
J = (P1 ∩ ... ∩ Pn) ∝ E = (P1 ∝ E) ∩ ... ∩ (Pn ∝ E). which completes the proof.

As an immediate consequence of the previous theorem, we provide the following corollary:

Corollary 3.2. Let A be a ring, E an A-module and R = A ∝ E such that Z(E) ⊆ Z(A) and
E = aE for all a ∈ S = A − (Z(A) ∪ Z(E)). Then R is a strongly (∗)-ring if and only if so is
A.

As mentioned above, Noetherian rings are strongly (∗)-rings. By the next corollary we pro-
vide an example of a non-Noetherian ring which is a strongly (∗)-ring.

Corollary 3.3. Let D be a domain and E a divisible R-module. Then:

(i) D is a strongly (∗)-ring if and only if so is D ∝ E.

(ii) If E is a non-finitely generated D-module, then D ∝ E is a non-Noetherian ring and D is
a strongly (∗)-ring if and only if so is D ∝ E.

4 The transfer to the amalgamation of rings and amalgamated duplication
along an ideal

The proof of the first major result of this section (Theorem 4.3) relies on the following lemmas
which are of independent interest. The next lemma investigate the form of regular ideals of
R ./f J .

Lemma 4.1. Let R and S be two rings, J an ideal of S and f : R→ S be a ring homomorphism.
Suppose that Ann(f−1(J)) = 0, then the following statements are equivalent:
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(i) Every regular ideal has the form I ./f J where I is regular.

(ii) J = (f(a) + j)J for all (a, f(a) + j) ∈ Reg(R ./f J).

Proof. (1)⇒ (2) Assume (1) holds and let H =< (r, f(r) + j) >, by hypothesis H = I ./f J
where I =< r > is regular. Now let k ∈ J , we have (0, k) = (0, k′)(r, f(r)+ j) for some k′ ∈ J
since r is regular. Hence J = (f(a) + j)J for all (a, f(a) + j) ∈ Reg(R ./f J).

(2) ⇒ (1) Let H be a regular ideal of R ./f J , so there exists (r, f(r) + j) ∈ H . Now let
K =< (r, f(r) + j) >. As J = (f(a) + j)J for all (a, f(a) + j) ∈ Reg(R ./f J), so for all
k ∈ J there exists k′ ∈ J such that k = (f(r) + j)k′, thus (0, k) = (0, k′)(r, f(r) + j) ∈ K, we
get then 0 × J ⊆ K ⊆ H and hence H = I ./f J where I =< r >. We claim that I is regular.
Deny, let x ∈ R such that rx = 0, since Ann(f−1(J)) = 0, there exists y ∈ f−1(J) such that
xy 6= 0, then (r, f(r) + j)(xy, 0) = (0, 0), contradiction.

Lemma 4.2. Let R and S be two rings, J an ideal of S, I an ideal of R and f : R→ S be a ring
homomorphism.

(i) I is finitely generated (resp. a principal) if and only I ./f f(I)J is finitely generated (resp.
a principal) ideal of R ./f J .

(ii) If I ./f f(I)J is a locally principal ideal of R ./f J , then I is a locally principal ideal of
R.

(iii) Suppose that J ⊆ Jac(S). If I is locally principal of R then I ./f f(I)J is a locally
principal ideal of R ./f J .

(iv) Suppose that I ./f f(I)J is regular and J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f

J). If I is a locally principal ideal of R then I ./f f(I)J is a locally principal ideal of
R ./f J .

(v) Suppose that J is regular and I = aI for all a ∈ Reg(R). If J is a locally principal ideal
of R then J ./ I is a locally principal ideal of R ./ I .

Proof. (i) Let I =< r1, ..., rn > be a finitely generated ideal of R. We claim that I ./f

f(I)J =< (r1, f(r1)), ..., (rn, f(rn)) >.
For that, let (a, f(a) + Σmk=1f(bk)jk) ∈ I ./f f(I)J , then:

(a, f(a) + Σmk=1f(bk)jk) = (Σni=1αiri, f(Σ
n
i=1αiri) + Σmk=1f(Σ

n
i=1βk,iri)jk)

= (Σni=1αiri,Σ
n
i=1f(αi)f(ri)) + (0,Σmk=1Σni=1f(βk,i)f(ri)jk)

= Σni=1(αi, f(αi))(ri, f(ri)) + Σni=1(0,Σ
m
k=1f(βk)jk)(ri, f(ri))

= Σni=1[(αi, f(αi)) + (0,Σmk=1f(βk)jk)](ri, f(ri))
As desired.
Conversely, suppose that I ./f f(I)J =< (r1, f(r1) + j1), ..., (r1, f(rn) + jn) >, we show
that I =< r1, ..., rn >. So let a ∈ I , (a, f(a)) ∈ I ./f f(I)J , we get then:

(a, f(a)) = Σni=1(αi, f(αi) + βi)(ri, f(ri) + ji)
= (Σni=1αiri,Σ

n
i=1(f(αi) + βi)(f(ri) + ji))

Hence, a = Σni=1αiri, which completes the proof. Similarly, we prove that I is a principal
ideal of R if and only if so is I ./f f(I)J .

(ii) Suppose that I ./f f(I)J is a locally principal ideal of R ./f J and let M ∈ Max(R, I).
Using the ring homomorphism induced by ϕ defined in [20, Lemma 2.6.], we prove that:
If M ∈ Max(R, I)\V (f−1(J)), so (I ./f f(I)J)M ′f ∼= IM where M ′f = M ./f J , as
desired.
If M ∈ Max(R, I) ∩ V (f−1(J)), so (I ./f f(I)J)M ′f ∼= IM ./fM (f(I)J)TM

where
TM = f(R − M) + J is a multiplicative set of S and fM is the ring homomorphism
induced by f for all M ∈Max(R). We get the result by (1).

(iii) If J ⊆ Jac(B), hence all maximal ideals contining I ./f f(I)J have the form M ./f J
where M ∈Max(R, I). The remaining proof is straightforward since (I ./f f(I)J)M ′f ∼=
IM if M ∈ Max(R, I)\V (f−1(J)) and (I ./f f(I)J)M ′f ∼= IM ./fM (f(I)J)TM

if
M ∈Max(R, I) ∩ V (f−1(J)).
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(iv) It’s obvious since I ./f f(I)J = I ./f J by Lemma 4.1. The remaining proof is similar to
(2).

(v) The result holds by (1) and by the fact thatHM ′ = (J ./ I)M ′ ∼= JM ifM ∈Max(R)\V (I)
where M ′ =M ./ I and HM ′ = (J ./ I)M ′ ∼= JM ./ IM if M ∈Max(R) ∩ V (I).

At present, we study the possible transfer of the properties of being a weak π-ring, a (∗)-ring
and a strongly (∗)-ring between a commutative ring R and R ./f J .

Theorem 4.3. Let R and S be two rings, J an ideal of S, f : R → S be a ring homomorphism
and R ./f J .

(i) Suppose Ann(f(a)) ∩ J = 0 for all a ∈ Reg(R). If R ./f J is a weak π-ring, so is R.

(ii) Suppose that Ann(f−1(J)) = 0 and J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f J).
If R is a weak π-ring, then so is R ./f J .

(iii) Suppose that J = (f(a) + j)J for all (a, f(a) + j) ∈ Reg(R ./f J). If R ./f J is a
(∗)-ring, then every regular principal ideal I =< r > of R such that (r, f(r)+j) is regular
for some j ∈ J has a primary decomposition. Moreover, if Ann(f(a)) ∩ J = 0 for all
a ∈ Reg(R) then R is a (∗)-ring.

(iv) Suppose that Ann(f−1(J)) = 0 and J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f J).
If R is a (∗)-ring, then so is R ./f J .

(v) Suppose that J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f J). IfR ./f J is a strongly
(∗)-ring, then every invertible ideal I of R such that I ./f f(I)J is regular has a primary
decomposition. In addition to that, if Ann(f(a)) ∩ J = 0 for all a ∈ Reg(R) then R is a
strongly (∗)-ring.

(vi) Suppose that Ann(f−1(J)) = 0 and J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f J).
If R is a strongly (∗)-ring, then so is R ./f J .

(vii) If f−1(J) = 0, then R ./f J is a weak π-ring (resp. (∗)-ring, strongly (∗)-ring) if and only
if so is f(R) + J .

Proof. (i) Let I =< r > be a regular ideal of R. As Ann(f(a)) ∩ J = 0 for all a ∈ Reg(R),
H =< (r, f(r)) > is a regular ideal of R ./f J , and so H = P ′f1 ...P ′fn Q

f

1 ...Q
f

m where
P ′fk ’s and Q

f

l ’s are prime ideals of R ./f J . We show that I = P1...Pnf
−1(Q1)...f−1(Qm).

For that, let α ∈ R:
(α, f(α))(r, f(r)) = Σdl=1(p

l
1, f(p

l
1))...(p

l
n, f(p

l
n))(q

l
1, f(q

l
1))...(q

l
m, f(q

l
m)) where for all

l = 1, ..., d we have plt ∈ Pt for all t = 1, ..., n and qlh ∈ Qh for all h = 1, ...,m. Then:
(α, f(α))(r, f(r)) = Σdl=1(p

l
1...p

l
nq
l
1...q

l
m, f(p

l
1...p

l
nq
l
1...q

l
m)), so αr = Σdl=1p

l
1...p

l
nq
l
1...q

l
m,

and thus I ⊆ P1...Pnf
−1(Q1)...f−1(Qm).

Now, let p1...pnq1...qm ∈ P1...Pnf
−1(Q1)...f−1(Qm), then;

(p1...pnq1...qm, f(p1...pnq1...qm)) = (p1, f(p1))...(pn, f(pn))(q1, f(q1))

...(qm, f(qm)) ∈ P ′f1 ...P ′fn Q
f

1 ...Q
f

m =< (r, f(r)) >, so there exists α ∈ R such that
p1...pnq1...qm = αr, consequently I = P1...Pnf

−1(Q1)...f−1(Qm).

(ii) Let H =< (r, f(r) + j) > be a regular ideal. As J = (f(a) + j)J for all (a, f(a) + j) ∈
Reg(R ./f J) andAnn(f−1(J)) = 0, by Lemma 4.1 we getH = I ./f J where I =< r >
is a regular ideal of R. As R is a weak π-ring, we get I = P1...Pn where Pl’s are prime
ideals of R, so H = I ./f J = (P1...Pn) ./f J ⊇ (P1 ./f J)...(Pn ./f J). Now
let (a, f(a) + k) ∈ (P1...Pn) ./f J , so (a, f(a) + k) = (Σml=1p

l
1...p

l
n, f(Σ

m
l=1p

l
1...p

l
n) +

k) = Σml=1(p
l
1, f(p

l
1))...(p

l
n, f(p

l
n)) + (0, k) = Σml=1(p

l
1, f(p

l
1))...(p

l
n, f(p

l
n) + (a, f(a) +

k)...(a, f(a) + k)(0, k′) since (an−1, (f(a) + k)n−1) is regular and k = (f(a) + k)n−1k′

for some k′ ∈ J , hence (P1...Pn) ./f J ⊆ (P1 ./
f J)...(Pn ./f J). Consequently, R ./f J

is a weak π-ring.

(iii) Let I =< r > be a regular ideal of R. By hypothesis, < (r, f(r)+ j) >= I ./f J is regular
for some j ∈ J . Thus I ./f J = (P1 ./

f J)∩ ...∩ (Pn ./f J) = (P1∩ ...∩Pn) ./f J where
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Pl’s are primary ideals, since R ./f J is a (∗)-ring. Hence I has a primary decomposition.
The “moreover” statement is clear since (r, f(r)) is regular for each r ∈ Reg(R), and the
remaining proof is similar to the last one.

(iv) SupposeR is a (∗)-ring, and letH =< (r, f(r)+j) > be a regular ideal. As J = (f(a)+j)J
for all (a, f(a) + j) ∈ Reg(R ./f J) and Ann(f−1(J)) = 0, by Lemma 4.1 we get
H = I ./f J where I =< r > is a regular ideal of R. Since R is a (∗)-ring, it follows that
I = P1 ∩ ...∩ Pn where Pl’s are primary ideals of R, so H = I ./f J = (P1 ∩ ...∩ Pn) ./f
J = (P1 ./

f J) ∩ ... ∩ (Pn ./f J) where Pl ./f J is a primary ideal for all l = 1, ..., n.
Consequently, R ./f J is a (∗)-ring.

(v) Let I be an invertible ideal of R such that I ./f f(I)J is regular. By hypothesis and lemma
4.2, we get I ./f f(I)J = I ./f J an invertible ideal of R ./f J which is strongly (∗)-ring.
Thus I ./f J = (P1 ./

f J) ∩ ... ∩ (Pn ./f J) = (P1 ∩ ... ∩ Pn) ./f J and hence I has a
primary decomposition.
The “moreover” statement is similar to the one of (3).

(vi) Suppose that R is a strongly (∗)-ring, and let H be an invertible ideal. As J = (f(a) + j)J
for all (a, f(a) + j) ∈ Reg(R ./f J) and Ann(f−1(J)) = 0, by Lemma 4.2 and Lemma
4.1, we get H = I ./f J where I is an invertible ideal of R. Since R is a strongly (∗)-ring,
it follows that I = P1 ∩ ... ∩ Pn where Pl’s are primary ideals of R, so H = I ./f J =
(P1 ∩ ... ∩ Pn) ./f J = (P1 ./

f J) ∩ ... ∩ (Pn ./f J). Consequently, R ./f J is a strongly
(∗)-ring.

(vii) If f−1(J) = 0, then R ./f J ∼= f(R) + J , as desired.

Corollary 4.4. Let R and S be two rings, J an ideal of S and f : R → S be a ring homomor-
phism.

(i) Suppose that Ann(f(a)) ∩ J = 0 for all a ∈ Reg(R). If R ./f J is an almost weak π-ring,
then so is R.

(ii) Suppose that Ann(f−1(J)) = 0 and J = (f(a)+j)J for all (a, f(a)+j) ∈ Reg(R ./f J).
If R is an almost weak π-ring, then so is R ./f J .

Proof. (i) Let I =< r > be a regular ideal of R, so I ./f f(I)J is a regular principal ideal of
R ./f J by hypothesis and by Lemma 4.2. Now let M ∈ Max(R, I), two cases are then
possible:
If M ∈ Max(R, I)\V (f−1(J)), so (I ./f f(I)J)M ′f ∼= IM where M ′f = M ./f J , as
desired.
If M ∈ Max(R, I) ∩ V (f−1(J)), so (I ./f f(I)J)M ′f ∼= IM ./fM (f(I)J)TM

where
TM = f(R−M)+J is a multiplicative set of S and fM is the ring homomorphism induced
by f for allM ∈Max(R). By applying the same reasoning of the proof of Theorem 4.3(1),
we obtain the desired result.

(ii) Let H =< (r, f(r) + j) > be a regular ideal. As J = (f(a) + j)J for all (a, f(a) + j) ∈
Reg(R ./f J) andAnn(f−1(J)) = 0, by Lemma 4.2 we getH = I ./f J where I =< r >
is a regular ideal of R. As R is almost weak π-ring, we get IM = P1M ...PnM for all
M ∈Max(R, I) where Pl’s are prime ideals of R. Two cases are then possible:
If M ∈Max(R)\V (f−1(J)), so HM ′f = (I ./f J)M ′f ∼= IM , as desired.
If M ∈ Max(R) ∩ V (f−1(J)), so HM ′f = (I ./f J)M ′f ∼= IM ./fM JTM

. Moreover we
have IM ./fM JTM

= P1M ...PnM ./fM JTM
. By the same way of the proof of theorem

4.3(2), we get P1M ...PnM ./fM JTM
= P1M ./fM JTM

...PnM ./fM JTM
.

Finally, R ./f J is an almost weak π-ring.

We next present necessary and sufficient conditions for A ./ I to be a weak π-ring, a (∗)-ring
and a strongly (∗)-ring.

Theorem 4.5. Let R be a ring and I be an ideal of R.

(i) If R ./ I is a weak π-ring, then so is R.
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(ii) Suppose that I = aI for all a ∈ Reg(R). If R is a weak π-ring, then so is R ./ I .

(iii) If R is an arithmetical weak π-ring and I a finitely generated ideal of R satisfying IM = 0
for all M ∈Max(R, I), then R ./ I is a weak π-ring.

(iv) Suppose that I = aI for all a ∈ Reg(R). R ./ I is a (∗)-ring if and only if so is R.

(v) Suppose that I = aI for all a ∈ Reg(R). R ./ I is a strongly (∗)-ring if and only if so is R.

Proof. (i) Holds by Theorem 4.3(1).

(ii) Suppose that R is a weak π-ring.
If I is regular, then there exists x ∈ I a regular element of R, since I = aI for all a ∈
Reg(R), we get x = xk for some k ∈ I which implies that k = 1 and hence I = R. Finally,
we obtain R ./ I = R×R which is a weak π-ring if and only if so is R.
If I is not regular, let H =< (r, r + i) > be a regular principal ideal of R ./ I . We claim
that r and r + i are regular elements.
Assume that there exists x ∈ R− {0} such that rx = 0:

- If x ∈ Ann(I), then (r, r + i)(x, x) = (0, 0), contradiction since (r, r + j) is regular.
- If is not, then there exists k ∈ I such that xk 6= 0, so (r, r + i)(xk, 0) = (0, 0),

contradiction since (r, r + j) is regular.

Assume that there exists y ∈ R− {0} such that (r + i)y = 0:

- If y ∈ Ann(I), then (r + i)y = 0⇒ ry = 0, contradiction since r is regular.
- If is not, then there exists k ∈ I such that yk 6= 0, so (r, r + i)(0, yk) = (0, 0),

contradiction since (r, r + j) is regular.

As I = aI for all a ∈ Reg(R), we get for all k ∈ I there exists k′ ∈ I such that k = (r+i)k′,
so (0, k) = (0, k′)(r, r + i) ∈ H and 0 × I ⊆ H and hence H = J ./ I where J =< r >
is a regular principal ideal of R. As R is weak π-ring, we get J = P1...Pn where Pl’s are
prime ideals, so H = J ./ I = P1...Pn ./ I ⊇ (P1 ./ I)...(Pn ./ I). Now let (a, a+ j) ∈
P1...Pn ./ I , so (a, a + j) = (Σml=1p

l
1...p

l
n,Σ

m
l=1p

l
1...p

l
n + j) = Σml=1(p

l
1, p

l
1)...(p

l
n, p

l
n) +

(0, j) = Σml=1(p
l
1, p

l
1)...(p

l
n, p

l
n) + (a, a)...(a, a)(0, j′) since an−1 is a regular element and

j = an−1j′ for some j′ ∈ I , hence P1...Pn ./ I ⊆ (P1 ./ I)...(Pn ./ I). Consequently,
R ./ I is a weak π-ring.

(iii) Let H be a regular prime ideal of R ./ I .
Case 1: H = P ′ = P ./ I , so P is a regular prime. Since R is a weak π-ring, it follows
that K ⊆ P for some invertible prime ideal K of R. Now we show that the prime ideal
K ./ I is invertible. Since I is finitely generated, we have K ./ I is a finitely generated
regular ideal. By [6, Corollary 3.8] R ./ I is an arithmetical ring, thus K ./ I is locally
principal. Consequently, K ./ I is an invertible prime ideal.
Case 2: H = P , so P is a regular prime. Since R is a weak π-ring, it follows that K ⊆ P
for some invertible prime ideal K of R. It’s clear that K is regular. Since K and I are
finitely generated, it follows that K, indeed :
Let K =< (kj)nj=1 >, I =< (il)ml=1 > and (r, r + i) ∈ K, we have r + i = Σnj=1ajkj and
i = Σml=1blil, so r = Σnj=1ajkj − Σml=1blil, then:
(r, r + i) = (Σnj=1ajkj − Σml=1blil,Σ

n
j=1ajkj) = Σnj=1(aj , aj)(kj , kj) − Σml=1(bl, bl)(il, 0).

SinceR is an arithmetical ring, it follows thatK is locally principal, and hence an invertible
prime ideal. Finally, R ./ I is a weak π-ring.

(iv) Suppose R ./ I a (∗)-ring and let J =< r > be a regular ideal of R. By the same
way in the proof of statement (2), < (r, r) >= J ./ I is regular. Hence by hypothesis,
J ./ I = (P1 ./

f J) ∩ ... ∩ (Pn ./f J) = (P1 ∩ ... ∩ Pn) ./f J where Pl’s are primary
ideals. Therefore, J has a primary decomposition.

Conversely, suppose R is a (∗)-ring, and let H =< (r, r + i) > be a regular ideal.
Similarly to the proof of Theorem 4.3, H = J ./ I where J =< r > is a regular
ideal of R. We get then J = P1 ∩ ... ∩ Pn where Pl’s are primary ideals of R, so
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H = (P1 ∩ ... ∩ Pn) ./ I = (P1 ./ I) ∩ ... ∩ (Pn ./ I) where Pl ./ I are primary
ideals for all l = 1, ..., n. Consequently, R ./ I is a (∗)-ring.

(v) Assume that R ./ I is a strongly (∗)-ring and let J be an invertible ideal of R. By applying
lemma 4.2, we get J ./ I an invertible ideal, and so J ./ I = (P1 ./ I) ∩ ... ∩ (Pn ./ I) =
(P1 ∩ ... ∩ Pn) ./ I , as desired.
Conversely, suppose R is a strongly (∗)-ring, and let H be an invertible ideal of R ./ I .
Similarly to the proof of Theorem 4.3, H = J ./ I where J is an invertible ideal of R. We
get then J = P1 ∩ ... ∩ Pn where Pl’s are primary ideals of R, so H = (P1 ∩ ... ∩ Pn) ./
I = (P1 ./ I) ∩ ... ∩ (Pn ./ I) where Pl ./ I are primary ideals for all l = 1, ..., n, which
completes the proof.

The condition “I = aI for all a ∈ Reg(R)" is necessary in Theorem 4.5(2).

Example 4.6. Let A = Z2, E = A/2A, R = A ∝ E and I = 0 ∝ E.
We have R ./ I = R ∝ I is a total quotient ring, hence a weak π-ring. Clearly for all r ∈
Reg(R), rI $ I . Similarly to the proof of Example 2.3, we prove that R ./ I is not a weak
π-ring.

The result in the next corollary follows at once from Theorem 4.5.

Corollary 4.7. Let R be a ring, I an ideal of R and R ./ I .

(i) If R ./ I is an almost weak π-ring, then so is R.

(ii) Suppose that I = aI for all a ∈ Reg(R). If R is an almost weak π-ring, then so is R ./ I .

Proof. (i) Follows from Corollary 4.4(1).

(ii) Let H =< (r, r + i) > be a regular ideal. Similarly to the previous proof we have H =
J ./ I where J =< r > is a regular ideal of R. Since R is almost weak π-ring, we get
JM = P1M ...PnM for all M ∈Max(R, J) where Pl’s are prime ideals of R. Two cases are
then possible:
If M ∈Max(R)\V (I), so HM ′ = (J ./ I)M ′ ∼= JM where M ′ =M ./ I , as desired.
If M ∈Max(R) ∩ V (I), so HM ′ = (J ./ I)M ′ ∼= JM ./ IM . As R is almost weak π-ring,
we have JM ./ IM = P1M ...PnM ./ IM = P1M ./ IM ...PnM ./ IM , that is to say R ./f J
is an almost weak π-ring.

We close this section with some examples of application of our results. We construct the
following examples of a weak π-ring (a strongly (∗)-ring) for the amalgamated duplication along
an ideal and the amalgamation of rings along an ideal with respect to f .

Example 4.8. Let R = Z ∝ Z/4Z and I = 0 ∝ 2Z/4Z. Thus R ./ I is a weak π-ring and hence
a strongly (∗)-ring.

Proof. By Example 2.3, R is a weak π-ring. We claim that I = aI for all a ∈ Reg(R). Indeed,
since Reg(R) = {(2k + 1, s∗) ∈ Z ∝ Z/4Z|k ∈ Z} and J =< (0, 2) >, we get (0, 2) =
(0, 4k + 2) = (2k + 1, z)(0, 2) for all k, z ∈ Z. Hence R ./ I is a weak π-ring and hence a
strongly (∗)-ring.

Example 4.9. Let R = Z ∝ Z/4Z, S = Z/6Z, f a ring homomorphism defined by f((r, s∗)) =
r and J = 3Z/6Z. Therefore R ./f J is a weak π-ring and thus a strongly (∗)-ring.

Proof. By Example 2.3,R is a weak π-ring. We claim that J = (f(a)+j)J for all (a, f(a)+j) ∈
Reg(R ./f J). Indeed, let (a, f(a) + j) ∈ Reg(R ./f J), since (3, 0

∗
) ∈ f−1(J), it follows that

Ann(f−1(J)) = 0, by Lemma 4.2 a is a regular element ofR. Now we prove that if (a, f(a)+j)
is regular, then j = 0. Indeed, as Reg(R) = {(2k + 1, s∗) ∈ Z ∝ Z/4Z|k ∈ Z}, it follows that
f(Reg(R)) = {1, 3, 5}. Clearly J = {0, 3}, so three cases are possible:
f(a) + j = 1 + 3 = 4, so (a, f(a) + j)(0, 3) = (0, 0), contradiction.
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f(a) + j = 3 + 3 = 0, so (a, f(a) + j)(0, 3) = (0, 0), contradiction.
f(a) + j = 5 + 3 = 8, so (a, f(a) + j)(0, 3) = (0, 0), contradiction.
We get then, 3 = 1 × 3, 3 = 3 × 3 and 3 = 5 × 3. Hence R ./f J is a weak π-ring and thus a
strongly (∗)-ring.

Example 4.10. Let R = Z/8Z and I = 2Z/8Z. R is a weak π-ring since R is a total quotient
ring. Clearly I which is not regular satisfies I = aI for all a ∈ Reg(R). Therefore R ./ I is a
weak π-ring and thus a strongly (∗)-ring.
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