More Properties of (Multiplicative) Hom-Lie Algebras

Shadi Shaqaqha and Nadeen Kdaisat

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 17B99, 17B45; 17A01 Secondary 17A60.

Keywords and phrases: Lie algebra, Hom-associative algebra, Hom-Lie algebra, Multiplicative Hom-Lie algebra, Regular Hom-Lie algebra, Centroid, Derivation, Direct product of Hom-Lie algebras, Hom-Lie subalgebra, Hom-Lie ideal, Morphism of Hom-Lie algebras, Isomorphism theorems of Hom-Lie algebras.

Abstract The concept of (regular) (multiplicative) Hom-Lie algebras is studied further. Many new examples are given to illustrate this structure. It is shown, among other things, that if L is any Hom-Lie algebra over any field of characteristic $\neq 2$, then its bracket makes it a Lie algebra too. We define infinite direct products of Hom-Lie algebras and provide some of properties about it. Finally, it is proved that the isomorphism theorems for Lie algebras are also satisfied for Hom-Lie algebras.

1 Introduction

The notion of Hom-Lie algebras was originally introduced and studied by Hartwig, Larsson, and Silvestrov in [8] in 2006. It is one of generalizations for the notion of Lie algebras. In recent years, they have become an interesting topic of mathematics and physics.

A Hom-Lie algebra is a vector space equipped with a linear map and an alternating non associative bilinear map satisfying Hom-Jacobi identity. (Restricted) Hom-Lie (color-)(super-)algebras have been widely studied during the last years (see e.g. [2, 5, 6, 14, 15, 18, 20], and references therein).

In this paper, we discuss (Multiplicative) Hom-Lie algebras. The direct product of Hom-Lie algebras (not necessarily finite) is introduced and many of their properties are established. Many known theorems and results concerning Hom-Lie algebras are reviewed with possible improvements. Also, many examples are given for the purpose of illustration. Finally, many properties involving Hom-Lie algebra morphisms are studied. We show that there are isomorphism theorems for Hom-Lie algebras as there for vector spaces, for groups, for rings, and for Lie algebras.

2 Basic Definitions and Examples

Let F be a ground field. A Hom-Lie algebra over F is a triple $(L, [,], \alpha)$ where L is a vector space over F, $\alpha : L \to L$ is a linear map, and $[,] : L \times L \to L$ is a bilinear map (called a bracket), satisfying the following properties:

(i) [x, y] = -[y, x] for all $x, y \in L$ (skew-symmetry property).

(ii)
$$[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0$$
, for all $x, y, z \in L$ (Hom-Jacobi identity).

It is clear that every Lie algebra (see e.g. [4, 16]) is a Hom-Lie algebra by setting $\alpha = id_L$ (The identity map). On the other hand the bracket corresponding to a Hom-Lie algebra need not to define a Lie algebra [5]. For a Hom-Lie algebra L over a field F of characteristic $\neq 2$, as in the setting of Lie algebras one can show that [x, x] = 0 for each $x \in L$. Also for an arbitrary Hom-Lie algebra L, we have [x, 0] = [0, x] = 0 for each $x \in L$.

Example 2.1. ([8]) Let L be a vector spaces L and α any linear map. Then $(L, [,], \alpha)$ is a Hom-Lie algebra, where [x, y] = 0 for all $x, y \in L$. Such Hom-Lie algebras are called abelian or commutative Hom-Lie algebras.

Example 2.2. Let *L* be a vector space and $[,]: L \times L \to L$ be any skew-symmetric bilinear map. If $\alpha: L \to L$ is the zero map, then $(L, [,], \alpha)$ is a Hom-Lie algebra.

Example 2.3. Let *L* be a vector space over *F* with basis $\{e_1, e_2, e_3\}$. Define the linear map $\alpha : L \to L$ by setting $\alpha(e_1) = \alpha(e_2) = \alpha(e_3) = e_1 + e_2 + e_3$. Let $[,] : L \times L \to L$ be the skew-symmetric bilinear map such that

$$[e_1, e_2] = [e_1, e_3] = [e_2, e_3] = e_1 + e_2 + e_3,$$

and $[e_i, e_i] = 0$ for all i = 1, 2, 3. Then $(L, [,], \alpha)$ is a Hom-Lie algebra. Indeed the Hom-Jacobi identity follows directly from the fact that for $x, y \in L$ we have [x, y] and $\alpha(x)$ will be scalar multiples of $(e_1 + e_2 + e_3)$, and so for any $x, y, z \in L$ we obtain

$$[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0.$$

Example 2.4. Let *L* be a vector space over *F* with basis $\{e_1, e_2, e_3\}$. Define the linear map $\alpha : L \to L$ by setting $\alpha(e_1) = e_2$ and $\alpha(e_2) = \alpha(e_3) = 0$. Let $[,] : L \times L \to L$ be the skew-symmetric bilinear map such that

$$[e_1, e_2] = [e_2, e_3] = 0, [e_1, e_3] = e_1$$

and $[e_i, e_i] = 0$ for all i = 1, 2, 3. Then $(L, [,], \alpha)$ is a Hom-Lie algebra. We note that [x, y] is a scalar multiple of e_1 for each $x, y \in L$, and also $\alpha(x)$ is a scalar multiple of e_2 for each $x \in L$. Thus $[\alpha(x), [y, z]] = 0$ for each $x, y, z \in L$. This implies that the Hom-Jacobi identity is satisfied.

3 Example of a Hom-Lie Algebra that is not a Lie Algebra

The following example, appeared in [5] without proof, shows that the bracket corresponding to a Hom-Lie algebra need not to define a Lie algebra.

Example 3.1. Let *L* be a vector space over *F* with basis $\{e_1, e_2, e_3\}$. Define the linear map $\alpha : L \to L$ by setting $\alpha(e_1) = e_1$, $\alpha(e_2) = 2e_2$, and $\alpha(e_3) = 2e_3$. Let $[,]: L \times L \to L$ be the skew-symmetric bilinear map such that

$$[e_1, e_2] = e_1, [e_1, e_3] = 2e_2, [e_2, e_3] = 2e_3,$$

and for all i = 1, 2, 3 we have $[e_i, e_i] = 0$. Then $(L, [,], \alpha)$ is a Hom-Lie algebra. Indeed for $y = b_1e_1 + b_2e_2 + b_3e_3, z = c_1e_1 + c_2e_2 + c_3e_3 \in L$ $(b_i, c_i \in F, i = 1, 2, 3)$, we have

$$\begin{aligned} [y, z] &= [b_1e_1 + b_2e_2 + b_3e_3, c_1e_1 + c_2e_2 + c_3e_3] \\ &= b_1c_1[e_1, e_1] + b_1c_2[e_1, e_2] + b_1c_3[e_1, e_3] \\ &+ b_2c_1[e_2, e_1] + b_2c_2[e_2, e_2] + b_2c_3[e_2, e_3] \\ &+ b_3c_1[e_3, e_1] + b_3c_2[e_3, e_2] + b_3c_3[e_3, e_3] \end{aligned}$$
$$= b_1c_2e_1 + 2b_1c_3e_2 - b_2c_1e_1 + 2b_2c_3e_3 - 2b_3c_1e_2 - 2b_3c_2e_3 \\ &= (b_1c_2 - b_2c_1)e_1 + 2(b_1c_3 - b_3c_1)e_2 + 2(b_2c_3 - b_3c_2)e_3. \end{aligned}$$

Now, for an another arbitrary element $x = a_1e_1 + a_2e_2 + a_3e_3$ in L, we find

 $[\alpha(x), [y, z]] = [a_1e_1 + 2a_2e_2 + 2a_3e_3, (b_1c_2 - b_2c_1)e_1 + 2(b_1c_3 - b_3c_1)e_2 + 2(b_2c_3 - b_3c_2)e_3].$ So that, after some calculations we can get

$$\begin{aligned} [\alpha(x), [y, z]] &= 2(a_1b_1c_3 - a_1b_3c_1 - a_2b_1c_2 + a_2b_2c_1)e_1 \\ &+ 4(a_1b_2c_3 - a_1b_3c_2 - a_3b_1c_2 + a_3b_2c_1)e_2 \\ &+ 8(a_2b_2c_3 - a_2b_3c_2 - a_3b_1c_3 + a_3b_3c_1)e_3. \end{aligned}$$

Now, according to the formula above and some calculations, we can get

$$[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0$$

On the other hand (L, [,]) is not a Lie algebra. Indeed

$$\begin{split} [e_1, \ [e_2, \ e_3]] + [e_2, \ [e_3, \ e_1]] + [e_3, \ [e_1, \ e_2]] &= [e_1, \ 2e_3] + [e_2, \ -2e_2] + [e_3, \ e_1] \\ &= 4e_2 + 0 + (-2e_2) \\ &= 2e_2 \neq 0. \end{split}$$

4 2-Dimensional Hom-Lie Algebras

The following theorem was given in [11] without proof to the case where L is a 2-dimensional space over a field of characteristic 0. We are going to prove it if characteristic $(F) \neq 2$.

Theorem 4.1. Let *L* be a 2-dimensional vector space over a field *F* with characteristic \neq 2. Then every skew-symmetric bilinear map $[,]: L \times L \rightarrow L$ defines a Hom-Lie algebra.

Proof. Let L be a vector space over F with basis $\{e_1, e_2\}$. Suppose that $\alpha : L \to L$ is any arbitrary linear map. Then $\alpha(e_1) = n_1e_1 + m_1e_2$ and $\alpha(e_2) = n_2e_1 + m_2e_2$ for some $n_1, n_2, m_1, m_2 \in F$. Also we can assume $[e_1, e_2] = se_1 + te_2$ for some $s, t \in F$. So for $y = b_1e_1 + b_2e_2$, $z = c_1e_1 + c_2e_2 \in L$ where $b_1, b_2, c_1, c_2 \in F$, we have

$$[y, z] = [b_1e_1 + b_2e_2, c_1e_1 + c_2e_2] = (b_1c_2 - b_2c_1)(se_1 + te_2).$$

Now, for an another arbitrary element $x = a_1e_1 + a_2e_2 \in L$ where $a_1, a_2 \in F$, we find

$$[\alpha(x), [y, z]] = [(n_1a_1 + n_2a_2)e_1 + (m_1a_1 + m_2a_2)e_2, (b_1c_2 - b_2c_1)se_1 + (b_1c_2 - b_2c_1)te_2].$$

So that, after some calculations we can get

$$[\alpha(x), [y, z]] = (t(n_1a_1b_1c_2 + n_2a_2b_1c_2 - n_1a_1b_2c_1 - n_2a_2b_2c_1) - s(m_1a_1b_1c_2 + m_2a_2b_1c_2 - m_1a_1b_2c_1 - m_2a_2b_2c_1))[e_1, e_2]$$

Now, according to the formula above and some calculations, we can get

$$[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0.$$

Corollary 4.2. The bracket defined in any 2-dimensional Hom-Lie algebra over a field of characteristic $\neq 2$ makes it a Lie algebra too.

Proof. This follows from our calculations in the proof of the theorem above by setting $\alpha = id_L$.

5 Hom-Lie Subalgebras and Ideals

A subset H of a Hom-Lie algebra L is called a Hom-Lie subalgebra if H itself is a Hom-Lie algebra under the same operations corresponding to the Hom-Lie algebra L. One can easily prove the following result.

Theorem 5.1. Let $(L, [,], \alpha)$ be a Hom-Lie algebra. A subspace H of L is a Hom-Lie subalgebra if $\alpha(H) \subseteq H$ and $[x, y] \in H$ for all $x, y \in H$.

Definition 5.2. ([6]) A Hom-Lie subalgebra *H* is said to be a Hom-Lie ideal if $[x, y] \in H$ for all $x \in H$ and $y \in L$.

Example 5.3. Let $(L, [,], \alpha)$ be a Hom-Lie algebra. Then $\{0\}$ and L are Hom-Lie ideals of L. They are called the trivial ideals.

Example 5.4. In Example 3.1, the subspace $H = \text{Span}(\{e_1, e_2\})$ is a Hom-Lie subalgebra. Note that $\alpha(H) \subseteq H$ since $\alpha(e_1) = e_1 \in H$ and $\alpha(e_2) = 2e_2 \in H$. Also, $[e_1, e_2] = e_1 \in H$ implies $[x, y] \in H$ for any $x, y \in H$. But H is not ideal. Indeed $[e_2, e_3] = 2e_3 \notin H$.

Example 5.5. In Example 2.3, the subspace $H = \text{Span}(\{e_1+e_2+e_3\})$ is a Hom-Lie ideal. Indeed $\alpha(H) \subseteq H$ since $\alpha(e_1+e_2+e_3) = 3(e_1+e_2+e_3) \in H$. Also, for all $x = ae_1 + be_2 + ce_3 \in L$ and for any $y = d(e_1+e_2+e_3) \in H$ we find $[y, x] = d(2c-2a)(e_1+e_2+e_3)$. This means that $[x, y] \in H$.

Suppose H and K are Hom-Lie ideals of a Hom-Lie algebra L. The sum and multiplication of H and K are defined as follows:

$$H + K = \{h + k \mid h \in H \text{ and } k \in K\}$$

and

$$[H, K] = \operatorname{Span}(\{[h, k] \mid h \in H \text{ and } k \in K\}).$$

Recall that $H \cap K$, H + K, and [H, K] are subspaces of the space L.

Theorem 5.6. ([6]) Let H and K be Hom-Lie ideals of a Hom-Lie algebra $(L, [,], \alpha)$. Then,

- (i) $H \cap K$ and H + K are Hom-Lie ideals
- (*ii*) $[H, K] \subseteq H \cap K$

Remark 5.7. Suppose that H and K are Hom-Lie ideals of a Hom Lie algebra L. Then in the contrast of the case of Lie algebras, [H, K] need not be a Hom-Lie subalgebra. Consider the Hom-Lie algebra given in Example 2.4, then $[L, L] = \text{Span}(\{e_1\})$ is not a Hom-Lie subalgebra because $\alpha(e_1) = e_2 \notin [L, L]$.

The center of a Hom-Lie algebra $(L, [,], \alpha)$ is the vector subspace $Z(L) = \{x \in L \mid [x, y] = 0$ for all $y \in L\}$ ([5]). Recall that the center of any Lie algebra is an ideal. The following example shows that the center of a Hom-Lie algebra need not be Hom-Lie subalgebra.

Example 5.8. We consider Example 2.3. For arbitrary $ae_1 + be_2 + ce_3 \in L$ $(a, b, c \in F)$, we get $[e_1 - e_2 + e_3, ae_1 + be_2 + ce_3] = (b + c + a - c - a - b)(e_1 + e_2 + e_3) = 0$. On the other hand, if $x = se_1 + te_2 + ke_3 \in Z(L)(s, t, k \in F)$, then $[x, e_1] = [x, e_2] = [x, e_3] = 0$ and so $(-t-k)(e_1 + e_2 + e_3) = (s-k)(e_1 + e_2 + e_3) = (s+t)(e_1 + e_2 + e_3) = 0$. Because $\{e_1, e_2, e_3\}$ are linearly independent, it follows -t - k = s - k = s + t = 0. Thus $x = s(e_1 - e_2 + e_3) \in Span\{e_1 - e_2 + e_3\}$. This shows that

$$Z(L) = \text{Span}(\{e_1 - e_2 + e_3\}).$$

On the other hand, Z(L) is not a Hom-Lie subalgebra of L, since $\alpha(e_1-e_2+e_3) = (e_1+e_2+e_3) \notin H$.

6 Multiplicative Hom-Lie Algebras and Important Example

Let $(L, [,], \alpha)$ be a Hom-Lie algebra. It is called **multiplicative** if $\alpha([x, y]) = [\alpha(x), \alpha(y)]$ for all $x, y \in L$. A multiplicative Hom-Lie algebra is called **regular** if α is bijective. The following theorem is a generalization of a known theorem for Lie algebras in the case of regular Hom-Lie algebras.

Example 6.1. Let $F = \mathbb{C}$ be the field of complex numbers. Consider the vector space \mathbb{C}^2 and define the linear map

$$\alpha: \mathbb{C}^2 \to \mathbb{C}^2; (x, y) \mapsto (-y, -x).$$

We define a map $[\;,\;]:\mathbb{C}^2\times\mathbb{C}^2\to\mathbb{C}^2,$ where

$$[(x_1, x_2), (y_1, y_2)] = (i(x_1y_2 - x_2y_1), i(x_1y_2 - x_2y_1)).$$

Then $(\mathbb{C}^2, [,], \alpha)$ is a regular Hom-Lie algebra. The bracket is skew-symmetric, since

$$[(x_1, x_2), (y_1, y_2)] = (i(x_1y_2 - x_2y_1), i(x_1y_2 - x_2y_1))$$

= $-(i(x_2y_1 - x_1y_2), i(x_2y_1 - x_1y_2))$
= $-[(y_1, y_2), (x_1, x_2)]$

The bracket is bilinear map, since for any $c_i, x_i, y_i, z_i \in \mathbb{C}, i = 1, 2$, we have

$$[c_1(x_1, x_2) + c_2(y_1, y_2), (z_1, z_2)] = [(c_1x_1 + c_2y_1, c_1x_2 + c_2y_2), (z_1, z_2)]$$

$$= (i(c_1x_1z_2 + c_2y_1z_2 - c_1x_2z_1 - c_2y_2z_1), i(c_1x_1z_2 + c_2y_1z_2 - c_1x_2z_1 - c_2y_2z_1))$$

$$= c_1(i(x_1z_2 - x_2z_1), i(x_1z_2 - x_2z_1)) + c_2(i(y_1z_2 - y_2z_1), i(y_1z_2 - y_2z_1))$$

$$= c_1[(x_1, x_2), (z_1, z_2)] + c_2[(y_1, y_2), (z_1, z_2)].$$

Also, the Hom-Jacobi identity is satisfied. For any $x_i, y_i, z_i \in \mathbb{C}, i = 1, 2$, we get $[\alpha(x_1, x_2), [(y_1, y_2), (z_1, z_2)]]$

$$= [(-x_2, -x_1), (i(y_1z_2 - y_2z_1), i(y_1z_2 - y_2z_1))]$$

= $((y_1z_2 - y_2z_1)(x_2 - x_1), (y_1z_2 - y_2z_1)(x_2 - x_1))$
= $(x_2y_1z_2 - x_2y_2z_1 - x_1y_1z_2 + x_1y_2z_1, x_2y_1z_2 - x_2y_2z_1 - x_1y_1z_2 + x_1y_2z_1)$

Therefore

 $[\alpha(x_1, x_2), [(y_1, y_2), (z_1, z_2)]] + [\alpha(y_1, y_2), [(z_1, z_2), (x_1, x_2)]] + [\alpha(z_1, z_2), [(x_1, x_2), (y_1, y_2)]]$

$$= (x_2y_1z_2 - x_2y_2z_1 - x_1y_1z_2 + x_1y_2z_1, x_2y_1z_2 - x_2y_2z_1 - x_1y_1z_2 + x_1y_2z_1) + (y_2z_1x_2 - y_2z_2x_1 - y_1z_1x_2 + y_1z_2x_1, y_2z_1x_2 - y_2z_2x_1 - y_1z_1x_2 + y_1z_2x_1) + (z_2x_1y_2 - z_2x_2y_1 - z_1x_1y_2 + z_1x_2y_1, z_2x_1y_2 - z_2x_2y_1 - z_1x_1y_2 + z_1x_2y_1) = (0, 0).$$

Thus, $(\mathbb{C}^2, [,], \alpha)$ is a Hom-Lie algebra. Also it is regular. Indeed one can easily prove that α is bijective, and also

$$\begin{aligned} \alpha[(x_1, x_2), (y_1, y_2)] &= \alpha(i(x_1y_2 - x_2y_1), i(x_1y_2 - x_2y_1)) \\ &= (i(x_2y_1 - x_1y_2), i(x_2y_1 - x_1y_2)) \\ &= [(-x_2, -x_1), (-y_2, -y_1)] \\ &= [\alpha(x_1, x_2), \alpha(y_1, y_2)]. \end{aligned}$$

Theorem 6.2. ([6]) If $(L, [,], \alpha)$ is a regular Hom-Lie algebra, then Z(L) is a Hom-Lie ideal.

7 New Hom-Lie Algebras From Old Lie Algebras

The following theorem gives a way to construct a new Hom-Lie algebras, beginning from a Lie algebra and a homomorphism of Lie algebras.

Theorem 7.1. ([5]) Let (L, [,]) be a Lie algebra and $\alpha : L \to L$ be a Lie algebra homomorphism. Then $(L, [,]_{\alpha}, \alpha)$ is a multiplicative Hom-Lie algebra, where $[,]_{\alpha} = \alpha \circ [,]$.

Example 7.2. Consider the associative algebra $M_n(F)$ of $n \times n$ matrices over F under the ordinary multiplication of matrices. Define the following skew-symmetric bilinear bracket map

$$[,]$$
 : $M_n(F) \times M_n(F) \to M_n(F); (A, B) \mapsto [A, B]$

where [A, B] = AB - BA. It is well known that $(M_n(F), [,])$ is a Lie algebra (see for example [4]). Now, define the linear map

$$\alpha: M_n(F) \to M_n(F); A \mapsto -A^T.$$

Since

$$\alpha([A, B]) = -(AB - BA)^{T} = (BA)^{T} - (AB)^{T}$$

= $A^{T}B^{T} - B^{T}A^{T}$
= $[A^{T}, B^{T}] = [\alpha(A), \alpha(B)],$ (7.1)

it follows that α is a Lie algebra homomorphism. Thus, using the theorem above, we have $(M_n(F), [,]_{\alpha}, \alpha)$ is a multiplicative Hom-Lie algebra, where $[A, B]_{\alpha} = \alpha([A, B]) = A^T B^T - B^T A^T$ by the relation (7.1) for any $A, B \in M_n(F)$.

8 Direct Sum and Direct Product of Hom-Lie Algebras

Let $S = \{L_{\lambda} \mid \lambda \in \Delta\}$ be a family of vector spaces. The (external) direct product of S is the vector space $\prod_{\lambda \in \Delta} L_{\lambda} = \{f : \Delta \to \bigcup_{\lambda \in \Delta} L_{\lambda} \mid f(\lambda) \in L_{\lambda}\}$ with the ordinary addition and scalar multiplication of functions ([13]).

Theorem 8.1. Let $(L_{\lambda}, [,]_{\lambda}, \alpha_{\lambda})$ be a Hom-Lie algebra for each $\lambda \in \Delta$. Then $(\prod_{\lambda \in \Delta} L_{\lambda}, [,], \alpha)$ is a Hom-Lie algebra by setting

$$\alpha: \prod_{\lambda \in \Delta} L_{\lambda} \to \prod_{\lambda \in \Delta} L_{\lambda}; \ f \mapsto f_{\alpha},$$

where $f_{\alpha}(\lambda) = \alpha_{\lambda}(f(\lambda))$ ($\in L_{\lambda}$) for all $\lambda \in \Delta$, and also the multiplication

$$[\,,\,]:\prod_{\lambda\in\Delta}L_{\lambda} imes\prod_{\lambda\in\Delta}L_{\lambda} o\prod_{\lambda\in\Delta}L_{\lambda};\;(f,\;g)\mapsto[f,\;g],$$

where $[f, g](\lambda) = [f(\lambda), g(\lambda)]_{\lambda} \ (\in L_{\lambda}).$

Proof. Let $f, g \in \prod_{\lambda \in \Lambda} L_{\lambda}$ and $a, b \in F$. For any $\lambda \in \Delta$ we have,

$$\begin{aligned} (\alpha(af+bg))(\lambda) &= (af+bg)_{\lambda}(\lambda) = \alpha_{\lambda}((af+bg)(\lambda)) \\ &= a\alpha_{\lambda}(f(\lambda)) + b\alpha_{\lambda}(g(\lambda)) = (a\alpha(f) + b\alpha(g))(\lambda). \end{aligned}$$

Thus, $\alpha(af + bg) = a\alpha(f) + b\alpha(g)$, which implies that α is a linear map. Also, [,] is a skew-symmetric bilinear map because $[,]_{\lambda}$ is a skew-symmetric bilinear map for all $\lambda \in \Delta$. Now, for any $f, g, h \in \prod_{\lambda \in \Delta} L_{\lambda}$ and any $\lambda \in \Delta$, we obtain

$$([\alpha(f), [g, h]] + [\alpha(g), [h, f]] + [\alpha(h), [f, g]])(\lambda)$$

$$= [f_{\alpha}(\lambda), [g(\lambda), h(\lambda)]_{\lambda}]_{\lambda} + [g_{\alpha}(\lambda), [h(\lambda), f(\lambda)]_{\lambda}]_{\lambda} + [h_{\alpha}(\lambda), [f(\lambda), g(\lambda)]_{\lambda}]_{\lambda}$$

$$= [\alpha_{\lambda}(f(\lambda)), [g(\lambda), h(\lambda)]_{\lambda}]_{\lambda} + [\alpha_{\lambda}(g(\lambda)), [h(\lambda), f(\lambda)]_{\lambda}]_{\lambda}$$

$$+ [\alpha_{\lambda}(h(\lambda)), [f(\lambda), g(\lambda)]_{\lambda}]_{\lambda}$$

$$= 0$$

Let $S = \{L_{\lambda} \mid \lambda \in \Delta\}$ be a family of Hom-Lie algebras. The (external) direct sum of S is the vector space $\bigoplus_{\lambda \in \Delta} L_{\lambda} = \{f : \Delta \to \bigcup_{\lambda \in \Delta} L_{\lambda} \mid f(\lambda) \in L_{\lambda} \text{ and } f(\lambda) = 0 \text{ for all but finitely many } \lambda\}$. In fact $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a subspace of $\prod_{\lambda \in \Delta} L_{\lambda}$ ([13]). **Theorem 8.2.** Let $(L_{\lambda}, [,]_{\lambda}, \alpha_{\lambda})$ be a Hom-Lie algebra for all $\lambda \in \Delta$. Then $(\bigoplus_{\lambda \in \Delta} L_{\lambda}, [,], \alpha)$ is a Hom-Lie algebra

$$\alpha: \bigoplus_{\lambda \in \Delta} L_{\lambda} \to \bigoplus_{\lambda \in \Delta} L_{\lambda}; \ f \mapsto f_{\alpha},$$

where $f_{\alpha}(\lambda) = \alpha_{\lambda}(f(\lambda))$ for each $\lambda \in \Delta$, and also the skew-symmetric bilinear map

$$[,]: \bigoplus_{\lambda \in \Delta} L_{\lambda} \times \bigoplus_{\lambda \in \Delta} L_{\lambda} \to \bigoplus_{\lambda \in \Delta} L_{\lambda}; \ (f, \ g) \mapsto [f, \ g],$$

where $[f, g](\lambda) = [f(\lambda), g(\lambda)]_{\lambda}$.

Proof. Note that, $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a Hom-Lie ideal of $\prod_{\lambda \in \Delta} L_{\lambda}$. Indeed For any $f \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$, we have $\alpha(f) = f_{\alpha} \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$ because $f_{\alpha}(\lambda) = \alpha_{\lambda}(f(\lambda)) = 0$ for all but finitely many λ $(f(\lambda) = 0$ for all but finitely many λ and $\alpha_{\lambda}(0) = 0$). Also, For any $f \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$ and $g \in \prod_{\lambda \in \Delta} L_{\lambda}$, $[f, g](\lambda) = [f(\lambda), g(\lambda)]_{\lambda} = 0$ for all but finitely many λ does for all but finitely many λ and $[0, g(\lambda)] = 0$ for all $\lambda \in \Delta$. Thus, $[f, g] \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$.

Remark 8.3. The direct product and the direct sum are the same for a finite family $\{L_i \mid i = 1, 2, ..., n\}$ of Hom-Lie algebras; that is

$$L_1 \times L_2 \times \cdots \times L_n = L_1 \oplus L_2 \oplus \cdots \oplus L_n.$$

Corollary 8.4. Given n Hom-Lie algebras $(L_i, [,]_i, \alpha_i)$, i = 1, ..., n, there is a Hom-Lie algebra $(L_1 \oplus L_2 \oplus ... \oplus L_n, [,], \alpha_1 + \alpha_2 + ... + \alpha_n)$, where the skew-symmetric bilinear map

$$[,] : (L_1 \oplus L_2 \oplus \ldots \oplus L_n) \times (L_1 \oplus L_2 \oplus \ldots \oplus L_n) \to (L_1 \oplus L_2 \oplus \ldots \oplus L_n)$$

is given by

$$[(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)] = ([x_1, y_2]_1, [x_1, y_2]_2, \ldots, [x_n, y_n]_n),$$

for all $x_i, y_i \in L_i$, i = 1, 2, ..., n, and the linear map

$$(\alpha_1 + \alpha_2 + \ldots + \alpha_n)$$
 : $(L_1 \oplus L_2 \oplus \ldots \oplus L_n) \to (L_1 \oplus L_2 \oplus \ldots \oplus L_n)$

is given by

$$(\alpha_1 + \alpha_2 + \ldots + \alpha_n)(x_1, x_2, \ldots, x_n) = (\alpha_1(x_1), \alpha_2(x_2), \ldots, \alpha_n(x_n)),$$

for all $x_i \in L_i$, i = 1, 2, ..., n.

In the special case where n = 2, we obtain [17, Proposition 2.2].

Theorem 8.5. Let $(L_{\lambda}, [,]_{\lambda}, \alpha_{\lambda})$ be a Hom-Lie algebra for all $\lambda \in \Delta$.

- (i) If H_{λ} is a Hom-Lie subalgebra of L_{λ} for each $\lambda \in \Delta$, then $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$ and $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.
- (ii) If H_{λ} is a Hom-Lie ideal of L_{λ} for each $\lambda \in \Delta$, then $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie ideal of $\prod_{\lambda \in \Delta} L_{\lambda}$ and $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie ideal of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.

Proof.

- (i) Let $h \in \prod_{\lambda \in \Delta} H_{\lambda}$. Then for each $\lambda \in \Delta$, $h(\lambda) \in H_{\lambda}$ and so $h_{\alpha}(\lambda) = \alpha_{\lambda}(h(\lambda)) \in H_{\lambda}$, which implies $\alpha(h) = h_{\alpha} \in \prod_{\lambda \in \Delta} H_{\lambda}$. If $h, g \in \prod_{\lambda \in \Delta} H_{\lambda}$, then $[h, g](\lambda) = [h(\lambda), g(\lambda)]_{\lambda} \in H_{\lambda}$ for each $\lambda \in \Delta$. Which implies $[h, g] \in \prod_{\lambda \in \Delta} H_{\lambda}$. Thus, $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$. Similarly, $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.
- (ii) Similar to the proof of (i).

Theorem 8.6. Let $(L_{\lambda}, [,]_{\lambda}, \alpha_{\lambda})$ be a multiplicative Hom-Lie algebra for all $\lambda \in \Delta$. Then the Hom-Lie algebras $(\prod_{\lambda \in \Delta} L_{\lambda}, [,], \alpha)$ and $(\bigoplus_{\lambda \in \Delta} L_{\lambda}, [,], \alpha)$ are multiplicative.

Proof. Let $(L_{\lambda}, [,]_{\lambda}, \alpha_{\lambda})$ be a multiplicative Hom-Lie algebra for all $\lambda \in \Delta$. If $f, g \in \prod_{\lambda \in \Delta} L_{\lambda}$, then for any $\lambda \in \Delta$,

$$(\alpha([f, g]))(\lambda) = \alpha_{\lambda}([f, g](\lambda)) = \alpha_{\lambda}([f(\lambda), g(\lambda)]_{\lambda})$$

= $[\alpha_{\lambda}(f(\lambda)), \alpha_{\lambda}(g(\lambda))]_{\lambda} = [(\alpha(f))(\lambda), (\alpha(g))(\lambda)]_{\lambda}$
= $([\alpha(f), \alpha(g)])(\lambda).$

Thus $\alpha([f, g]) = [\alpha(f), \alpha(g)]$. Consequently, $\prod_{\lambda \in \Delta} L_{\lambda}$ is a multiplicative Hom-Lie algebra. Also, $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a multiplicative Hom-Lie algebra too, because it is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$.

9 Hom-Lie Algebras Morphism

Definition 9.1. ([8]) Let $(L_1, [,]_1, \alpha_1)$ and $(L_2, [,]_2, \alpha_2)$ be Hom-Lie algebras. A linear map $\varphi : L_1 \to L_2$ is called a morphism of Hom-Lie algebras if the following two identities are satisfied:

(i) $\varphi([x, y]_1) = [\varphi(x), \varphi(y)]_2$ for all $x, y \in L_1$.

(ii)
$$\varphi \circ \alpha_1 = \alpha_2 \circ \varphi$$
.

Example 9.2. (i) Let L_1 and L_2 be Hom-Lie algebras over F. Then

$$\varphi: L_1 \to L_2; x \mapsto 0$$

is a morphism of Hom-Lie algebras.

(ii) Let L be any Hom-Lie algebra. Then the identity map

$$\operatorname{id}_L: L \to L; \ x \mapsto x$$

is a morphism of Hom-Lie algebras.

Example 9.3. If $(L, [,], \alpha)$ is a multiplicative Hom-Lie algebra, then α is a morphism of Hom-Lie algebras.

Example 9.4. Let us consider the Hom-Lie algebra

 $L_1 = L = \text{Span}\{e_1, e_2, e_3\}$

with the linear map $\alpha_1 : L \to L$ defined by setting $\alpha_1(e_1) = \alpha_1(e_2) = \alpha_1(e_3) = e_1 + e_2 + e_3$ and the skew-symmetric bracket $[,]_1$ defined as $[e_1, e_2]_1 = [e_1, e_3]_1 = [e_2, e_3]_1 = e_1 + e_2 + e_3$ and also $[e_i, e_i]_1 = 0$ for each i = 1, 2, 3 given in Example 2.3. Also let us take the Hom-Lie algebra $L_2 = L$ where the linear map α_2 on L defined as $\alpha_2(e_1) = e_2$ and $\alpha_2(e_2) = \alpha_2(e_3) = 0$, and also the skew-symmetric bracket $[,]_2$ on L defined as $[e_1, e_3]_2 = e_1$ and $[e_1, e_2]_2 = [e_2, e_3]_2 = [e_1, e_1]_2 = [e_2, e_2]_2 = [e_3, e_3]_2 = 0$ given in Example 2.4. Define the linear map

$$\varphi: L_1 \to L_2$$

by setting $\varphi(e_1) = e_2$, $\varphi(e_2) = -e_2 + e_3$ and $\varphi(e_3) = -e_3$. Then φ is a morphism of Hom-Lie algebras. For $x, y \in L$ (= L_1), we have $\alpha_1(x) = a(e_1 + e_2 + e_3)$, $\varphi(x) = be_2 + ce_3$, $\varphi(y) = de_2 + fe_3$, and $[x, y]_1 = k(e_1 + e_2 + e_3)$ for some $a, b, c, d, f, k \in F$. Consequently

$$\varphi(\alpha_1(x)) = a\varphi(e_1 + e_2 + e_3) = 0 = \alpha_2(be_2 + ce_3) = \alpha_2(\varphi(x)),$$

and also

$$\varphi([x, y]_1) = k\varphi(e_1 + e_2 + e_3) = 0 = [be_2 + ce_3, de_2 + fe_3]_2 = [\varphi(x), \varphi(y)]_2$$

Example 9.5. Let $(L_1, [,]_1, \alpha_1)$ and $(L_2, [,]_2, \alpha_2)$ be Hom-Lie algebras. Then the projection map

$$\varphi: (L_1 \oplus L_2, [,], \alpha_1 + \alpha_2) \to (L_1, [,]_1, \alpha_1); (x, y) \mapsto x$$

is a morphism of Hom-Lie algebras. For any $(x_1, y_1), (x_2, y_2) \in L_1 \oplus L_2$ and $c_1, c_2 \in F$, we have, $\varphi(c_1(x_1, y_1) + c_2(x_2, y_2)) = \varphi(c_1x_1 + c_2x_2, c_1y_1 + c_2y_2) = c_1x_1 + c_2x_2 = c_1\varphi(x_1, y_1) + c_2\varphi(x_2, y_2)$. Hence φ is linear.

Also, $\varphi[(x_1, y_1), (x_2, y_2)] = \varphi([x_1, x_2]_1, [y_1, y_2]_2) = [x_1, x_2]_1 = [\varphi(x_1, y_1), \varphi(x_2, y_2)]_1.$ Next $\varphi \circ (\alpha_1 + \alpha_2) = \alpha_1 \circ \varphi$. Indeed for any $(x, y) \in L_1 \oplus L_2, \varphi \circ (\alpha_1 + \alpha_2)(x, y) = \varphi(\alpha_1(x), \alpha_2(y)) = \alpha_1(x) = \alpha_1 \circ \varphi(x, y).$

We omit the proof for the following theorem because it is straightforward.

Theorem 9.6. Let $(L_1, [,]_1, \alpha_1)$ and $(L_2, [,]_2, \alpha_2)$ be Hom-Lie algebras and let $\varphi : L_1 \to L_2$ be a morphism of Hom-Lie algebras. Then,

- (i) If A is a Hom-Lie subalgebra of L_1 , then $\varphi(A)$ is a Hom-Lie subalgebra of L_2 .
- (ii) If φ is onto, and A is a Hom-Lie ideal of L_1 , then $\varphi(A)$ is a Hom-Lie ideal of L_2 .
- (iii) If B is a Hom-Lie subalgebra of L_2 , then $\varphi^{-1}(B) = \{x \in L_1 \mid \varphi(x) \in B\}$ is a Hom-Lie subalgebra of L_1 .
- (iv) If B is a Hom-Lie ideal of L_2 , then $\varphi^{-1}(B)$ is a Hom-Lie ideal of L_1 .
- (v) $\operatorname{Ker}(\varphi)$ is a Hom-Lie ideal of L_1 .
- (vi) $\operatorname{Im}(\varphi)$ is a Hom-Lie subalgebra of L_2 .

10 Isomorphisms of Hom-Lie Algebras

Let L_1 and L_2 be a Hom-Lie algebras. A linear map $\varphi : L_1 \to L_2$ is called an isomorphism of Hom-Lie algebras if φ is a bijection morphism of Hom-Lie algebras. We say L_1 and L_2 are isomorphic and write $L_1 \equiv L_2$.

Example 10.1. Let L be any Hom-Lie algebra. Then the identity map

$$\operatorname{id}_L: L \to L; x \mapsto x$$

is isomorphism.

Example 10.2. Let $F = \mathbb{C}$. Consider the set

$$L_1 = \left\{ \begin{bmatrix} \frac{i(x+y)}{2} & x\\ y & \frac{-i(x+y)}{2} \end{bmatrix} \mid x, y \in \mathbb{C} \right\}$$

with the linear map

$$\alpha_1: L_1 \to L_1; \ A \mapsto -A^T,$$

and the skew-symmetric bilinear map

$$[,]_1 : L_1 \times L_1 \to L_1; (A, B) \mapsto [A, B]_1,$$

where $[A, B]_1 = A^T B^T - B^T A^T$. For any $x, y, z, w \in \mathbb{C}$

$$\alpha_1 \left(\begin{bmatrix} \frac{i(x+y)}{2} & x\\ y & \frac{-i(x+y)}{2} \end{bmatrix} \right) = \begin{bmatrix} \frac{i((-x)+(-y))}{2} & (-y)\\ (-x) & \frac{-i((-x)+(-y))}{2} \end{bmatrix} \in L_1$$

and

$$\begin{bmatrix} \frac{i(x+y)}{2} & x\\ y & \frac{-i(x+y)}{2} \end{bmatrix}, \begin{bmatrix} \frac{i(z+w)}{2} & z\\ w & \frac{-i(z+w)}{2} \end{bmatrix} \end{bmatrix}_{1}$$

$$= \begin{bmatrix} \frac{i(x+y)}{2} & y\\ x & \frac{-i(x+y)}{2} \end{bmatrix} \begin{bmatrix} \frac{i(z+w)}{2} & w\\ z & \frac{-i(z+w)}{2} \end{bmatrix} - \begin{bmatrix} \frac{i(z+w)}{2} & w\\ z & \frac{-i(z+w)}{2} \end{bmatrix} \begin{bmatrix} \frac{i(x+y)}{2} & y\\ x & \frac{-i(x+y)}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{-(x+y)(z+w)}{4} + yz & \frac{iw(x+y)}{2} - \frac{iy(z+w)}{2}\\ \frac{ix(z+w)}{2} - \frac{iz(x+y)}{2} & xw - \frac{(x+y)(z+w)}{4} \end{bmatrix} - \begin{bmatrix} \frac{-(x+y)(z+w)}{4} + xw & \frac{iy(z+w)}{2} - \frac{iw(x+y)}{2}\\ \frac{iz(x+y)}{2} - \frac{ix(z+w)}{2} & yz - \frac{(x+y)(z+w)}{4} \end{bmatrix}$$
$$= \begin{bmatrix} yz - xw & i(xw - yz)\\ i(xw - yz) & xw - yz \end{bmatrix} \in L_1 \quad \left(\frac{i(i(xw - yz) + i(xw - yz))}{2} = yz - xw \right).$$

This shows that L_1 is a Hom-Lie subalgebra of the Hom-Lie algebra $M_2(\mathbb{C})$ given in Example 7.2.

Let us take the Hom-Lie algebra given in Example 6.1, $L_2 = \mathbb{C}^2$ with the linear map

$$\alpha_2: L_2 \to L_2; \ (x, \ y) \mapsto (-y, \ -x),$$

and the skew-symmetric bilinear map

$$[,]: L_2 \times L_2 \to L_2; ((x, y), (z, w)) \mapsto [(x, y), (z, w)]_2$$

where $[(x, y), (z, w)]_2 = (i(xw - yz), i(xw - yz))$. Define the linear map

$$\varphi: L_1 \to L_2; \quad \begin{bmatrix} \frac{i(x+y)}{2} & x\\ y & -\frac{-i(x+y)}{2} \end{bmatrix} \mapsto (x, y).$$

Then φ is an isomorphism of Hom-Lie algebras. It is easy to show that φ is a bijection linear map. For any $x, y \in \mathbb{C}$, we have

$$\begin{split} \varphi \left(\alpha_1 \left(\begin{bmatrix} \frac{i(x+y)}{2} & x \\ y & \frac{-i(x+y)}{2} \end{bmatrix} \right) \right) &= \varphi \left(\begin{bmatrix} \frac{i((-x)+(-y))}{2} & (-y) \\ (-x) & \frac{-i((-x)+(-y))}{2} \end{bmatrix} \right) \\ &= (-y, -x) \\ &= \alpha_2(x, y) \\ &= \alpha_2 \left(\varphi \left(\begin{bmatrix} \frac{i(x+y)}{2} & x \\ y & \frac{-i(x+y)}{2} \end{bmatrix} \right) \right). \end{split}$$

Also for any $x, y, z, w \in \mathbb{C}$,

$$\begin{split} \varphi \left(\left[\left[\frac{i(x+y)}{2} & x \\ y & \frac{-i(x+y)}{2} \right], \left[\frac{i(z+w)}{2} & z \\ w & \frac{-i(z+w)}{2} \right] \right]_{1} \right) \\ &= \varphi \left(\left[\begin{array}{cc} yz - xw & i(xw - yz) \\ i(xw - yz) & xw - yz \end{array} \right] \right) \\ &= (i(xw - yz), i(xw - yz)) = [(x, y), (z, w)]_{2} \\ &= \left[\varphi \left(\left[\begin{array}{cc} \frac{i(x+y)}{2} & x \\ y & \frac{-i(x+y)}{2} \end{array} \right] \right), \varphi \left(\left[\begin{array}{cc} \frac{i(z+w)}{2} & z \\ w & \frac{-i(z+w)}{2} \end{array} \right] \right) \right]_{2} \end{split}$$

Theorem 10.3. Isomorphism of Hom-Lie algebras is an equivalence relation.

Proof. A Hom-Lie algebra *L* is isomorphic to itself via $id_L : L \to L$; $x \mapsto x$. So isomorphism is reflexive. If $\varphi : (L_1, [,]_1, \alpha_1) \to (L_2, [,]_2, \alpha_2)$ is an isomorphism of Hom-Lie algebras, then $\varphi^{-1} : L_2 \to L_1$ is an isomorphism of Hom-Lie algebras. It is enough to show that φ^{-1} is a morphism of Hom-Lie algebras. Since $\varphi \circ \alpha_1 = \alpha_2 \circ \varphi$ so $\varphi^{-1} \circ \alpha_2 = \alpha_1 \circ \varphi^{-1}$. For any $x, y \in L_2$, there exists $a, b \in L_1$ such that $\varphi(a) = x$ and $\varphi(b) = y$, and so $\varphi^{-1}[x, y]_2 = \varphi^{-1}[\varphi(a), \varphi(b)]_2 = \varphi^{-1}\varphi[a, b]_1 = [a, b]_1 = [\varphi^{-1}(x), \varphi^{-1}(y)]_1$. Thus, the isomorphism is symmetric. If $\varphi_1 : (L_1, [,]_1, \alpha_1) \to (L_2, [,]_2, \alpha_2)$ and $\varphi_2 : (L_2, [,]_2, \alpha_2) \to (L_3, [,]_3, \alpha_3)$ are isomorphism of Hom-Lie algebras, then $\varphi_2 \circ \varphi_1 : L_1 \to L_3$ is an isomorphism of Hom-Lie algebras. Indeed $(\varphi_2 \circ \varphi_1) \circ \alpha_1 = \varphi_2 \circ \alpha_2 \circ \varphi_1 = \alpha_3 \circ (\varphi_2 \circ \varphi_1)$ and $\varphi_2 \circ \varphi_1[x, y]_1 = \varphi_2[\varphi_1(x), \varphi_1(y)]_2 = [\varphi_2 \circ \varphi_1(x), \varphi_2 \circ \varphi_1(y)]_3$ for each $x, y \in L_1$. Thus, the isomorphism is transitive. Therefore isomorphism is an equivalence relation on the collection of all Hom-Lie algebras. \Box

We have the following result.

Theorem 10.4. Let $(L_1, [,]_1, \alpha_1)$ and $(L_2, [,]_2, \alpha_2)$ be Hom-Lie algebras and $\varphi : L_1 \to L_2$ be an isomorphism of Hom-Lie algebras. If L_1 is a multiplicative(regular) Hom-Lie algebra, then L_2 is a multiplicative(regular) Hom-Lie algebra.

Proof. For any $x, y \in L_2$,

$$\begin{aligned} \alpha_2\left([x, y]_2\right) &= \alpha_2(\varphi(\varphi^{-1}[x, y]_2)) \quad (\varphi \text{ is bijective map}) \\ &= \varphi(\alpha_1(\varphi^{-1}[x, y]_2) \quad (\varphi \circ \alpha_1 = \alpha_2 \circ \varphi) \\ &= \varphi(\alpha_1[\varphi^{-1}(x), \varphi^{-1}(y)]_1)) \quad (\text{Lemma 10.3}) \\ &= \varphi[\alpha_1(\varphi^{-1}(x)), \alpha_1(\varphi^{-1}(y))]_1 \quad (L_1 \text{ is multiplicative}) \\ &= [\varphi(\alpha_1(\varphi^{-1}(x))), \varphi(\alpha_1(\varphi^{-1}(y)))]_2 \quad (\varphi \text{ is morphism}) \\ &= [\alpha_2(\varphi(\varphi^{-1}(x))), \alpha_2(\varphi(\varphi^{-1}(y)))]_2 \quad (\varphi \circ \alpha_1 = \alpha_2 \circ \varphi) \\ &= [\alpha_2(x), \alpha_2(y)]_2. \end{aligned}$$

Since φ and φ^{-1} are bijection and $\alpha_2 = \alpha_2 \circ \varphi \circ \varphi^{-1} = \varphi \circ \alpha_1 \circ \varphi^{-1}$, so α_2 is a bijection map if and only if α_1 is a bijection map. Thus, If L_1 is a regular Hom-Lie algebra, then L_2 is too. \Box

Theorem 10.5. ([6]) Let $(L, [,], \alpha)$ be a Hom-Lie algebra and let H be a Hom Lie ideal. Then the quotient space $(L/H, [,], \overline{\alpha})$ is a Hom-Lie algebra (and it is called the quotient Hom-Lie algebra of L by H) where

$$[\,,\,]:L/H\times L/H\to L/H;\;(x+H,\;y+H)\mapsto [x,\;y]+H,$$

and

$$\overline{\alpha}: L/H \to L/H; x + H \mapsto \alpha(x) + H$$

Theorem 10.6. (First isomorphism theorem of Hom-Lie algebras) Let

$$\varphi: (L_1, [,]_1, \alpha_1) \to (L_2, [,]_2, \alpha_2)$$

be a morphism of Hom-Lie algebras. Then $L_1/\text{Ker}(\varphi) \equiv \text{Im}(\varphi)$.

Proof. Using Theorems 9.6 and 10.5, we have $(L_1/\text{Ker}(\varphi), \overline{[,]_1}, \overline{\alpha_1})$ is a Hom-Lie algebra where $\overline{\alpha}_1(x + \text{Ker}(\varphi)) = \alpha_1(x) + \text{Ker}(\varphi)$ and also $\overline{[x + \text{Ker}(\varphi), y + \text{Ker}(\varphi)]_1} = [x, y]_1 + \text{Ker}(\varphi)$ for all $x, y \in L_1$. We already know that the map

$$\Psi: L_1/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi); x + \operatorname{Ker}(\varphi) \mapsto \varphi(x).$$

is an isomorphism of vector spaces. Also, Ψ is a morphisms of Hom-Lie algebras. Indeed for any $x, y \in L_1$ we find

$$\begin{split} \Psi([x + \operatorname{Ker}(\varphi), y + \operatorname{Ker}(\varphi)]_1) &= \Psi([x, y]_1 + \operatorname{Ker}(\varphi)) \\ &= \varphi([x, y]_1) = [\varphi(x), \varphi(y)]_2 \\ &= [\Psi(x + \operatorname{Ker}(\varphi)), \Psi(y + \operatorname{Ker}(\varphi))]_2. \end{split}$$

For any $x \in L_1$, we have

$$\begin{aligned} \Psi(\overline{\alpha}_1(x + \operatorname{Ker}(\varphi))) &= \Psi(\alpha_1(x) + \operatorname{Ker}(\varphi)) = \varphi(\alpha_1(x)) \\ &= \alpha_2(\varphi(x)) = \alpha_2(\Psi(x + \operatorname{Ker}(\varphi))). \end{aligned}$$

Theorem 10.7. (*Second isomorphism theorem of Hom-Lie algebras*) Let I and J be ideals of a Hom-Lie algebra $(L, [,], \alpha)$. Then $(I + J)/J \equiv I/(I \cap J)$.

Proof. Using theorems 10.5 and 5.6, we have $((I+J)/J, \overline{[,]_1}, \overline{\alpha}_1)$ and $(I/(I\cap J), \overline{[,]_2}, \overline{\alpha}_2)$ are Hom-Lie algebras $(\overline{\alpha}_1, \overline{[x+J, y+J]_1}, \overline{\alpha}_2, \text{ and } \overline{[x+(I\cap J), y+(I\cap J)]_2}$ are defined as in Theorem 10.5). The map

$$\Psi: (I+J)/J \to I/(I \cap J); \ (i+j)+J \mapsto i+(I \cap J)$$

is a morphism of Hom-Lie algebras. Since for each $i_1, i_2 \in I$ and each $j_1, j_2 \in J$ we find

$$\begin{split} \Psi[(i_1+j_1)+J,\ (i_2+j_2)+J]_1 &= & \Psi[i_1+J,\ i_2+J]_1 \\ &= & \Psi([i_1,\ i_2]+J) = [i_1,\ i_2] + (I \cap J) \\ &= & \overline{[i_1+(I \cap J),\ i_2+(I \cap J)]_2} \\ &= & \overline{[\Psi((i_1+j_1)+J),\ \Psi((i_2+j_2)+J)]_2}. \end{split}$$

Also for all $i \in I$ and $j \in J$,

$$\Psi(\overline{\alpha}_1((i+j)+J)) = \Psi(\alpha(i)+J) = \alpha(i) + (I \cap J)$$

= $\overline{\alpha}_2(i+(I \cap J)) = \overline{\alpha}_2(\Psi((i+j)+J)).$

Lemma 10.8. Let I and J be Hom-Lie ideals of a Hom-Lie algebra $(L, [,], \alpha)$ such that $I \subseteq J$. Then J/I is a Hom-Lie ideal of L/I.

Proof. For each $j \in J$, $\overline{\alpha}(j+I) = \alpha(j) + I \in J/I$ ($\alpha(J) \subseteq J$). Also, for any $j \in J$ and $l \in L$, we have $\overline{[j+I, l+I]} = [j, l] + I \in J/I$ (J is ideal).

Theorem 10.9. (*Third isomorphism theorem of Hom-Lie algebras*) Let I and J be a Hom-Lie ideals of a Hom-Lie algebra $(L, [,], \alpha)$ such that $I \subseteq J$. Then $(L/I)/(J/I) \equiv L/J$.

Proof. According to Lemma 10.8, we have J/I is a Hom-Lie ideal of L/I. Also we have the following isomorphism of vector spaces

$$\Psi: ((L/I)/(J/I), \overline{\overline{[,]}}, \overline{\overline{\alpha}}) \to ((L/J), \overline{[,]}, \overline{\alpha}); (x+I) + J/I \mapsto x+J,$$

where $\overline{\overline{\alpha}}((x+I)+J/I) = (\alpha(x)+I)+J/I, \overline{[(x+I)+J/I, (y+I)+J/I]} = ([x, y]+I)+J/I, \overline{\alpha}(x+J) = \alpha(x)+J$, and $\overline{[x+J, y+J]} = [x, y]+J$ for all $x, y \in L$. In addition Ψ is a morphisms of Hom-Lie algebras. Indeed for all $x, y \in L$,

$$\begin{split} \Psi\overline{[(x+I)+J/I,\ (y+I)+J/I]} &= & \Psi(([x,\ y]+I)+J/I) \\ &= & [x,\ y]+J \\ &= & \overline{[x+J,\ y+J]} \\ &= & \overline{[\Psi((x+I)+J/I),\ \Psi((y+I)+J/I)]}, \end{split}$$

and

$$\Psi(\overline{\overline{\alpha}}((x+I)+J/I)) = \Psi((\alpha(x)+I)+J/I) = \alpha(x)+J$$
$$= \overline{\alpha}(x+J) = \overline{\alpha}(\Psi((x+I)+J/I)).$$

Π

References

- [1] H. Almutari and A. Ahmad, Centroids and quasi-centroids of finite dimensional Leibniz algebras, *International Journal of Pure and Applied Mathematics*, **113**(2) (2017), 203-217.
- [2] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, *Journal of Algebra*, 324(7) (2010), 1513-1528.
- [3] Y. Bahturin, *Basic structures of modern algebra*, 265, Kluwer Academic Publishers Group, Dordrecht, 1993.
- [4] Y. Bahturin, Identical relations in Lie algebras, VNU Science Press, b.v., Utrecht, 1987.
- [5] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, *Journal of Geometry and Physics*, 76 (2014), 38-60.
- [6] J. Casas, M. Insua and N. Pacheco, On universal central extensions of Hom-Lie algebras, *Hacettepe Journal of Mathematics and Statistics*, 44(2) (2015), 277-288.
- [7] K. Erdmann and M. Wildon, *Introduction to Lie algebra*, Springer Undergraduate Mathematics Series. Spinger-Verlag London Limited (2006).
- [8] J. Hartwig, D. Larsson, and S. Silvestrov, Deformations of Lie algebras using σ -derivations, *Journal of Algebra*, **295**(2) (2006), 314-361.
- [9] J. Humphreys, *Introduction to Lie algebras and representation theory*, 9, Springer Science and Business Media, 2012.
- [10] A. Makhlouf, Hom-dendriform algebras and Rota-Baxter Hom-algebras, Operads And Universal Algebra, (2012), 147-171.
- [11] A. Makhlouf and S. Silvestrov, Hom-algebra structures, *Journal of Generalized Lie Theory and Applica*tions, 2(2) (2008), 51-64.
- [12] N. Kdaisat, On Hom-Lie algebras, Master thesis, Yarmouk University (2021).
- [13] S. Roman, S. Axler, and F. Gehring, Advanced linear algebra, 3, New York, Springer, 2005.
- [14] S. Shaqaqha, Restricted Hom-Lie superalgebras, Jordan Journal of Mathematics and Statistics (JJMS), 12(2) (2019), 233-255.
- [15] S. Shaqaqha, Fuzzy Hom-Lie Ideals of Hom-Lie Algebras, Axioms, 12(7):630 (2023). https://doi.org/10.3390/axioms12070630
- [16] Shaqaqha, S., *Hilbert Series for free Lie superalgebras and related topics*, Ph. D thesis, Memorial University, 2015.
- [17] Y. Sheng, Representations of Hom-Lie algebras, Algebras and Representation Theory, 15(6) (2012), 1081-1098.
- [18] Y. Sheng and Z. Xiong, On Hom-Lie algebras, *Linear and Multilinear Algebra*, **63**(12) (2015), 2379-2395.
- [19] L. Song and R. Tang, Derivation Hom-Lie 2-algebras and non-abelian extensions of regular Hom-Lie algebras, *Journal of Algebra alications*, 17 (2018), 1850081.
- [20] L. Yuan, Hom-Lie color algebra structures, Communications in Algebra, 40(2) (2012), 575-592.

Author information

Shadi Shaqaqha and Nadeen Kdaisat, Department of Mathematics, Yarmouk University, Irbid, Jordan. E-mail: shadi.s@yu.edu.jo, 2018105002@ses.yu.edu.jo

Received: 2022-10-26 Accepted: 2023-04-09