More Properties of (Multiplicative) Hom-Lie Algebras

Shadi Shaqaqha and Nadeen Kdaisat
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 17B99, 17B45; 17A01 Secondary 17A60.
Keywords and phrases: Lie algebra, Hom-associative algebra, Hom-Lie algebra, Multiplicative Hom-Lie algebra, Regular Hom-Lie algebra, Centroid, Derivation, Direct product of Hom-Lie algebras, Hom-Lie subalgebra, Hom-Lie ideal, Morphism of Hom-Lie algebras, Isomorphism theorems of Hom-Lie algebras.

Abstract

The concept of (regular) (multiplicative) Hom-Lie algebras is studied further. Many new examples are given to illustrate this structure. It is shown, among other things, that if L is any Hom-Lie algebra over any field of characteristic $\neq 2$, then its bracket makes it a Lie algebra too. We define infinite direct products of Hom-Lie algebras and provide some of properties about it. Finally, it is proved that the isomorphism theorems for Lie algebras are also satisfied for Hom-Lie algebras.

1 Introduction

The notion of Hom-Lie algebras was originally introduced and studied by Hartwig, Larsson, and Silvestrov in [8] in 2006. It is one of generalizations for the notion of Lie algebras. In recent years, they have become an interesting topic of mathematics and physics.
A Hom-Lie algebra is a vector space equipped with a linear map and an alternating non associative bilinear map satisfying Hom-Jacobi identity. (Restricted) Hom-Lie (color-)(super-)algebras have been widely studied during the last years (see e.g. [2, 5, 6, 14, 15, 18, 20], and references therein).
In this paper, we discuss (Multiplicative) Hom-Lie algebras. The direct product of Hom-Lie algebras (not necessarily finite) is introduced and many of their properties are established. Many known theorems and results concerning Hom-Lie algebras are reviewed with possible improvements. Also, many examples are given for the purpose of illustration. Finally, many properties involving Hom-Lie algebra morphisms are studied. We show that there are isomorphism theorems for Hom-Lie algebras as there for vector spaces, for groups, for rings, and for Lie algebras.

2 Basic Definitions and Examples

Let F be a ground field. A Hom-Lie algebra over F is a triple ($L,[],, \alpha$) where L is a vector space over $F, \alpha: L \rightarrow L$ is a linear map, and [,] : $L \times L \rightarrow L$ is a bilinear map (called a bracket), satisfying the following properties:
(i) $[x, y]=-[y, x]$ for all $x, y \in L$ (skew-symmetry property).
(ii) $[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0$, for all $x, y, z \in L$ (Hom-Jacobi identity).

It is clear that every Lie algebra (see e.g. [4, 16]) is a Hom-Lie algebra by setting $\alpha=i d_{L}$ (The identity map). On the other hand the bracket corresponding to a Hom-Lie algebra need not to define a Lie algebra [5]. For a Hom-Lie algebra L over a field F of characteristic $\neq 2$, as in the setting of Lie algebras one can show that $[x, x]=0$ for each $x \in L$. Also for an arbitrary Hom-Lie algebra L, we have $[x, 0]=[0, x]=0$ for each $x \in L$.

Example 2.1. ([8]) Let L be a vector spaces L and α any linear map. Then $(L,[],, \alpha)$ is a Hom-Lie algebra, where $[x, y]=0$ for all $x, y \in L$. Such Hom-Lie algebras are called abelian or commutative Hom-Lie algebras.

Example 2.2. Let L be a vector space and [,] : $L \times L \rightarrow L$ be any skew-symmetric bilinear map. If $\alpha: L \rightarrow L$ is the zero map, then $(L,[],, \alpha)$ is a Hom-Lie algebra.

Example 2.3. Let L be a vector space over F with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Define the linear map $\alpha: L \rightarrow L$ by setting $\alpha\left(e_{1}\right)=\alpha\left(e_{2}\right)=\alpha\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$. Let $[]:, L \times L \rightarrow L$ be the skew-symmetric bilinear map such that

$$
\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{3}\right]=\left[e_{2}, e_{3}\right]=e_{1}+e_{2}+e_{3}
$$

and $\left[e_{i}, e_{i}\right]=0$ for all $i=1,2,3$. Then $(L,[],, \alpha)$ is a Hom-Lie algebra. Indeed the HomJacobi identity follows directly from the fact that for $x, y \in L$ we have $[x, y]$ and $\alpha(x)$ will be scalar multiples of $\left(e_{1}+e_{2}+e_{3}\right)$, and so for any $x, y, z \in L$ we obtain

$$
[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0
$$

Example 2.4. Let L be a vector space over F with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Define the linear map $\alpha: L \rightarrow L$ by setting $\alpha\left(e_{1}\right)=e_{2}$ and $\alpha\left(e_{2}\right)=\alpha\left(e_{3}\right)=0$. Let $[]:, L \times L \rightarrow L$ be the skew-symmetric bilinear map such that

$$
\left[e_{1}, e_{2}\right]=\left[e_{2}, e_{3}\right]=0,\left[e_{1}, e_{3}\right]=e_{1}
$$

and $\left[e_{i}, e_{i}\right]=0$ for all $i=1,2,3$. Then $(L,[],, \alpha)$ is a Hom-Lie algebra. We note that $[x, y]$ is a scalar multiple of e_{1} for each $x, y \in L$, and also $\alpha(x)$ is a scalar multiple of e_{2} for each $x \in L$. Thus $[\alpha(x),[y, z]]=0$ for each $x, y, z \in L$. This implies that the Hom-Jacobi identity is satisfied.

3 Example of a Hom-Lie Algebra that is not a Lie Algebra

The following example, appeared in [5] without proof, shows that the bracket corresponding to a Hom-Lie algebra need not to define a Lie algebra.
Example 3.1. Let L be a vector space over F with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Define the linear map $\alpha: L \rightarrow L$ by setting $\alpha\left(e_{1}\right)=e_{1}, \alpha\left(e_{2}\right)=2 e_{2}$, and $\alpha\left(e_{3}\right)=2 e_{3}$. Let [,]:L×L L be the skew-symmetric bilinear map such that

$$
\left[e_{1}, e_{2}\right]=e_{1},\left[e_{1}, e_{3}\right]=2 e_{2},\left[e_{2}, e_{3}\right]=2 e_{3}
$$

and for all $i=1,2,3$ we have $\left[e_{i}, e_{i}\right]=0$. Then $(L,[],, \alpha)$ is a Hom-Lie algebra. Indeed for $y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}, z=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3} \in L\left(b_{i}, c_{i} \in F, i=1,2,3\right)$, we have

$$
\begin{aligned}
{[y, z]=} & {\left[b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}, c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right] } \\
= & b_{1} c_{1}\left[e_{1}, e_{1}\right]+b_{1} c_{2}\left[e_{1}, e_{2}\right]+b_{1} c_{3}\left[e_{1}, e_{3}\right] \\
& +b_{2} c_{1}\left[e_{2}, e_{1}\right]+b_{2} c_{2}\left[e_{2}, e_{2}\right]+b_{2} c_{3}\left[e_{2}, e_{3}\right] \\
& +b_{3} c_{1}\left[e_{3}, e_{1}\right]+b_{3} c_{2}\left[e_{3}, e_{2}\right]+b_{3} c_{3}\left[e_{3}, e_{3}\right] \\
= & b_{1} c_{2} e_{1}+2 b_{1} c_{3} e_{2}-b_{2} c_{1} e_{1}+2 b_{2} c_{3} e_{3}-2 b_{3} c_{1} e_{2}-2 b_{3} c_{2} e_{3} \\
= & \left(b_{1} c_{2}-b_{2} c_{1}\right) e_{1}+2\left(b_{1} c_{3}-b_{3} c_{1}\right) e_{2}+2\left(b_{2} c_{3}-b_{3} c_{2}\right) e_{3} .
\end{aligned}
$$

Now, for an another arbitrary element $x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ in L, we find
$[\alpha(x),[y, z]]=\left[a_{1} e_{1}+2 a_{2} e_{2}+2 a_{3} e_{3},\left(b_{1} c_{2}-b_{2} c_{1}\right) e_{1}+2\left(b_{1} c_{3}-b_{3} c_{1}\right) e_{2}+2\left(b_{2} c_{3}-b_{3} c_{2}\right) e_{3}\right]$.
So that, after some calculations we can get

$$
\begin{aligned}
{[\alpha(x),[y, z]]=} & 2\left(a_{1} b_{1} c_{3}-a_{1} b_{3} c_{1}-a_{2} b_{1} c_{2}+a_{2} b_{2} c_{1}\right) e_{1} \\
& +4\left(a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{3} b_{1} c_{2}+a_{3} b_{2} c_{1}\right) e_{2} \\
& +8\left(a_{2} b_{2} c_{3}-a_{2} b_{3} c_{2}-a_{3} b_{1} c_{3}+a_{3} b_{3} c_{1}\right) e_{3}
\end{aligned}
$$

Now, according to the formula above and some calculations, we can get

$$
[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0
$$

On the other hand $(L,[]$,$) is not a Lie algebra. Indeed$

$$
\begin{aligned}
{\left[e_{1},\left[e_{2}, e_{3}\right]\right]+\left[e_{2},\left[e_{3}, e_{1}\right]\right]+\left[e_{3},\left[e_{1}, e_{2}\right]\right] } & =\left[e_{1}, 2 e_{3}\right]+\left[e_{2},-2 e_{2}\right]+\left[e_{3}, e_{1}\right] \\
& =4 e_{2}+0+\left(-2 e_{2}\right) \\
& =2 e_{2} \neq 0 .
\end{aligned}
$$

4 2-Dimensional Hom-Lie Algebras

The following theorem was given in [11] without proof to the case where L is a 2-dimensional space over a field of characteristic 0 . We are going to prove it if characteristic $(F) \neq 2$.

Theorem 4.1. Let L be a 2-dimensional vector space over a field F with characteristic $\neq 2$. Then every skew-symmetric bilinear map $[]:, L \times L \rightarrow L$ defines a Hom-Lie algebra.

Proof. Let L be a vector space over F with basis $\left\{e_{1}, e_{2}\right\}$. Suppose that $\alpha: L \rightarrow L$ is any arbitrary linear map. Then $\alpha\left(e_{1}\right)=n_{1} e_{1}+m_{1} e_{2}$ and $\alpha\left(e_{2}\right)=n_{2} e_{1}+m_{2} e_{2}$ for some $n_{1}, n_{2}, m_{1}, m_{2} \in F$. Also we can assume $\left[e_{1}, e_{2}\right]=s e_{1}+t e_{2}$ for some $s, t \in F$. So for $y=b_{1} e_{1}+b_{2} e_{2}, z=c_{1} e_{1}+c_{2} e_{2} \in L$ where $b_{1}, b_{2}, c_{1}, c_{2} \in F$, we have

$$
\begin{aligned}
{[y, z] } & =\left[b_{1} e_{1}+b_{2} e_{2}, c_{1} e_{1}+c_{2} e_{2}\right] \\
& =\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(s e_{1}+t e_{2}\right)
\end{aligned}
$$

Now, for an another arbitrary element $x=a_{1} e_{1}+a_{2} e_{2} \in L$ where $a_{1}, a_{2} \in F$, we find

$$
[\alpha(x),[y, z]]=\left[\left(n_{1} a_{1}+n_{2} a_{2}\right) e_{1}+\left(m_{1} a_{1}+m_{2} a_{2}\right) e_{2},\left(b_{1} c_{2}-b_{2} c_{1}\right) s e_{1}+\left(b_{1} c_{2}-b_{2} c_{1}\right) t e_{2}\right]
$$

So that, after some calculations we can get

$$
\begin{aligned}
{[\alpha(x),[y, z]]=} & \left(t\left(n_{1} a_{1} b_{1} c_{2}+n_{2} a_{2} b_{1} c_{2}-n_{1} a_{1} b_{2} c_{1}-n_{2} a_{2} b_{2} c_{1}\right)\right. \\
& \left.-s\left(m_{1} a_{1} b_{1} c_{2}+m_{2} a_{2} b_{1} c_{2}-m_{1} a_{1} b_{2} c_{1}-m_{2} a_{2} b_{2} c_{1}\right)\right)\left[e_{1}, e_{2}\right] .
\end{aligned}
$$

Now, according to the formula above and some calculations, we can get

$$
[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0
$$

Corollary 4.2. The bracket defined in any 2-dimensional Hom-Lie algebra over a field of characteristic $\neq 2$ makes it a Lie algebra too.

Proof. This follows from our calculations in the proof of the theorem above by setting $\alpha=\mathrm{id}_{L}$.

5 Hom-Lie Subalgebras and Ideals

A subset H of a Hom-Lie algebra L is called a Hom-Lie subalgebra if H itself is a Hom-Lie algebra under the same operations corresponding to the Hom-Lie algebra L. One can easily prove the following result.

Theorem 5.1. Let $(L,[],, \alpha)$ be a Hom-Lie algebra. A subspace H of L is a Hom-Lie subalgebra if $\alpha(H) \subseteq H$ and $[x, y] \in H$ for all $x, y \in H$.

Definition 5.2. ([6]) A Hom-Lie subalgebra H is said to be a Hom-Lie ideal if $[x, y] \in H$ for all $x \in H$ and $y \in L$.

Example 5.3. Let $(L,[],, \alpha)$ be a Hom-Lie algebra. Then $\{0\}$ and L are Hom-Lie ideals of L. They are called the trivial ideals.

Example 5.4. In Example 3.1, the subspace $H=\operatorname{Span}\left(\left\{e_{1}, e_{2}\right\}\right)$ is a Hom-Lie subalgebra. Note that $\alpha(H) \subseteq H$ since $\alpha\left(e_{1}\right)=e_{1} \in H$ and $\alpha\left(e_{2}\right)=2 e_{2} \in H$. Also, $\left[e_{1}, e_{2}\right]=e_{1} \in H$ implies $[x, y] \in H$ for any $x, y \in H$. But H is not ideal. Indeed $\left[e_{2}, e_{3}\right]=2 e_{3} \notin H$.

Example 5.5. In Example 2.3, the subspace $H=\operatorname{Span}\left(\left\{e_{1}+e_{2}+e_{3}\right\}\right)$ is a Hom-Lie ideal. Indeed $\alpha(H) \subseteq H$ since $\alpha\left(e_{1}+e_{2}+e_{3}\right)=3\left(e_{1}+e_{2}+e_{3}\right) \in H$. Also, for all $x=a e_{1}+b e_{2}+c e_{3} \in L$ and for any $y=d\left(e_{1}+e_{2}+e_{3}\right) \in H$ we find $[y, x]=d(2 c-2 a)\left(e_{1}+e_{2}+e_{3}\right)$. This means that $[x, y] \in H$.

Suppose H and K are Hom-Lie ideals of a Hom-Lie algebra L. The sum and multiplication of H and K are defined as follows:

$$
H+K=\{h+k \mid h \in H \text { and } k \in K\}
$$

and

$$
[H, K]=\operatorname{Span}(\{[h, k] \mid h \in H \text { and } k \in K\})
$$

Recall that $H \cap K, H+K$, and $[H, K]$ are subspaces of the space L.
Theorem 5.6. ([6]) Let H and K be Hom-Lie ideals of a Hom-Lie algebra (L, [,], α). Then,
(i) $H \cap K$ and $H+K$ are Hom-Lie ideals
(ii) $[H, K] \subseteq H \cap K$

Remark 5.7. Suppose that H and K are Hom-Lie ideals of a Hom Lie algebra L. Then in the contrast of the case of Lie algebras, $[H, K]$ need not be a Hom-Lie subalgebra. Consider the Hom-Lie algebra given in Example 2.4, then $[L, L]=\operatorname{Span}\left(\left\{e_{1}\right\}\right)$ is not a Hom-Lie subalgebra because $\alpha\left(e_{1}\right)=e_{2} \notin[L, L]$.

The center of a Hom-Lie algebra $(L,[],, \alpha)$ is the vector subspace $Z(L)=\{x \in L \mid[x, y]=$ 0 for all $y \in L\}$ ([5]). Recall that the center of any Lie algebra is an ideal. The following example shows that the center of a Hom-Lie algebra need not be Hom-Lie subalgebra.

Example 5.8. We consider Example 2.3. For arbitrary $a e_{1}+b e_{2}+c e_{3} \in L(a, b, c \in F)$, we get $\left[e_{1}-e_{2}+e_{3}, a e_{1}+b e_{2}+c e_{3}\right]=(b+c+a-c-a-b)\left(e_{1}+e_{2}+e_{3}\right)=0$. On the other hand, if $x=s e_{1}+t e_{2}+k e_{3} \in Z(L)(s, t, k \in F)$, then $\left[x, e_{1}\right]=\left[x, e_{2}\right]=\left[x, e_{3}\right]=0$ and so $(-t-k)\left(e_{1}+e_{2}+e_{3}\right)=(s-k)\left(e_{1}+e_{2}+e_{3}\right)=(s+t)\left(e_{1}+e_{2}+e_{3}\right)=0$. Because $\left\{e_{1}, e_{2}, e_{3}\right\}$ are linearly independent, it follows $-t-k=s-k=s+t=0$. Thus $x=s\left(e_{1}-e_{2}+e_{3}\right) \in$ $\operatorname{Span}\left\{e_{1}-e_{2}+e_{3}\right\}$. This shows that

$$
Z(L)=\operatorname{Span}\left(\left\{e_{1}-e_{2}+e_{3}\right\}\right) .
$$

On the other hand, $Z(L)$ is not a Hom-Lie subalgebra of L, since $\alpha\left(e_{1}-e_{2}+e_{3}\right)=\left(e_{1}+e_{2}+e_{3}\right) \notin$ H.

6 Multiplicative Hom-Lie Algebras and Important Example

Let $(L,[],, \alpha)$ be a Hom-Lie algebra. It is called multiplicative if $\alpha([x, y])=[\alpha(x), \alpha(y)]$ for all $x, y \in L$. A multiplicative Hom-Lie algebra is called regular if α is bijective. The following theorem is a generalization of a known theorem for Lie algebras in the case of regular Hom-Lie algebras.

Example 6.1. Let $F=\mathbb{C}$ be the field of complex numbers. Consider the vector space \mathbb{C}^{2} and define the linear map

$$
\alpha: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} ;(x, y) \mapsto(-y,-x) .
$$

We define a map $[]:, \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, where

$$
\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\left(i\left(x_{1} y_{2}-x_{2} y_{1}\right), i\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) .
$$

Then $\left(\mathbb{C}^{2},[],, \alpha\right)$ is a regular Hom-Lie algebra. The bracket is skew-symmetric, since

$$
\begin{aligned}
{\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] } & =\left(i\left(x_{1} y_{2}-x_{2} y_{1}\right), i\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \\
& =-\left(i\left(x_{2} y_{1}-x_{1} y_{2}\right), i\left(x_{2} y_{1}-x_{1} y_{2}\right)\right) \\
& =-\left[\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

The bracket is bilinear map, since for any $c_{i}, x_{i}, y_{i}, z_{i} \in \mathbb{C}, i=1$, 2 , we have

$$
\begin{aligned}
& {\left[c_{1}\left(x_{1}, x_{2}\right)+c_{2}\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right]=\left[\left(c_{1} x_{1}+c_{2} y_{1}, c_{1} x_{2}+c_{2} y_{2}\right),\left(z_{1}, z_{2}\right)\right] } \\
= & \left(i\left(c_{1} x_{1} z_{2}+c_{2} y_{1} z_{2}-c_{1} x_{2} z_{1}-c_{2} y_{2} z_{1}\right), i\left(c_{1} x_{1} z_{2}+c_{2} y_{1} z_{2}-c_{1} x_{2} z_{1}-c_{2} y_{2} z_{1}\right)\right) \\
= & c_{1}\left(i\left(x_{1} z_{2}-x_{2} z_{1}\right), i\left(x_{1} z_{2}-x_{2} z_{1}\right)\right)+c_{2}\left(i\left(y_{1} z_{2}-y_{2} z_{1}\right), i\left(y_{1} z_{2}-y_{2} z_{1}\right)\right) \\
= & c_{1}\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]+c_{2}\left[\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right] .
\end{aligned}
$$

Also, the Hom-Jacobi identity is satisfied. For any $x_{i}, y_{i}, z_{i} \in \mathbb{C}, i=1,2$, we get $\left[\alpha\left(x_{1}, x_{2}\right),\left[\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right]\right]$

$$
\begin{aligned}
& =\left[\left(-x_{2},-x_{1}\right),\left(i\left(y_{1} z_{2}-y_{2} z_{1}\right), i\left(y_{1} z_{2}-y_{2} z_{1}\right)\right)\right] \\
& =\left(\left(y_{1} z_{2}-y_{2} z_{1}\right)\left(x_{2}-x_{1}\right),\left(y_{1} z_{2}-y_{2} z_{1}\right)\left(x_{2}-x_{1}\right)\right) \\
& =\left(x_{2} y_{1} z_{2}-x_{2} y_{2} z_{1}-x_{1} y_{1} z_{2}+x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2}-x_{2} y_{2} z_{1}-x_{1} y_{1} z_{2}+x_{1} y_{2} z_{1}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
{\left[\alpha\left(x_{1}, x_{2}\right),\right.} & {\left.\left[\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right]\right]+\left[\alpha\left(y_{1}, y_{2}\right),\left[\left(z_{1}, z_{2}\right),\left(x_{1}, x_{2}\right)\right]\right]+\left[\alpha\left(z_{1}, z_{2}\right),\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]\right] } \\
= & \left(x_{2} y_{1} z_{2}-x_{2} y_{2} z_{1}-x_{1} y_{1} z_{2}+x_{1} y_{2} z_{1}, x_{2} y_{1} z_{2}-x_{2} y_{2} z_{1}-x_{1} y_{1} z_{2}+x_{1} y_{2} z_{1}\right) \\
& +\left(y_{2} z_{1} x_{2}-y_{2} z_{2} x_{1}-y_{1} z_{1} x_{2}+y_{1} z_{2} x_{1}, y_{2} z_{1} x_{2}-y_{2} z_{2} x_{1}-y_{1} z_{1} x_{2}+y_{1} z_{2} x_{1}\right) \\
& +\left(z_{2} x_{1} y_{2}-z_{2} x_{2} y_{1}-z_{1} x_{1} y_{2}+z_{1} x_{2} y_{1}, z_{2} x_{1} y_{2}-z_{2} x_{2} y_{1}-z_{1} x_{1} y_{2}+z_{1} x_{2} y_{1}\right) \\
= & (0,0) .
\end{aligned}
$$

Thus, $\left(\mathbb{C}^{2},[],, \alpha\right)$ is a Hom-Lie algebra. Also it is regular. Indeed one can easily prove that α is bijective, and also

$$
\begin{aligned}
\alpha\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] & =\alpha\left(i\left(x_{1} y_{2}-x_{2} y_{1}\right), i\left(x_{1} y_{2}-x_{2} y_{1}\right)\right) \\
& =\left(i\left(x_{2} y_{1}-x_{1} y_{2}\right), i\left(x_{2} y_{1}-x_{1} y_{2}\right)\right) \\
& =\left[\left(-x_{2},-x_{1}\right),\left(-y_{2},-y_{1}\right)\right] \\
& =\left[\alpha\left(x_{1}, x_{2}\right), \alpha\left(y_{1}, y_{2}\right)\right] .
\end{aligned}
$$

Theorem 6.2. ([6]) If $(L,[],, \alpha)$ is a regular Hom-Lie algebra, then $Z(L)$ is a Hom-Lie ideal.

7 New Hom-Lie Algebras From Old Lie Algebras

The following theorem gives a way to construct a new Hom-Lie algebras, beginning from a Lie algebra and a homomorphism of Lie algebras.

Theorem 7.1. ([5]) Let $(L,[]$,$) be a Lie algebra and \alpha: L \rightarrow L$ be a Lie algebra homomorphism. Then $\left(L,[,]_{\alpha}, \alpha\right)$ is a multiplicative Hom-Lie algebra, where $[,]_{\alpha}=\alpha \circ[$,$] .$

Example 7.2. Consider the associative algebra $M_{n}(F)$ of $n \times n$ matrices over F under the ordinary multiplication of matrices. Define the following skew-symmetric bilinear bracket map

$$
[,]: M_{n}(F) \times M_{n}(F) \rightarrow M_{n}(F) ;(A, B) \mapsto[A, B]
$$

where $[A, B]=A B-B A$. It is well known that $\left(M_{n}(F),[],\right)$ is a Lie algebra (see for example [4]). Now, define the linear map

$$
\alpha: M_{n}(F) \rightarrow M_{n}(F) ; A \mapsto-A^{T} .
$$

Since

$$
\begin{align*}
\alpha([A, B]) & =-(A B-B A)^{T}=(B A)^{T}-(A B)^{T} \\
& =A^{T} B^{T}-B^{T} A^{T} \tag{7.1}\\
& =\left[A^{T}, B^{T}\right]=[\alpha(A), \alpha(B)]
\end{align*}
$$

it follows that α is a Lie algebra homomorphism. Thus, using the theorem above, we have $\left(M_{n}(F),[,]_{\alpha}, \alpha\right)$ is a multiplicative Hom-Lie algebra, where $[A, B]_{\alpha}=\alpha([A, B])=A^{T} B^{T}-$ $B^{T} A^{T}$ by the relation (7.1) for any $A, B \in M_{n}(F)$.

8 Direct Sum and Direct Product of Hom-Lie Algebras

Let $S=\left\{L_{\lambda} \mid \lambda \in \Delta\right\}$ be a family of vector spaces. The (external) direct product of S is the vector space $\prod_{\lambda \in \Delta} L_{\lambda}=\left\{f: \Delta \rightarrow \bigcup_{\lambda \in \Delta} L_{\lambda} \mid f(\lambda) \in L_{\lambda}\right\}$ with the ordinary addition and scalar multiplication of functions ([13]).

Theorem 8.1. Let $\left(L_{\lambda},[,]_{\lambda}, \alpha_{\lambda}\right)$ be a Hom-Lie algebra for each $\lambda \in \Delta$. Then $\left(\prod_{\lambda \in \Delta} L_{\lambda},[],, \alpha\right)$ is a Hom-Lie algebra by setting

$$
\alpha: \prod_{\lambda \in \Delta} L_{\lambda} \rightarrow \prod_{\lambda \in \Delta} L_{\lambda} ; f \mapsto f_{\alpha}
$$

where $f_{\alpha}(\lambda)=\alpha_{\lambda}(f(\lambda))\left(\in L_{\lambda}\right)$ for all $\lambda \in \Delta$, and also the multiplication

$$
[,]: \prod_{\lambda \in \Delta} L_{\lambda} \times \prod_{\lambda \in \Delta} L_{\lambda} \rightarrow \prod_{\lambda \in \Delta} L_{\lambda} ;(f, g) \mapsto[f, g]
$$

where $[f, g](\lambda)=[f(\lambda), g(\lambda)]_{\lambda}\left(\in L_{\lambda}\right)$.
Proof. Let $f, g \in \prod_{\lambda \in \Delta} L_{\lambda}$ and $a, b \in F$. For any $\lambda \in \Delta$ we have,

$$
\begin{aligned}
(\alpha(a f+b g))(\lambda) & =(a f+b g)_{\lambda}(\lambda)=\alpha_{\lambda}((a f+b g)(\lambda)) \\
& =a \alpha_{\lambda}(f(\lambda))+b \alpha_{\lambda}(g(\lambda))=(a \alpha(f)+b \alpha(g))(\lambda)
\end{aligned}
$$

Thus, $\alpha(a f+b g)=a \alpha(f)+b \alpha(g)$, which implies that α is a linear map. Also, [,] is a skewsymmetric bilinear map because $[,]_{\lambda}$ is a skew-symmetric bilinear map for all $\lambda \in \Delta$.
Now, for any $f, g, h \in \prod_{\lambda \in \Delta} L_{\lambda}$ and any $\lambda \in \Delta$, we obtain

$$
\begin{aligned}
& ([\alpha(f),[g, h]]+[\alpha(g),[h, f]]+[\alpha(h),[f, g]])(\lambda) \\
= & {\left[f_{\alpha}(\lambda),[g(\lambda), h(\lambda)]_{\lambda}\right]_{\lambda}+\left[g_{\alpha}(\lambda),[h(\lambda), f(\lambda)]_{\lambda}\right]_{\lambda}+\left[h_{\alpha}(\lambda),[f(\lambda), g(\lambda)]_{\lambda}\right]_{\lambda} } \\
= & {\left[\alpha_{\lambda}(f(\lambda)),[g(\lambda), h(\lambda)]_{\lambda}\right]_{\lambda}+\left[\alpha_{\lambda}(g(\lambda)),[h(\lambda), f(\lambda)]_{\lambda}\right]_{\lambda} } \\
& +\left[\alpha_{\lambda}(h(\lambda)),[f(\lambda), g(\lambda)]_{\lambda}\right]_{\lambda} \\
= & 0
\end{aligned}
$$

Let $S=\left\{L_{\lambda} \mid \lambda \in \Delta\right\}$ be a family of Hom-Lie algebras. The (external) direct sum of S is the vector space $\bigoplus_{\lambda \in \Delta} L_{\lambda}=\left\{f: \Delta \rightarrow \bigcup_{\lambda \in \Delta} L_{\lambda} \mid f(\lambda) \in L_{\lambda}\right.$ and $f(\lambda)=0$ for all but finitely many $\left.\lambda\right\}$. In fact $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a subspace of $\prod_{\lambda \in \Delta} L_{\lambda}$ ([13]).

Theorem 8.2. Let $\left(L_{\lambda},[,]_{\lambda}, \alpha_{\lambda}\right)$ be a Hom-Lie algebra for all $\lambda \in \Delta$. Then $\left(\bigoplus_{\lambda \in \Delta} L_{\lambda},[],, \alpha\right)$ is a Hom-Lie algebra

$$
\alpha: \bigoplus_{\lambda \in \Delta} L_{\lambda} \rightarrow \bigoplus_{\lambda \in \Delta} L_{\lambda} ; f \mapsto f_{\alpha}
$$

where $f_{\alpha}(\lambda)=\alpha_{\lambda}(f(\lambda))$ for each $\lambda \in \Delta$, and also the skew-symmetric bilinear map

$$
[,]: \bigoplus_{\lambda \in \Delta} L_{\lambda} \times \bigoplus_{\lambda \in \Delta} L_{\lambda} \rightarrow \bigoplus_{\lambda \in \Delta} L_{\lambda} ;(f, g) \mapsto[f, g]
$$

where $[f, g](\lambda)=[f(\lambda), g(\lambda)]_{\lambda}$.
Proof. Note that, $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a Hom-Lie ideal of $\prod_{\lambda \in \Delta} L_{\lambda}$. Indeed For any $f \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$, we have $\alpha(f)=f_{\alpha} \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$ because $f_{\alpha}(\lambda)=\alpha_{\lambda}(f(\lambda))=0$ for all but finitely many $\lambda\left(f(\lambda)=0\right.$ for all but finitely many λ and $\left.\alpha_{\lambda}(0)=0\right)$. Also, For any $f \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$ and $g \in \prod_{\lambda \in \Delta} L_{\lambda},[f, g](\lambda)=[f(\lambda), g(\lambda)]_{\lambda}=0$ for all but finitely many λ (because $f(\lambda)=0$ for all but finitely many λ and $[0, g(\lambda)]=0$ for all $\lambda \in \Delta)$. Thus, $[f, g] \in \bigoplus_{\lambda \in \Delta} L_{\lambda}$.

Remark 8.3. The direct product and the direct sum are the same for a finite family $\left\{L_{i} \mid i=\right.$ $1,2, \ldots, n\}$ of Hom-Lie algebras; that is

$$
L_{1} \times L_{2} \times \cdots \times L_{n}=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n}
$$

Corollary 8.4. Given n Hom-Lie algebras $\left(L_{i},[,]_{i}, \alpha_{i}\right), i=1, \ldots, n$, there is a Hom-Lie algebra $\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n},[],, \alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}\right)$, where the skew-symmetric bilinear map

$$
[,]:\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right) \times\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right) \rightarrow\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right)
$$

is given by

$$
\left[\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]=\left(\left[x_{1}, y_{2}\right]_{1},\left[x_{1}, y_{2}\right]_{2}, \ldots,\left[x_{n}, y_{n}\right]_{n}\right)
$$

for all $x_{i}, y_{i} \in L_{i}, i=1,2, \ldots, n$, and the linear map

$$
\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}\right):\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right) \rightarrow\left(L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}\right)
$$

is given by

$$
\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha_{1}\left(x_{1}\right), \alpha_{2}\left(x_{2}\right), \ldots, \alpha_{n}\left(x_{n}\right)\right)
$$

for all $x_{i} \in L_{i}, i=1,2, \ldots, n$.
In the special case where $n=2$, we obtain [17, Proposition 2.2].
Theorem 8.5. Let $\left(L_{\lambda},[,]_{\lambda}, \alpha_{\lambda}\right)$ be a Hom-Lie algebra for all $\lambda \in \Delta$.
(i) If H_{λ} is a Hom-Lie subalgebra of L_{λ} for each $\lambda \in \Delta$, then $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$ and $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.
(ii) If H_{λ} is a Hom-Lie ideal of L_{λ} for each $\lambda \in \Delta$, then $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie ideal of $\prod_{\lambda \in \Delta} L_{\lambda}$ and $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie ideal of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.

Proof.
(i) Let $h \in \prod_{\lambda \in \Delta} H_{\lambda}$. Then for each $\lambda \in \Delta, h(\lambda) \in H_{\lambda}$ and so $h_{\alpha}(\lambda)=\alpha_{\lambda}(h(\lambda)) \in H_{\lambda}$, which implies $\alpha(h)=h_{\alpha} \in \prod_{\lambda \in \Delta} H_{\lambda}$. If $h, g \in \prod_{\lambda \in \Delta} H_{\lambda}$, then $[h, g](\lambda)=[h(\lambda), g(\lambda)]_{\lambda} \in H_{\lambda}$ for each $\lambda \in \Delta$. Which implies $[h, g] \in \prod_{\lambda \in \Delta} H_{\lambda}$. Thus, $\prod_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$. Similarly, $\bigoplus_{\lambda \in \Delta} H_{\lambda}$ is a Hom-Lie subalgebra of $\bigoplus_{\lambda \in \Delta} L_{\lambda}$.
(ii) Similar to the proof of (i).

Theorem 8.6. Let $\left(L_{\lambda},[,]_{\lambda}, \alpha_{\lambda}\right)$ be a multiplicative Hom-Lie algebra for all $\lambda \in \Delta$. Then the Hom-Lie algebras $\left(\prod_{\lambda \in \Delta} L_{\lambda},[],, \alpha\right)$ and $\left(\bigoplus_{\lambda \in \Delta} L_{\lambda},[],, \alpha\right)$ are multiplicative.

Proof. Let $\left(L_{\lambda},[,]_{\lambda}, \alpha_{\lambda}\right)$ be a multiplicative Hom-Lie algebra for all $\lambda \in \Delta$. If $f, g \in \prod_{\lambda \in \Delta} L_{\lambda}$, then for any $\lambda \in \Delta$,

$$
\begin{aligned}
(\alpha([f, g]))(\lambda) & =\alpha_{\lambda}([f, g](\lambda))=\alpha_{\lambda}\left([f(\lambda), g(\lambda)]_{\lambda}\right) \\
& =\left[\alpha_{\lambda}(f(\lambda)), \alpha_{\lambda}(g(\lambda))\right]_{\lambda}=[(\alpha(f))(\lambda),(\alpha(g))(\lambda)]_{\lambda} \\
& =([\alpha(f), \alpha(g)])(\lambda) .
\end{aligned}
$$

Thus $\alpha([f, g])=[\alpha(f), \alpha(g)]$. Consequently, $\prod_{\lambda \in \Delta} L_{\lambda}$ is a multiplicative Hom-Lie algebra. Also, $\bigoplus_{\lambda \in \Delta} L_{\lambda}$ is a multiplicative Hom-Lie algebra too, because it is a Hom-Lie subalgebra of $\prod_{\lambda \in \Delta} L_{\lambda}$.

9 Hom-Lie Algebras Morphism

Definition 9.1. ([8]) Let $\left(L_{1},[,]_{1}, \alpha_{1}\right)$ and $\left(L_{2},[,]_{2}, \alpha_{2}\right)$ be Hom-Lie algebras. A linear map $\varphi: L_{1} \rightarrow L_{2}$ is called a morphism of Hom-Lie algebras if the following two identities are satisfied:
(i) $\varphi\left([x, y]_{1}\right)=[\varphi(x), \varphi(y)]_{2}$ for all $x, y \in L_{1}$.
(ii) $\varphi \circ \alpha_{1}=\alpha_{2} \circ \varphi$.

Example 9.2. (i) Let L_{1} and L_{2} be Hom-Lie algebras over F. Then

$$
\varphi: L_{1} \rightarrow L_{2} ; x \mapsto 0
$$

is a morphism of Hom-Lie algebras.
(ii) Let L be any Hom-Lie algebra. Then the identity map

$$
\operatorname{id}_{L}: L \rightarrow L ; x \mapsto x
$$

is a morphism of Hom-Lie algebras.
Example 9.3. If $(L,[],, \alpha)$ is a multiplicative Hom-Lie algebra, then α is a morphism of Hom-Lie algebras.

Example 9.4. Let us consider the Hom-Lie algebra

$$
L_{1}=L=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}
$$

with the linear map $\alpha_{1}: L \rightarrow L$ defined by setting $\alpha_{1}\left(e_{1}\right)=\alpha_{1}\left(e_{2}\right)=\alpha_{1}\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$ and the skew-symmetric bracket $[,]_{1}$ defined as $\left[e_{1}, e_{2}\right]_{1}=\left[e_{1}, e_{3}\right]_{1}=\left[e_{2}, e_{3}\right]_{1}=e_{1}+e_{2}+e_{3}$ and also $\left[e_{i}, e_{i}\right]_{1}=0$ for each $i=1,2,3$ given in Example 2.3. Also let us take the Hom-Lie algebra $L_{2}=L$ where the linear map α_{2} on L defined as $\alpha_{2}\left(e_{1}\right)=e_{2}$ and $\alpha_{2}\left(e_{2}\right)=\alpha_{2}\left(e_{3}\right)=0$, and also the skew-symmetric bracket $[,]_{2}$ on L defined as $\left[e_{1}, e_{3}\right]_{2}=e_{1}$ and $\left[e_{1}, e_{2}\right]_{2}=\left[e_{2}, e_{3}\right]_{2}=$ $\left[e_{1}, e_{1}\right]_{2}=\left[e_{2}, e_{2}\right]_{2}=\left[e_{3}, e_{3}\right]_{2}=0$ given in Example 2.4. Define the linear map

$$
\varphi: L_{1} \rightarrow L_{2}
$$

by setting $\varphi\left(e_{1}\right)=e_{2}, \varphi\left(e_{2}\right)=-e_{2}+e_{3}$ and $\varphi\left(e_{3}\right)=-e_{3}$. Then φ is a morphism of HomLie algebras. For $x, y \in L\left(=L_{1}\right)$, we have $\alpha_{1}(x)=a\left(e_{1}+e_{2}+e_{3}\right), \varphi(x)=b e_{2}+c e_{3}$, $\varphi(y)=d e_{2}+f e_{3}$, and $[x, y]_{1}=k\left(e_{1}+e_{2}+e_{3}\right)$ for some $a, b, c, d, f, k \in F$. Consequently

$$
\varphi\left(\alpha_{1}(x)\right)=a \varphi\left(e_{1}+e_{2}+e_{3}\right)=0=\alpha_{2}\left(b e_{2}+c e_{3}\right)=\alpha_{2}(\varphi(x)),
$$

and also

$$
\varphi\left([x, y]_{1}\right)=k \varphi\left(e_{1}+e_{2}+e_{3}\right)=0=\left[b e_{2}+c e_{3}, d e_{2}+f e_{3}\right]_{2}=[\varphi(x), \varphi(y)]_{2} .
$$

Example 9.5. Let $\left(L_{1},[,]_{1}, \alpha_{1}\right)$ and $\left(L_{2},[,]_{2}, \alpha_{2}\right)$ be Hom-Lie algebras. Then the projection map

$$
\varphi:\left(L_{1} \oplus L_{2},[,], \alpha_{1}+\alpha_{2}\right) \rightarrow\left(L_{1},[,]_{1}, \alpha_{1}\right) ;(x, y) \mapsto x
$$

is a morphism of Hom-Lie algebras. For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L_{1} \oplus L_{2}$ and $c_{1}, c_{2} \in F$, we have, $\varphi\left(c_{1}\left(x_{1}, y_{1}\right)+c_{2}\left(x_{2}, y_{2}\right)\right)=\varphi\left(c_{1} x_{1}+c_{2} x_{2}, c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} x_{1}+c_{2} x_{2}=c_{1} \varphi\left(x_{1}, y_{1}\right)+$ $c_{2} \varphi\left(x_{2}, y_{2}\right)$. Hence φ is linear.
Also, $\varphi\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]=\varphi\left(\left[x_{1}, x_{2}\right]_{1},\left[y_{1}, y_{2}\right]_{2}\right)=\left[x_{1}, x_{2}\right]_{1}=\left[\varphi\left(x_{1}, y_{1}\right), \varphi\left(x_{2}, y_{2}\right)\right]_{1}$.
Next $\varphi \circ\left(\alpha_{1}+\alpha_{2}\right)=\alpha_{1} \circ \varphi$. Indeed for any $(x, y) \in L_{1} \oplus L_{2}, \varphi \circ\left(\alpha_{1}+\alpha_{2}\right)(x, y)=$ $\varphi\left(\alpha_{1}(x), \alpha_{2}(y)\right)=\alpha_{1}(x)=\alpha_{1} \circ \varphi(x, y)$.

We omit the proof for the following theorem because it is straightforward.
Theorem 9.6. Let $\left(L_{1},[,]_{1}, \alpha_{1}\right)$ and $\left(L_{2},[,]_{2}, \alpha_{2}\right)$ be Hom-Lie algebras and let $\varphi: L_{1} \rightarrow L_{2}$ be a morphism of Hom-Lie algebras. Then,
(i) If A is a Hom-Lie subalgebra of L_{1}, then $\varphi(A)$ is a Hom-Lie subalgebra of L_{2}.
(ii) If φ is onto, and A is a Hom-Lie ideal of L_{1}, then $\varphi(A)$ is a Hom-Lie ideal of L_{2}.
(iii) If B is a Hom-Lie subalgebra of L_{2}, then $\varphi^{-1}(B)=\left\{x \in L_{1} \mid \varphi(x) \in B\right\}$ is a Hom-Lie subalgebra of L_{1}.
(iv) If B is a Hom-Lie ideal of L_{2}, then $\varphi^{-1}(B)$ is a Hom-Lie ideal of L_{1}.
(v) $\operatorname{Ker}(\varphi)$ is a Hom-Lie ideal of L_{1}.
(vi) $\operatorname{Im}(\varphi)$ is a Hom-Lie subalgebra of L_{2}.

10 Isomorphisms of Hom-Lie Algebras

Let L_{1} and L_{2} be a Hom-Lie algebras. A linear map $\varphi: L_{1} \rightarrow L_{2}$ is called an isomorphism of Hom-Lie algebras if φ is a bijection morphism of Hom-Lie algebras. We say L_{1} and L_{2} are isomorphic and write $L_{1} \equiv L_{2}$.

Example 10.1. Let L be any Hom-Lie algebra. Then the identity map

$$
\mathrm{id}_{L}: L \rightarrow L ; x \mapsto x
$$

is isomorphism.
Example 10.2. Let $F=\mathbb{C}$. Consider the set

$$
L_{1}=\left\{\left.\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right] \right\rvert\, x, y \in \mathbb{C}\right\}
$$

with the linear map

$$
\alpha_{1}: L_{1} \rightarrow L_{1} ; A \mapsto-A^{T}
$$

and the skew-symmetric bilinear map

$$
[,]_{1}: L_{1} \times L_{1} \rightarrow L_{1} ;(A, B) \mapsto[A, B]_{1}
$$

where $[A, B]_{1}=A^{T} B^{T}-B^{T} A^{T}$. For any $x, y, z, w \in \mathbb{C}$

$$
\alpha_{1}\left(\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
\frac{i((-x)+(-y))}{2} & (-y) \\
(-x) & \frac{-i((-x)+(-y))}{2}
\end{array}\right] \in L_{1}
$$

and

$$
\left[\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right],\left[\begin{array}{cc}
\frac{i(z+w)}{2} & z \\
w & \frac{-i(z+w)}{2}
\end{array}\right]\right]_{1}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\frac{i(x+y)}{2} & y \\
x & \frac{-i(x+y)}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{i(z+w)}{2} & w \\
z & \frac{-i(z+w)}{2}
\end{array}\right]-\left[\begin{array}{cc}
\frac{i(z+w)}{2} & w \\
z & \frac{-i(z+w)}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{i(x+y)}{2} & y \\
x & \frac{-i(x+y)}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{-(x+y)(z+w)}{4}+y z & \frac{i w(x+y)}{2}-\frac{i y(z+w)}{2} \\
\frac{i x(z+w)}{2}-\frac{i z(x+y)}{2} & x w-\frac{(x+y)(z+w)}{4}
\end{array}\right]-\left[\begin{array}{cc}
\frac{-(x+y)(z+w)}{4}+x w & \frac{i y(z+w)}{2}-\frac{i w(x+y)}{2} \\
\frac{i z(x+y)}{2}-\frac{i x(z+w)}{2} & y z-\frac{(x+y)(z+w)}{4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
y z-x w & i(x w-y z) \\
i(x w-y z) & x w-y z
\end{array}\right] \in L_{1} \quad\left(\frac{i(i(x w-y z)+i(x w-y z))}{2}=y z-x w\right)
\end{aligned}
$$

This shows that L_{1} is a Hom-Lie subalgebra of the Hom-Lie algebra $M_{2}(\mathbb{C})$ given in Example 7.2.

Let us take the Hom-Lie algebra given in Example 6.1, $L_{2}=\mathbb{C}^{2}$ with the linear map

$$
\alpha_{2}: L_{2} \rightarrow L_{2} ;(x, y) \mapsto(-y,-x)
$$

and the skew-symmetric bilinear map

$$
[,]: L_{2} \times L_{2} \rightarrow L_{2} ;((x, y),(z, w)) \mapsto[(x, y),(z, w)]_{2}
$$

where $[(x, y),(z, w)]_{2}=(i(x w-y z), i(x w-y z))$. Define the linear map

$$
\varphi: L_{1} \rightarrow L_{2} ;\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right] \mapsto(x, y)
$$

Then φ is an isomorphism of Hom-Lie algebras. It is easy to show that φ is a bijection linear map. For any $x, y \in \mathbb{C}$, we have

$$
\begin{aligned}
\varphi\left(\alpha_{1}\left(\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right]\right)\right) & =\varphi\left(\left[\begin{array}{cc}
\frac{i((-x)+(-y))}{2} & (-y) \\
(-x) & \frac{-i((-x)+(-y))}{2}
\end{array}\right]\right) \\
& =(-y,-x) \\
& =\alpha_{2}(x, y) \\
& =\alpha_{2}\left(\varphi\left(\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right]\right)\right)
\end{aligned}
$$

Also for any $x, y, z, w \in \mathbb{C}$,

$$
\begin{aligned}
& \varphi\left(\left[\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right],\left[\begin{array}{cc}
\frac{i(z+w)}{2} & z \\
w & \frac{-i(z+w)}{2}
\end{array}\right]\right]_{1}\right) \\
= & \varphi\left(\left[\begin{array}{cc}
y z-x w & i(x w-y z) \\
i(x w-y z) & x w-y z
\end{array}\right]\right) \\
= & (i(x w-y z), i(x w-y z))=[(x, y),(z, w)]_{2} \\
= & {\left[\varphi\left(\left[\begin{array}{cc}
\frac{i(x+y)}{2} & x \\
y & \frac{-i(x+y)}{2}
\end{array}\right]\right), \varphi\left(\left[\begin{array}{cc}
\frac{i(z+w)}{2} & z \\
w & \frac{-i(z+w)}{2}
\end{array}\right]\right)\right]_{2} . }
\end{aligned}
$$

Theorem 10.3. Isomorphism of Hom-Lie algebras is an equivalence relation.

Proof. A Hom-Lie algebra L is isomorphic to itself via $\mathrm{id}_{L}: L \rightarrow L ; x \mapsto x$. So isomorphism is reflexive. If $\varphi:\left(L_{1},[,]_{1}, \alpha_{1}\right) \rightarrow\left(L_{2},[,]_{2}, \alpha_{2}\right)$ is an isomorphism of Hom-Lie algebras, then $\varphi^{-1}: L_{2} \rightarrow L_{1}$ is an isomorphism of Hom-Lie algebras. It is enough to show that φ^{-1} is a morphism of Hom-Lie algebras. Since $\varphi \circ \alpha_{1}=\alpha_{2} \circ \varphi$ so $\varphi^{-1} \circ \alpha_{2}=\alpha_{1} \circ \varphi^{-1}$. For any $x, y \in L_{2}$, there exists $a, b \in L_{1}$ such that $\varphi(a)=x$ and $\varphi(b)=y$, and so $\varphi^{-1}[x, y]_{2}=$ $\varphi^{-1}[\varphi(a), \varphi(b)]_{2}=\varphi^{-1} \varphi[a, b]_{1}=[a, b]_{1}=\left[\varphi^{-1}(x), \varphi^{-1}(y)\right]_{1}$. Thus, the isomorphism is symmetric. If $\varphi_{1}:\left(L_{1},[,]_{1}, \alpha_{1}\right) \rightarrow\left(L_{2},[,]_{2}, \alpha_{2}\right)$ and $\varphi_{2}:\left(L_{2},[,]_{2}, \alpha_{2}\right) \rightarrow\left(L_{3},[,]_{3}, \alpha_{3}\right)$ are isomorphism of Hom-Lie algebras, then $\varphi_{2} \circ \varphi_{1}: L_{1} \rightarrow Ł_{3}$ is an isomorphism of HomLie algebras. Indeed $\left(\varphi_{2} \circ \varphi_{1}\right) \circ \alpha_{1}=\varphi_{2} \circ \alpha_{2} \circ \varphi_{1}=\alpha_{3} \circ\left(\varphi_{2} \circ \varphi_{1}\right)$ and $\varphi_{2} \circ \varphi_{1}[x, y]_{1}=$ $\varphi_{2}\left[\varphi_{1}(x), \varphi_{1}(y)\right]_{2}=\left[\varphi_{2} \circ \varphi_{1}(x), \varphi_{2} \circ \varphi_{1}(y)\right]_{3}$ for each $x, y \in L_{1}$. Thus, the isomorphism is transitive. Therefore isomorphism is an equivalence relation on the collection of all Hom-Lie algebras.
We have the following result.
Theorem 10.4. Let $\left(L_{1},[,]_{1}, \alpha_{1}\right)$ and $\left(L_{2},[,]_{2}, \alpha_{2}\right)$ be Hom-Lie algebras and $\varphi: L_{1} \rightarrow L_{2}$ be an isomorphism of Hom-Lie algebras. If L_{1} is a multiplicative(regular) Hom-Lie algebra, then L_{2} is a multiplicative(regular) Hom-Lie algebra.

Proof. For any $x, y \in L_{2}$,

$$
\begin{aligned}
\alpha_{2}\left([x, y]_{2}\right) & =\alpha_{2}\left(\varphi\left(\varphi^{-1}[x, y]_{2}\right)\right) \quad(\varphi \text { is bijective map }) \\
& =\varphi\left(\alpha_{1}\left(\varphi^{-1}[x, y]_{2}\right)\left(\varphi \circ \alpha_{1}=\alpha_{2} \circ \varphi\right)\right. \\
& \left.=\varphi\left(\alpha_{1}\left[\varphi^{-1}(x), \varphi^{-1}(y)\right]_{1}\right)\right) \quad(\text { Lemma 10.3 }) \\
& =\varphi\left[\alpha_{1}\left(\varphi^{-1}(x)\right), \alpha_{1}\left(\varphi^{-1}(y)\right)\right]_{1} \quad\left(L_{1} \text { is multiplicative }\right) \\
& =\left[\varphi\left(\alpha_{1}\left(\varphi^{-1}(x)\right)\right), \varphi\left(\alpha_{1}\left(\varphi^{-1}(y)\right)\right)\right]_{2} \quad(\varphi \text { is morphism }) \\
& =\left[\alpha_{2}\left(\varphi\left(\varphi^{-1}(x)\right)\right), \alpha_{2}\left(\varphi\left(\varphi^{-1}(y)\right)\right)\right]_{2} \quad\left(\varphi \circ \alpha_{1}=\alpha_{2} \circ \varphi\right) \\
& =\left[\alpha_{2}(x), \alpha_{2}(y)\right]_{2} .
\end{aligned}
$$

Since φ and φ^{-1} are bijection and $\alpha_{2}=\alpha_{2} \circ \varphi \circ \varphi^{-1}=\varphi \circ \alpha_{1} \circ \varphi^{-1}$, so α_{2} is a bijection map if and only if α_{1} is a bijection map. Thus, If L_{1} is a regular Hom-Lie algebra, then L_{2} is too.

Theorem 10.5. ([6]) Let (L, [,], α) be a Hom-Lie algebra and let H be a Hom Lie ideal. Then the quotient space $(L / H, \overline{[,]}, \bar{\alpha})$ is a Hom-Lie algebra (and it is called the quotient Hom-Lie algebra of L by H) where

$$
\overline{[,]}: L / H \times L / H \rightarrow L / H ;(x+H, y+H) \mapsto[x, y]+H
$$

and

$$
\bar{\alpha}: L / H \rightarrow L / H ; x+H \mapsto \alpha(x)+H
$$

Theorem 10.6. (First isomorphism theorem of Hom-Lie algebras) Let

$$
\varphi:\left(L_{1},[,]_{1}, \alpha_{1}\right) \rightarrow\left(L_{2},[,]_{2}, \alpha_{2}\right)
$$

be a morphism of Hom-Lie algebras. Then $L_{1} / \operatorname{Ker}(\varphi) \equiv \operatorname{Im}(\varphi)$.
Proof. Using Theorems 9.6 and 10.5, we have $\left(L_{1} / \operatorname{Ker}(\varphi), \overline{[,]_{1}}, \overline{\alpha_{1}}\right)$ is a Hom-Lie algebra where $\bar{\alpha}_{1}(x+\operatorname{Ker}(\varphi))=\alpha_{1}(x)+\operatorname{Ker}(\varphi)$ and also $\overline{[x+\operatorname{Ker}(\varphi), y+\operatorname{Ker}(\varphi)]_{1}}=[x, y]_{1}+\operatorname{Ker}(\varphi)$ for all $x, y \in L_{1}$. We already know that the map

$$
\Psi: L_{1} / \operatorname{Ker}(\varphi) \rightarrow \operatorname{Im}(\varphi) ; x+\operatorname{Ker}(\varphi) \mapsto \varphi(x)
$$

is an isomorphism of vector spaces. Also, Ψ is a morphisms of Hom-Lie algebras. Indeed for any $x, y \in L_{1}$ we find

$$
\begin{aligned}
\Psi\left(\overline{[x+\operatorname{Ker}(\varphi), y+\operatorname{Ker}(\varphi)]_{1}}\right) & =\Psi\left([x, y]_{1}+\operatorname{Ker}(\varphi)\right) \\
& =\varphi\left([x, y]_{1}\right)=[\varphi(x), \varphi(y)]_{2} \\
& =[\Psi(x+\operatorname{Ker}(\varphi)), \Psi(y+\operatorname{Ker}(\varphi))]_{2}
\end{aligned}
$$

For any $x \in L_{1}$, we have

$$
\begin{aligned}
\Psi\left(\bar{\alpha}_{1}(x+\operatorname{Ker}(\varphi))\right) & =\Psi\left(\alpha_{1}(x)+\operatorname{Ker}(\varphi)\right)=\varphi\left(\alpha_{1}(x)\right) \\
& =\alpha_{2}(\varphi(x))=\alpha_{2}(\Psi(x+\operatorname{Ker}(\varphi))) .
\end{aligned}
$$

Theorem 10.7. (Second isomorphism theorem of Hom-Lie algebras) Let I and J be ideals of a Hom-Lie algebra $(L,[],, \alpha)$. Then $(I+J) / J \equiv I /(I \cap J)$.

Proof. Using theorems 10.5 and 5.6 , we have $\left((I+J) / J, \overline{[,]_{1}}, \bar{\alpha}_{1}\right)$ and $\left(I /(I \cap J), \overline{[,]_{2}}, \bar{\alpha}_{2}\right)$ are Hom-Lie algebras $\left(\overline{\alpha_{1}}, \overline{[x+J, y+J]_{1}}, \overline{\alpha_{2}}\right.$, and $\overline{[x+(I \cap J), y+(I \cap J)]_{2}}$ are defined as in Theorem 10.5). The map

$$
\Psi:(I+J) / J \rightarrow I /(I \cap J) ;(i+j)+J \mapsto i+(I \cap J)
$$

is a morphism of Hom-Lie algebras. Since for each $i_{1}, i_{2} \in I$ and each $j_{1}, j_{2} \in J$ we find

$$
\begin{aligned}
\Psi \overline{\left[\left(i_{1}+j_{1}\right)+J,\left(i_{2}+j_{2}\right)+J\right]_{1}} & =\Psi \overline{\Psi\left[i_{1}+J, i_{2}+J\right]_{1}} \\
& =\Psi\left(\left[i_{1}, i_{2}\right]+J\right)=\left[i_{1}, i_{2}\right]+(I \cap J) \\
& =\overline{\left[i_{1}+(I \cap J), i_{2}+(I \cap J)\right]_{2}} \\
& =\overline{\left[\Psi\left(\left(i_{1}+j_{1}\right)+J\right), \Psi\left(\left(i_{2}+j_{2}\right)+J\right)\right]_{2}} .
\end{aligned}
$$

Also for all $i \in I$ and $j \in J$,

$$
\begin{aligned}
\Psi\left(\bar{\alpha}_{1}((i+j)+J)\right) & =\Psi(\alpha(i)+J)=\alpha(i)+(I \cap J) \\
& =\bar{\alpha}_{2}(i+(I \cap J))=\bar{\alpha}_{2}(\Psi((i+j)+J)) .
\end{aligned}
$$

Lemma 10.8. Let I and J be Hom-Lie ideals of a Hom-Lie algebra $(L,[],, \alpha)$ such that $I \subseteq J$. Then J / I is a Hom-Lie ideal of L / I.

Proof. For each $j \in J, \bar{\alpha}(j+I)=\alpha(j)+I \in J / I(\alpha(J) \subseteq J)$. Also, for any $j \in J$ and $l \in L$, we have $[j+I, l+I]=[j, l]+I \in J / I$ (J is ideal $)$.

Theorem 10.9. (Third isomorphism theorem of Hom-Lie algebras) Let I and J be a Hom-Lie ideals of a Hom-Lie algebra $(L,[],, \alpha)$ such that $I \subseteq J$. Then $(L / I) /(J / I) \equiv L / J$.

Proof. According to Lemma 10.8 , we have J / I is a Hom-Lie ideal of L / I. Also we have the following isomorphism of vector spaces

$$
\Psi:((L / I) /(J / I), \overline{\overline{[,]}}, \overline{\bar{\alpha}}) \rightarrow((L / J), \overline{[,]}, \bar{\alpha}) ;(x+I)+J / I \mapsto x+J
$$

where $\overline{\bar{\alpha}}((x+I)+J / I)=(\alpha(x)+I)+J / I, \overline{\overline{[(x+I)+J / I,(y+I)+J / I]}}=([x, y]+I)+J / I$, $\bar{\alpha}(x+J)=\alpha(x)+J$, and $\overline{[x+J, y+J]}=[x, y]+J$ for all $x, y \in L$. In addition Ψ is a morphisms of Hom-Lie algebras. Indeed for all $x, y \in L$,

$$
\begin{aligned}
\Psi \overline{\overline{(x+I)+J / I, ~(y+I)+J / I]}} & =\Psi(([x, y]+I)+J / I) \\
& =[x, y]+J \\
& =\overline{[x+J, y+J]} \\
& =\overline{[\Psi((x+I)+J / I), \Psi((y+I)+J / I)]}
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi(\overline{\bar{\alpha}}((x+I)+J / I)) & =\Psi((\alpha(x)+I)+J / I)=\alpha(x)+J \\
& =\bar{\alpha}(x+J)=\bar{\alpha}(\Psi((x+I)+J / I)) .
\end{aligned}
$$

References

[1] H. Almutari and A. Ahmad, Centroids and quasi-centroids of finite dimensional Leibniz algebras, International Journal of Pure and Applied Mathematics, 113(2) (2017), 203-217.
[2] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, Journal of Algebra, 324(7) (2010), 1513-1528.
[3] Y. Bahturin, Basic structures of modern algebra, 265, Kluwer Academic Publishers Group, Dordrecht, 1993.
[4] Y. Bahturin, Identical relations in Lie algebras, VNU Science Press, b.v., Utrecht, 1987.
[5] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, Journal of Geometry and Physics, 76 (2014), 38-60.
[6] J. Casas, M. Insua and N. Pacheco, On universal central extensions of Hom-Lie algebras, Hacettepe Journal of Mathematics and Statistics, 44(2) (2015), 277-288.
[7] K. Erdmann and M. Wildon, Introduction to Lie algebra, Springer Undergraduate Mathematics Series. Spinger-Verlag London Limited (2006).
[8] J. Hartwig, D. Larsson, and S. Silvestrov, Deformations of Lie algebras using σ-derivations, Journal of Algebra, 295(2) (2006), 314-361.
[9] J. Humphreys, Introduction to Lie algebras and representation theory, 9, Springer Science and Business Media, 2012.
[10] A. Makhlouf, Hom-dendriform algebras and Rota-Baxter Hom-algebras, Operads And Universal Algebra, (2012), 147-171.
[11] A. Makhlouf and S. Silvestrov, Hom-algebra structures, Journal of Generalized Lie Theory and Applications, 2(2) (2008), 51-64.
[12] N. Kdaisat, On Hom-Lie algebras,, Master thesis, Yarmouk University (2021).
[13] S. Roman, S. Axler, and F. Gehring, Advanced linear algebra, 3, New York, Springer, 2005.
[14] S. Shaqaqha, Restricted Hom-Lie superalgebras, Jordan Journal of Mathematics and Statistics (JJMS), 12(2) (2019), 233-255.
[15] S. Shaqaqha, Fuzzy Hom-Lie Ideals of Hom-Lie Algebras, Axioms, 12(7):630 (2023). https://doi.org/10.3390/axioms12070630
[16] Shaqaqha, S., Hilbert Series for free Lie superalgebras and related topics, Ph. D thesis, Memorial University, 2015.
[17] Y. Sheng, Representations of Hom-Lie algebras, Algebras and Representation Theory, 15(6) (2012), 10811098.
[18] Y. Sheng and Z. Xiong, On Hom-Lie algebras, Linear and Multilinear Algebra, 63(12) (2015), 2379-2395.
[19] L. Song and R. Tang, Derivation Hom-Lie 2-algebras and non-abelian extensions of regular Hom-Lie algebras, Journal of Algebra alications, 17 (2018), 1850081.
[20] L. Yuan, Hom-Lie color algebra structures, Communications in Algebra, 40(2) (2012), 575-592.

Author information

Shadi Shaqaqha and Nadeen Kdaisat, Department of Mathematics, Yarmouk University, Irbid, Jordan. E-mail: shadi.s@yu.edu.jo, 2018105002@ses.yu.edu.jo

```
Received: 2022-10-26
Accepted: 2023-04-09
```

