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Abstract The proposed article aims to analyze the Haar wavelet algebraic multigrid method
for the numerical solution of squeeze film lubrication problem of porous journal bearings with
couple stress fluid. To ensure the applicability and efficiency of the proposed method initially
elliptic partial differential equations having the exact solutions are presented as the test problems.
The acquired findings are displayed through figures and tables to elucidate that, the proposed
method is more efficient and promising with the consumption of lesser computational CPU time
as compared with the existing methods are Finite difference method, Multigrid method, and
Haar wavelet multigrid method. Using the proposed method numerical results of the squeeze
film lubrication problem of porous journal bearings with couple stress fluid with the different
parameter values are obtained and it is presented in the form of tables and figures.

1 Introduction

During the last few decades, hydrodynamic squeeze film lubrication and its corresponding con-
sequences have been of great interest to research due to its ability to describe various complex
phenomena that arise in real life [1]. When the two lubricated surfaces interact along with the
normal velocity produces the hydrodynamic squeeze film phenomena with the pressure in the
fluid. This phenomenon is also called the positive squeeze effect and the lubricating film is
called the squeeze film. During the process of interaction, the viscous lubricant present between
these surfaces is not squeezing rapidly but squeezed out in a limited duration. Due to the pres-
ence of viscous lubricant property of resistance the pressure is built during this limited period
then the load is supported by the lubricant film on the bearing surfaces of the machine compo-
nents. More precisely, the technology of squeeze films on the bearings has attracted many young
researchers due to its widespread applications in many engineering practices, such as jet engines,
disc dampers, clutches, machine tools, gears, and human joints. It should be emphasized that
there is an enormous of investigations into porous and non-porous squeeze films, Pinkus et al.
[2], Cameron [3], Hamrock [4], and many more [5, 6, 7, 8], have been analyzed the squeeze film
journal bearings with Newtonian lubricant.

Nowadays, porous journal bearings are broadly used in the industry, since the main advan-
tage of porous bearing is maintenance-free, offers high precision, produces low noise levels,
and possesses low friction values, all for relatively low production costs. These bearings are
performing satisfactorily for long periods with no external supply of lubricant. The study of
hydrodynamic lubrication of porous bearings with the aid of a mathematical model is done by
Morgan et al. [9]. Rhodes et al. [10] investigated the modified narrow porous bearings with
sealed end pores to prevent the flow of lubricant and this leads to an increase in the load capacity
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of the bearing to maintain its self-lubricating features. Also, after the study of narrow porous
bearings, Rhodes et al. analyzed the performance of partial porous metal bearings under steady
state operating conditions with full film lubricant [11]. Capone [12] has given a solution for
a long bearing using the Cameron and Morgan assumption of a linear pressure gradient within
the porous bearing material. Porous slider bearing with slip velocity is described by Patel et al.
[13]. Also, they found that the permeability parameter and the slip parameter affect the perfor-
mance of the porous slider bearing. Bhat in his article [14] concludes that the porous inclined
slider bearing has a lesser load carrying capacity and less friction than the corresponding porous
composite slider bearings by developing the analytical solution for hydrodynamic lubrication of
porous composite slider bearing.

Recently, numerical methods play a significant role in finding the solution of the differen-
tial equations prescribing diverge phenomena arising in science and engineering. Especially
the classical methods like FDM and FEM discretize the differential equations into a system of
algebraic equations [15, 16]. The multigrid method is used for the large linear system to mini-
mize the error obtained by the known iterative techniques like Gauss-seidel, Jacobi method, or
Relaxation method [17, 18]. Later, Stüben [19] designed the algebraic multigrid method with
the aid of principles of the multigrid method for the solution of the large linear system. Brandt
in [20] discussed the theory of the algebraic multigrid method for symmetric matrices. Pereira
et al. [21] discussed the algebraic multigrid method for different matrices, and conclude that
the algebraic multigrid method reduces solving time as compared with the conjugate gradient
method. Lepik [22] used the Haar wavelets method for the solution of burgers and Sine-Gordon
equations, Shiralashetti et al. [23] used the Chebyshev wavelet method for the study of the ef-
fect of couple stress fluid on the squeeze film lubrication in long porous journal bearings. The
solution of two dimensional Sobolev and regularized long wave equations in fluids using the
Hermite wavelet method has been analyzed by Oruç [24]. The connection between wavelets
and the multigrid method by multiresolution analysis is done by Briggs et al. [25]. Wavelet
based multigrid method for the solution of the linear and nonlinear elliptic partial differential
equation is described in [26]. Leon in [27] described the Haar wavelet multigrid method for the
solution of elliptic problems with highly oscillatory coefficients and also concludes that when
the standard multigrid method fails to converge in finer mesh size, the wavelet multigrid method
does ensure such convergence. The comparative study of wavelet multigrid and FDM in terms
of computational time required to obtain the solution of differential equations are studied by
Shiralashetti et al. [28, 29, 30]. Garcia et al. [31] studied the wavelet based algebraic multigrid
method to find the solution of differential equations. Now, this article presents an application
of the Haar wavelet algebraic multigrid method to solve the squeeze film lubrication problem of
porous journal bearings with couple stress fluid.

The rest of the work is structured accordingly. The basic definition of Haar wavelets, Haar
wavelet multigrid operators and Haar wavelet algebraic multigrid operators are presented in
section 2. In section 3, the Haar wavelet algebraic multigrid method of solution is presented for
estimating the solutions of elliptic partial differential equations and lubrication problem. Section
4 contains the Haar wavelet algebraic multigrid method of implementation and the mathematical
formulation of the lubrication problem. Finally, section 5 contains the conclusion.

2 Mathematical preliminaries of Haar wavelets

Haar wavelets: In 1910 Alfred Haar introduced the Haar wavelet function in the form of regu-
lar pulse pair. The Haar wavelet is the simplest and oldest orthonormal wavelet having compact
support in [0, 1]. The scaling function and wavelet function of Haar wavelet is defined as

φ (x) =

{
1, if 0 ≤ x < 1,
0, otherwise.

and Ψ (x) =


1, if 0 ≤ x < 1/

2,
−1, if 1/

2 ≤ x < 1,
0, otherwise .

The general relationship between Haar scaling function and Haar wavelets function gives the
following Haar wavelets filters coefficients.
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ϕ (x) =
∑1
k=0 hk

√
2ϕ (2x− k) , and Ψ (x) =

∑1
k=0 gk

√
2ϕ (2x− k) .

For Haar Wavelets we have h0 =
√

2
2 , h1 =

√
2

2 , g0 =
√

2
2 , g1 =

−
√

2
2 .

Here, hk are called the low pass scaling filters and gk are called the high pass wavelet filter
coefficients.
Haar wavelet multigrid operators: The general form of the Haar transform matrices that are
used as a Haar wavelet multigrid restriction (HR) operator and Haar wavelet multigrid prolon-
gation (HP ) operators are given in [32] as,

HR =



h1 h0 0 0 0 0 0 0
0 0 h1 h0 0 0 0 0
... · · · · · · · · ·

. . . . . . 0 0
0 0 0 0 0 0 h1 h0

g1 g0 0 0 0 0 0 0
0 0 g1 g0 0 0 0 0
... · · · · · · · · ·

. . . . . . 0 0
0 0 0 0 0 0 g1 g0


2J
2 ×2J

and HP = HRT .

Haar wavelet algebraic multigrid operators: In the Haar wavelet multigrid operators both
low pass and high pass filters of the Haar wavelet are used to construct the HR, and HP. Sim-
ilarly the low pass filters, that capture the approximations are used only in the construction of
the Haar wavelet algebraic multigrid restriction (HAR) and Haar wavelet algebraic multigrid
prolongation (HAP ) operators [33]. The general form of these operators is given by

HAR =


h1 h0 0 0 0 · · · 0 0
0 0 h1 h0 0 · · · 0 0
...

... · · ·
...

...
0 0 0 0 0 · · · h1 h0


2J
2 ×2J

and HAP = HART .

3 Haar wavelet algebraic multigrid method of solution

We now discretize the governing equation of elliptic type with the varied parameters by the finite
difference approximations, it reduces differential equation to the difference equation and it can
be put in the matrix form as,

Ap = b. (3.1)

Here, A is the coefficient matrix of order 2J × 2J and p, b are column matrices of order 2J × 1.
An iterative technique (GMRES [34]) is applied to make the unknown column matrix [p]2J×1 to
known. Then, the approximate solution [v]2J×1 is obtained. Then p can be expressed as p = v+e,
where e is the error matrix of an order 2J ×1 has to be determined. In connection with this many
methods are used to determine and minimize such errors to get an accurate solution. Some of
them are multigrid method, Haar wavelet multigrid method and Haar wavelet algebraic multigrid
method, etc. We now present the Haar wavelet algebraic multigrid method as follows.
Let, v as the approximate solution of Eq. (3.1), we can write the residual equation as

[r]2J×1 = [b]2J×1 − [A]2J×2J [v]2J×1 , (3.2)

With the aid of Haar wavelet algebraic multigrid operators defined in section 2, we can reduce
the required matrices from the finer (J th) level to the coarsest ((J − 1)th) level using the HAR
operator. Also, we can construct the matrices back to the finer level from the coarsest level by
using the HAP operator. Then from Eq. (3.2), we have,

[r]2J−1×1 = [HAR]2J−1×2J [r]2J×1, (3.3)

[A]2J−1×2J−1 = [HAR]2J−1×2J [A]2J×2J [HAP ]2J×2J−1 . (3.4)
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From Eqns. (3.3) and (3.4), we obtain the error equation as

[A]2J−1×2J−1 [e]2J−1×1 = [r]2J−1×1. (3.5)

Now, solve the Eq. (3.5) with initial guess ′0′ gives the error matrix as [e]2J−1×1.
Again reduce the Eqns. (3.3) and (3.4), we have,

[r]2J−2×1 = [HAR]2J−2×2J−1 [r]2J−1×1, (3.6)

[A]2J−1×2J−1 = [HAR]2J−1×2J [A]2J×2J [HAP ]2J×2J−1 . (3.7)

From Eqns. (3.6) and (3.7), the error equation takes the form as

[A]2J−2×2J−2 [e]2J−2×1 = [r]2J−2×1. (3.8)

Now, on solving the Eq. (3.8) with initial guess ′0′ we obtained the error matrix as[e]2J−2×1.
Continuing the same procedure up to the coarsest level we have

[r]2×1 = [HAR]2×4[r]4×1, (3.9)

[A]2×2 = [HAR]2×4[A]4×4[HAP ]4×2. (3.10)

From Eqns. (3.9) and (3.10), we have the error equation as,

[A]2×2[e]2×1 = [r]2×1. (3.11)

Now, solve the Eq. (3.11) exactly, we obtain [e]2×1 .
From [e]2×1 , update the solution

p4×1 = [e]4×1 + [HAP ]4×2 [e]2×1 . (3.12)

Solve [A]4×4[p]4×1 = [r]4×1with the initial guess p4×1.
From p4×1, update the solution p8×1 as

p8×1 = [e]8×1 + [HAP ]8×4[p]4×1. (3.13)

Solve [A]8×8 [p]8×1 = [r]8×1with the initial guess p8×1.
Continuing the procedure up to the finer level we have

p2J×1 = [v]2J×1 + [HAP ]2J×2J−1 [p]2J−1×1. (3.14)

Finally, Solve [A]2J×2J [p]2J×1 = [b]2J×1 with an initial guess p2J×1.
Now, the obtained solution p2J×1 is the required Haar wavelet algebraic multigrid method (HWA
MGM) solution of the Eq. (3.1) as the HWAMGM solution of the governing partial differential
equation.

4 Haar wavelet algebraic multigrid method of implementation

In this section, initially, we applied the HWAMGM for the numerical solution of the elliptic
partial differential equations to check the efficiency of the proposed method, and then we ob-
tained the HWAMGM solution of the squeeze film lubrication problem of porous journal bear-
ings with couple stress fluid flow problem. For the error analysis, we used the formula as,
Emax . = max |pe − pa| , where pe is the exact solution and pa is the approximate solution.

Test Problem 1. Firstly, we consider the two dimensional elliptic partial differential equation
with the forcing function as a product of exponential and algebraic function [35] as,

∂2p

∂x2 +
∂2p

∂y2 = e−x
(
x− 2 + y3 + 6y

)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (4.1)
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Subjected to the boundary conditions,

p (x, 0) = xe−x, p (x, 1) = e−x(x+ 1), p(0, y) = y3, p(1, y) =
(
1 + y3) e−1.

The exact solution of test problem 1 is p (x, y) = e−x
(
x+ y3

)
.

Applying the finite difference approximations of the partial derivatives, Eq. (4.1) reduces to the
following form,

pi−1,j − 2pi,j + pi+1,j

∆x2 +
pi,j−1 − 2pi,j + pi,j+1

∆y2 = e−xi
(
xi − 2 + y3

j + 6yj
)
. (4.2)

Where, i, j = 1, 2, 3, ..., J, ∆x = xi+1 − xi,and ∆y = yj+1 − yj . For instance, J = 4 Eq. (4.2)
gives as,

[A]16×16 [p]16×1 = [b ]16×1 . (4.3)

By using GMRES method, we obtained the approximate solution of the Eq. (4.3) as,
v16×1 =

[
0 0.2320 0.3325 0.3573 0.0360 0.1868 0.3409 0.3706

0.2878 0.3721 0.4725 0.4632 0.9713 0.9280 0.8311 0.7147
]T
.

By

Eq. (3.2) we obtained the [r]16×1 as,

[r]16×1 =
[

0 0.0069 0.0098 0.0106 0.0011 −0.2044 0.0414 0.0109

0.0085 −0.1772 0.0516 0.0137 0.0287 0.0274 0.0245 0.0211
]T
.

From Eq. (3.3) we have [r]8×1 = [HAR]8×16 [r]16×1 .
The coefficient matrix from Eq. (3.4) becomes [A]8×8 = [HAR]8×16 [A]16×16 [HAP ]16×8 .
Again, From Eq. (3.5) the error equation becomes [A]8×8[e]8×1 = [r]8×1 and solving this error
equation with the help of GMRES method with the initial guess ′0′ we obtain

[e]8×1 = [0.0011 0.0031 0.1196 −0.0620 0.1011 −0.0611 0.0086 0.0070 ]
T
.

From Eq. (3.6) we have [r]4×1 = [HAR]4×8.[r]8×1.
Also, from Eq. (3.7) we obtain [A]4×4 = [HAR]4×8[A]8×8[HAP ]8×4.
From Eq. (3.8), the error equation becomes [A]4×4[e]4×1 = [r]4×1. Again solving this error
equation for [e]4×1 with initial guess ′0′ we have

[e]4×1 =
[

0.0030 0.0645 0.0447 0.0112
]T
.

Continuing the same procedure up to the coarsest level and from Eq. (3.9) we have

[r]2×1 =
[
−0.0438 −0.0006

]T
.

From Eq. (3.10), we obtained [A]2×2 =

[
0.5000 0.2500
0.2500 0.5000

]
.

By Eq. (3.11), we obtained the error equation as,[
0.5000 0.2500
0.2500 0.5000

]
[e]2×1 =

[
−0.0438
−0.0006

]
. (4.4)

Solving Eq. (4.5) we obtained, [e]2×1 =
[
−0.1160 0.0569

]T
.

By Eq. (3.12), we obtained, p4×1 =
[
−0.0790 −0.0175 0.0849 0.0514

]T
.

Now, solving [A]4×4 [p]4×1 = [r]4×1by using GMRES method with

p4×1 =
[
−0.0790 −0.0175 0.0849 0.0514

]T
as an initial approximation and then, we

obtained the solution
[p]4×1 =

[
−0.0217 0.0527 0.0652 0.0511

]T
. By Eq. (3.13), we obtained



HAAR WAVELET ALGEBRAIC MULTIGRID METHOD 583

p8×1 =
[
−0.0143 −0.0122 0.1569 −0.0248 0.1472 −0.0150 0.0448 0.0431

]T
.

Next, solving the equation [A]8×8 [p]8×1 = [r]8×1by using GMRES method with

p8×1 =
[
−0.0143 −0.0122 0.1569 −0.0248 0.1472 −0.0150 0.0448 0.0431

]T
as

an initial guess, we obtained the solution

p8×1 =
[
−0.0070 −0.0021 0.1509 −0.0235 0.1465 −0.0232 0.0428 0.0390

]T
.

Continuing the same procedure up to the finer level and by Eq. (3.14) we obtained

[p]16×1 =
[
−0.0049 0.2270 0.3310 0.3559 0.1426 0.2934 0.3242 0.3539

0.3914 0.4757 0.4561 0.4468 1.0016 0.9582 0.8587 0.7422
]T
.

Finally, solving [A]16×16[p]16×1 = [b]16×1 with an initial guess p16×1 and then we obtained the
solution p16×1, and this HWAMGM solution of the test problem 1 is presented in Table 1 and
Figure 1. The maximum error and consumption of computational CPU time for obtaining the
solutions are presented in Table 2.

Table 1. Comparison of the numerical solution (FDM, MGM, HWMGM, and HWAMGM) with
the exact solution of the test problem 1 for J = 4.

x y FDM MGM HWMGM HWAMGM Exact
0 0 0 -7.5265e-03 6.2886e-03 -4.9351e-04 0
0 3.3333e-01 3.5974e-02 -2.5897e-02 1.0337e-01 4.7581e-02 3.7037e-02
0 6.6667e-01 2.8780e-01 6.9433e-02 2.8750e-01 3.0579e-01 2.9630e-01
0 1.0000e+00 9.7131e-01 1.0287e+00 9.7030e-01 1.0002e+00 1.0000e+00

3.3333e-01 0 2.3199e-01 2.1701e-01 2.3636e-01 2.3767e-01 2.3884e-01
3.3333e-01 3.3333e-01 1.8676e-01 1.1250e-01 2.6131e-01 2.4324e-01 2.6538e-01
3.3333e-01 6.6667e-01 3.7212e-01 2.9867e-01 4.2264e-01 4.3129e-01 4.5115e-01
3.3333e-01 1.0000e+00 9.2797e-01 9.6875e-01 9.2700e-01 9.5566e-01 9.5538e-01
6.6667e-01 0 3.3246e-01 2.9632e-01 3.3016e-01 3.4115e-01 3.4228e-01
6.6667e-01 3.3333e-01 3.4088e-01 1.9747e-01 3.8148e-01 3.4048e-01 3.6129e-01
6.6667e-01 6.6667e-01 4.7249e-01 4.0474e-01 4.6738e-01 4.7208e-01 4.9440e-01
6.6667e-01 1.0000e+00 8.3115e-01 8.6337e-01 8.3028e-01 8.5600e-01 8.5570e-01
1.0000e+00 0 3.5733e-01 3.0000e-01 3.5846e-01 3.6668e-01 3.6788e-01
1.0000e+00 3.3333e-01 3.7056e-01 6.6320e-02 4.8940e-01 3.7875e-01 3.8150e-01
1.0000e+00 6.6667e-01 4.6320e-01 5.3705e-01 4.6272e-01 4.7387e-01 4.7688e-01
1.0000e+00 1.0000e+00 7.1465e-01 7.3830e-01 7.1391e-01 7.3641e-01 7.3576e-01

From Table 1 we can observe that the HWAMGM solution for J = 4 of test problem 1 is in good
agreement with the exact solution as compared with the FDM, MGM, and HWMGM.
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Table 2. Comparison of the numerical methods (FDM, MGM, HWMGM, and HWAMGM)
maximum error and CPU time (in seconds) of the test problem 1.

Size of the Ma-
trices

Numerical
Method

Emax . Time

Setup Running Total

16× 16

FDM
MGM
HWMGM
HWAMGM

7.9030e-02
3.1518e-01
1.0789e-01
2.2324e-02

1.9747e+00
1.3409e-01
4.9860e-02
3.7773e-02

6.9917e-02
4.4961e-03
4.7822e-03
3.1750e-03

2.0446e+00
1.3858e-01
5.4642e-02
4.0948e-02

64× 64

FDM
MGM
HWMGM
HWAMGM

5.2678e-03
4.5176e-04
4.6017e-03
1.7997e-04

2.9905e+00
1.6423e-01
8.5981e-02
8.1502e-02

8.2981e-02
5.8379e-03
6.9839e-03
5.2843e-03

3.0735e+00
1.7007e-01
9.2965e-02
8.6786e-02

256× 256

FDM
MGM
HWMGM
HWAMGM

3.7861e-04
6.3103e-05
5.4995e-05
6.3326e-05

4.1663e+00
1.7013e-01
1.0293e-01
9.6951e-02

8.7348e-02
7.1577e-03
6.4303e-03
7.1034e-03

4.2537e+00
1.7728e-01
1.0936e-01
1.0405e-01

1024× 1024

FDM
MGM
HWMGM
HWAMGM

2.7146e-04
3.4439e-06
3.8068e-05
3.6545e-08

5.1242e+00
4.9663e-01
3.5845e-01
3.4478e-01

1.4382e-01
6.4619e-02
7.0009e-02
6.6274e-02

5.2680e+00
5.6124e-01
4.2846e-01
4.1105e-01

4096× 4096

FDM
MGM
HWMGM
HWAMGM

2.6293e-05
4.5205e-08
1.3827e-06
3.3942e-10

9.7404e+00
1.0783e+01
9.2164e+00
1.0833e+01

1.5076e+00
1.3231e+00
1.3215e+00
1.3152e+00

1.1248e+01
1.2106e+01
1.2148e+01
1.0538e+01

From Table 2 we can see that the maximum error and the computational CPU time of the
HWAMGM are lesser as compared with the FDM, MGM, and HWMGM.
Figure 1 represents the solution obtained by FDM, MGM, HWMGM, and HWAMGM solutions
for J = 12 with the exact solution of the test problem 1.

Test Problem 2. Secondly, we consider the elliptic partial differential equation with the forcing
function as the product of exponential, algebraic, and trigonometric function [35] as,

∂2p

∂x2 +
∂2p

∂y2 = e
−αx+y

5

{(
−4
5
α3x− 2

5
+ 2α2

)
cos
(
α2x2 + y

)}
+ e

−αx+y
5

{(
1
25
− 1− 4α4x2 +

α2

25

)
sin
(
α2x2 + y

)}
. (4.5)

Subjected to the boundary conditions, p (x, 0) = e
−αx

5 sin(α2x2), p (x, 1) = e
1−αx

5 sin(1 +

α2x2), p (0, y) = e
y
5 sin(y), p (1, y) = e

y−α
5 sin(α2 + y).

Here, α = 3, x, y ∈ [0, 1] and the exact solution of test problem 2 is p (x, y) = e
−αx+y

5 sin(α2x2+
y).
Applying the finite difference approximations of the partial derivatives, Eq. (4.5) reduces to
the linear system and by using the HWAMGM presented in section 3, the obtained numerical
solution of test problem 2 and is presented in Table 3 and Figure 2. The maximum error and
consumption of computational CPU time for obtaining the solutions are presented in Table 4.
From Table 3 we can observe that the HWAMGM solution for J = 4 of test problem 2 is in good
agreement with the exact solution as compared with the FDM, MGM, and HWMGM.
From Table 4 we can observe that the maximum error and the computational CPU time of the
HWAMGM of the test problem 2 are lesser as compared with the FDM, MGM, and HWMGM.
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Figure 1. Numerical methods solution ((a) FDM, (b) MGM, (c) HWMGM, and (d) HWAMGM)
with the (e) exact solution of the test problem 1.

Figure 2 represents the solution obtained by FDM, MGM, HWMGM, and HWAMGM solutions
for J = 12 with the exact solution of the test problem 2.

Test Problem 3. Thirdly, we consider an elliptic partial differential equation with the forcing
function as the product of algebraic and exponential function [36] as,

∂2p

∂x2 +
∂2p

∂y2 =
(
x2 + y2) exy, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. (4.6)

Subjected to the boundary conditions,

p (x, 0) = 1, p (x, 1) = ex, p (0, y) = 1, p (2, y) = e2y.

This test problem 3 has the exact solution as p (x, y) = exy.
Applying the finite difference approximations of the partial derivatives, Eq. (4.6) reduces to the
linear system, and by using the HWAMGM presented in section 3, the obtained numerical solu-
tion of test problem 3 is presented in Table 5 and Figure 3. The maximum error and consumption
of computational CPU time for obtaining the solutions are presented in Table 6.
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Table 3. Comparison of the numerical solution (FDM, MGM, HWMGM, and HWAMGM) with
the exact solution of the test problem 2 for J = 4.

x y FDM MGM HWMGM HWAMGM Exact
0 0 -6.2172e-15 4.8628e-06 -1.4474e-16 -5.9048e-07 0
0 3.3333e-01 3.5048e-01 3.4988e-01 3.4975e-01 3.4998e-01 3.4975e-01
0 6.6667e-01 7.0805e-01 7.0669e-01 7.0789e-01 7.0651e-01 7.0657e-01
0 1.0000e+00 1.0299e+00 1.0278e+00 1.0297e+00 1.0278e+00 1.0278e+00

3.3333e-01 0 6.9038e-01 6.8895e-01 6.8894e-01 6.8894e-01 6.8894e-01
3.3333e-01 3.3333e-01 6.9096e-01 1.9883e-01 2.9428e-01 2.3553e-01 8.5061e-01
3.3333e-01 6.6667e-01 6.2555e-01 3.5919e-01 4.2048e-01 4.0440e-01 9.3121e-01
3.3333e-01 1.0000e+00 9.1121e-01 9.0930e-01 9.1100e-01 9.0930e-01 9.0930e-01
6.6667e-01 0 -5.0836e-01 -5.0732e-01 -5.0730e-01 -5.0730e-01 -5.0730e-01
6.6667e-01 3.3333e-01 -3.6221e+00 -3.8171e+00 -3.7028e+00 -3.6748e+00 -6.6567e-01
6.6667e-01 6.6667e-01 -3.7918e+00 -4.2126e+00 -4.1132e+00 -4.0687e+00 -7.6513e-01
6.6667e-01 1.0000e+00 -7.8675e-01 -7.8510e-01 -7.8657e-01 -7.8510e-01 -7.8510e-01
1.0000e+00 0 2.2665e-01 2.2612e-01 2.2618e-01 2.2618e-01 2.2618e-01
1.0000e+00 3.3333e-01 5.3683e-02 5.3523e-02 5.3571e-02 5.3459e-02 5.3571e-02
1.0000e+00 6.6667e-01 -1.5053e-01 -1.5023e-01 -1.5049e-01 -1.5004e-01 -1.5021e-01
1.0000e+00 1.0000e+00 -3.6543e-01 -3.6467e-01 -3.6535e-01 -3.6467e-01 -3.6467e-01

Table 4. Comparison of the numerical methods (FDM, MGM, HWMGM, and HWAMGM)
maximum error and CPU time (in seconds) of the test problem 2.

Size of the
Matrices

Numerical
Method

Emax . Time

Setup Running Total
16× 16 FDM

MGM
HWMGM
HWAMGM

7.6504e-04
2.0130e-06
6.8175e-04
3.6032e-07

3.3233e+00
8.8822e-02
3.3820e-02
2.7628e-02

7.7058e-02
5.9157e-03
4.2441e-03
3.5661e-03

3.4004e+00
9.4737e-02
3.8064e-02
3.1194e-02

64× 64 FDM
MGM
HWMGM
HWAMGM

5.2190e-07
2.8289e-10
1.3696e-10
1.1565e-11

5.0068e+00
1.0754e-01
6.1979e-02
4.9046e-02

8.1469e-02
4.2586e-03
5.9258e-03
4.5164e-03

5.0883e+00
1.1180e-01
6.7904e-02
5.3563e-02

256× 256 FDM
MGM
HWMGM
HWAMGM

4.3287e-08
6.9154e-11
2.2587e-08
1.3922e-12

6.9716e+00
2.1328e-01
8.2609e-02
7.9283e-02

8.6839e-02
6.3253e-03
5.8253e-03
5.7001e-03

7.0585e+00
2.1960e-01
8.8434e-02
8.4983e-02

1024× 1024 FDM
MGM
HWMGM
HWAMGM

3.0230e-10
1.0122e-11
2.6911e-09
1.5543e-15

6.7362e+00
4.6164e-01
3.1109e-01
2.1119e-01

2.8817e-01
2.5292e-02
2.8013e-02
2.7372e-02

7.0243e+00
4.8693e-01
3.3911e-01
2.3856e-01

4096× 4096 FDM
MGM
HWMGM
HWAMGM

2.3286e-10
4.2827e-13
3.3605e-10
5.5511e-17

1.2260e+01
1.3155e+01
1.3834e+01
1.3063e+01

3.9538e-01
2.1823e-01
2.5425e-01
2.1132e-01

1.2655e+01
1.3373e+01
1.4088e+01
1.3274e+01

From Table 5 we can observe that the HWAMGM solution for J = 4 of test problem 3 is
in good agreement with the exact solution as compared with the FDM, MGM, and HWMGM.
From Table 6 we can observe that the maximum error and the computational CPU time of the
HWAMGM of test problem 3 are lesser as compared with the FDM, MGM, and HWMGM.
Figure 3 represents the solution obtained by FDM, MGM, HWMGM, and HWAMGM solutions
for J = 12 with the exact solution of the test problem 3.



HAAR WAVELET ALGEBRAIC MULTIGRID METHOD 587

-1
1

-0.5

0

0.75 1

F
D
M

0.5

0.8

y

1

0.5 0.6

x

1.5

0.40.25
0.2

0 0

(a)

-1
1

-0.5

0

0.75 1

M
G
M

0.5

0.8

y

1

0.5 0.6

x

1.5

0.40.25
0.2

0 0

(b)

-1
1

-0.5

0

0.75 1

H
W
M
G
M

0.5

0.8

y

1

0.5 0.6

x

1.5

0.40.25
0.2

0 0

(c)

-1
1

-0.5

0

0.75 1

H
W
A
M
G
M 0.5

0.8

y

1

0.5 0.6

x

1.5

0.40.25
0.2

0 0

(d)

-1
1

-0.5

0

0.75 1

E
x
a
c
t

0.5

0.8

y

1

0.5 0.6

x

1.5

0.40.25
0.2

0 0

(e)

Figure 2. Numerical methods solution ((a) FDM, (b) MGM, (c) HWMGM, and (d) HWAMGM)
with the (e) exact solution of the test problem 2.

Lubrication Problem 4. Lastly, we consider the squeeze film lubrication problem of porous
journal bearings with couple stress fluid flow Eq. (4.21).
Mathematical Formulation of the Lubrication Problem
Physical configuration of the Lubrication Problem: Figure 4 represents the geometry of the
squeeze film bearing with incompressible couple stress fluid as the lubricant in the film region.
dh
dt be the velocity of the non rotating journal of the radius R is approaching the bearing surface
of thickness H0. In consideration with the assumptions of the thin-film theory of hydrodynamic
lubrication [2] and neglecting the body force and body couples, the momentum equations and the
continuity equation for couple stress fluid derived by Stokes [37]. The mathematical formulation
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Figure 3. Numerical methods solution ((a) FDM, (b) MGM, (c) HWMGM, and (d) HWAMGM)
with the (e) exact solution of the test problem 3.
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Table 5. Comparison of the numerical solution (FDM, MGM, HWMGM, and HWAMGM) with
the exact solution of the test problem 3 for J = 4.

x y FDM MG HWMGM HWAMM Exact
0 0 9.9991e-01 9.9969e-01 1.0000e+00 1.0000e+00 1.0000e+00
0 3.3333e-01 9.9991e-01 9.9903e-01 1.0000e+00 1.0003e+00 1.0000e+00
0 6.6667e-01 9.9991e-01 9.9838e-01 9.9997e-01 9.9882e-01 1.0000e+00
0 1.0000e+00 9.9991e-01 9.9772e-01 9.9997e-01 1.0000e+00 1.0000e+00

6.6667e-01 0 9.9991e-01 9.9953e-01 1.0000e+00 1.0000e+00 1.0000e+00
6.6667e-01 3.3333e-01 1.1460e+00 1.2436e+00 1.2490e+00 1.2243e+00 1.2488e+00
6.6667e-01 6.6667e-01 1.5404e+00 1.5506e+00 1.5608e+00 1.5377e+00 1.5596e+00
6.6667e-01 1.0000e+00 1.9475e+00 1.9452e+00 1.9477e+00 1.9477e+00 1.9477e+00
1.3333e+00 0 9.9991e-01 9.9936e-01 1.0000e+00 1.0000e+00 1.0000e+00
1.3333e+00 3.3333e-01 1.5845e+00 1.5627e+00 1.5630e+00 1.5436e+00 1.5596e+00
1.3333e+00 6.6667e-01 2.4508e+00 2.4284e+00 2.4378e+00 2.4484e+00 2.4324e+00
1.3333e+00 1.0000e+00 3.7933e+00 3.7907e+00 3.7935e+00 3.7937e+00 3.7937e+00
2.0000e+00 0 9.9991e-01 9.9920e-01 1.0000e+00 1.0000e+00 1.0000e+00
2.0000e+00 3.3333e-01 1.9475e+00 1.9461e+00 1.9477e+00 1.9481e+00 1.9477e+00
2.0000e+00 6.6667e-01 3.7933e+00 3.7911e+00 3.7935e+00 3.7938e+00 3.7937e+00
2.0000e+00 1.0000e+00 7.3884e+00 7.3854e+00 7.3888e+00 7.3891e+00 7.3891e+00

Table 6. Comparison of the numerical methods (FDM, MGM, HWMGM, and HWAMGM)
maximum error and CPU time (in seconds) of the test problem 3.

Size of the
Matrices

Numerical
Method

Emax . Time

Setup Running Total
16× 16 FDM

MGM
HWMGM
HWAMGM

6.9827e-04
3.7003e-03
2.3216e-04
2.1525e-06

2.3596e+00
1.5288e-01
5.0140e-02
4.6916e-02

8.1608e-02
5.3050e-03
4.3616e-03
4.9245e-03

2.4412e+00
1.5819e-01
5.4501e-02
5.1841e-02

64× 64 FDM
MGM
HWMGM
HWAMGM

2.1979e-04
2.1205e-06
7.8246e-05
2.8908e-08

2.2378e+00
1.9227e-01
7.3816e-02
7.2162e-02

8.0061e-02
4.6270e-03
4.8657e-03
4.0131e-03

2.3179e+00
1.9690e-01
7.8682e-02
7.6175e-02

256× 256 FDM
MGM
HWMGM
HWAMGM

5.2622e-06
3.5508e-07
1.3724e-06
5.4393e-10

8.3215e+00
1.8339e-01
9.5755e-02
8.7086e-02

1.6642e-01
5.7750e-03
8.2365e-03
1.3058e-02

8.4879e+00
1.8916e-01
1.0399e-01
1.0014e-01

1024×1024 FDM
MGM
HWMGM
HWAMGM

3.7000e-07
7.3719e-14
6.4887e-08
7.1054e-14

4.2359e+00
3.5539e-01
2.8168e-01
2.3379e-01

1.2597e-01
3.9648e-02
4.4764e-02
4.5118e-02

4.3618e+00
3.9504e-01
3.2644e-01
2.7891e-01

4096×4096 FDM
MGM
HWMGM
HWAMGM

1.0428e-07
1.4211e-14
2.2276e-10
1.2434e-14

5.8089e+02
1.2238e+01
1.0593e+01
1.0461e+01

2.3902e+00
7.4630e-01
7.1162e-01
7.0972e-01

5.8328e+02
1.2984e+01
1.1305e+01
1.1171e+01

of the lubrication problem is as follows, We know that the corresponding momentum equations
are,

∂

∂y

(
µ
∂w1

∂y

)
− η ∂

4w1

∂y4 =
∂p

∂x
, (4.7)
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Figure 4. Physical configuration of the lubrication problem.

∂

∂y

(
µ
∂w3

∂y

)
− η ∂

4w3

∂y4 =
∂p

∂z
, (4.8)

∂p

∂y
= 0. (4.9)

Here, µ represents the viscosity coefficient, w1 is the velocity component of the lubricant along
the x direction, η is the material constant responsible for couple stress property, and the velocities
of the lubricant along y, z direction are represented by w2 and w3 respectively. Eq. (4.9) reveals
the fact that there is no pressure along the y direction. The corresponding boundary conditions
are (i) at y = 0,

w1 = 0, w2 = w∗2 , w3 = 0, (4.10)

∂2w1

∂y2 = 0,
∂2w3

∂y2 = 0. (4.11)

and (ii) at y = h,

w1 = 0, w2 =
dh

dt
, w3 = 0, (4.12)

∂2w1

∂y2 = 0,
∂2w3

∂y2 = 0. (4.13)

Here, h represents the film thickness, w∗2 representing the modified form of Darcy’s velocity
component along the y direction. When C being the minimum radial clearance and e is the
eccentricity then, the equation of film thickness at any circumferential section θ becomes h =
C + e cos(θ). From the modified form of Darcy’s law illustrate that the flow inside the porous
region for couple stress fluid which accounts for polar effects is given by [38],

→
q
∗
=

−k
µ(1−B)

∇P ∗, (4.14)

where
→
q
∗
= (w∗1 , w

∗
2 , w

∗
3 ) is the modified Darcy velocity vector with w∗2 = −kδ

µ(1−B)
∂P∗

∂y , and the
modified Darcy velocity components along x, y, and z direction are respectively represented by
w∗1 , w

∗
2 , and w∗3 . Also, the permeability of the porous material is represented by k, and the ratio
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of microstructure size
(
= η

µ

)
to the pore size is expressed as B =

η
µ

k . The pressure in the porous

region is represented by P ∗ and the couple stress parameter is represented by l =
(
η
µ

)1/2
.

The velocity components are obtained by solving Eqns. (4.7) and (4.8) by using the Eqns. (4.10)-
(4.13) we have

w1 =
1

2µ
∂p

∂x

y (y − h) + 2l2

1−
cosh

(
2y−h

2l

)
cosh

(
h
2l

)
 , (4.15)

w3 =
1

2µ
∂p

∂z

y (y − h) + 2l2

1−
cosh

(
2y−h

2l

)
cosh

(
h
2l

)
 . (4.16)

We know that the equation of continuity as,

∂w1

∂x
+
∂w2

∂y
+
∂w3

∂z
= 0. (4.17)

Integrating Eq. (4.17) over film thickness 0 to h by substituting w1, w3 and after simplification
we have

∂

∂x

{
G (h, l)

∂p

∂x

}
+

∂

∂z

{
G (h, l)

∂p

∂z

}
= 12µ

dh

dt
+ 12 w∗2 |y=0 , (4.18)

where G (h, l) = h3 − 12l2
(
h− 2l tanh

(
h
2l

))
and we have w∗2 |y=0 =

−k
µ(1−B)

∂p∗

∂y

∣∣∣
y=0

.

The pressure in the porous region P ∗ satisfies the Laplace equation,

∂2P ∗

∂y2 = −
(
∂2P ∗

∂x2 +
∂2P ∗

∂z2

)
(4.19)

Integrating Eq. (4.19) to analyze the pressure in a porous region, with respect to y over the
porous layer of thickness H0 and with the aid of the condition ∂P∗

∂y = 0 at y = −H0. Also, by
assuming that the surface at y = 0 as the porous and at y = −H0 as the non-porous and the
pressure within the porous is taken as p = P ∗. Then, we obtain the following equation,

∂P ∗

∂y

∣∣∣∣
y=0

= −H0

(
∂2P ∗

∂x2 +
∂2P ∗

∂z2

)
. (4.20)

Now from Eqns. (4.18) and (4.20), we obtain the squeeze film lubrication problem of porous
journal bearings with coupe stress fluid in the following form,

∂

∂x

{(
G (h, l) +

12H0k

(1−B)

)
∂p

∂x

}
+

∂

∂z

{(
G (h, l) +

12H0k

(1−B)

)
∂p

∂z

}
= 12µ

dh

dt
. (4.21)

It is convenient to analyze by using the non-dimensional variables θ = x
R , z̄ = z

l , ε =
e
C , h̄ =

1 + ε cos (θ) , a = L
2R , P̄ = pC2

µR2 dε
dt

, l̄ = l
C ,

dh
dt = dε

dt cos (θ)), S = kH0
C3 . From the above

dimensionless terms, Eq. (4.21) can be reduced into the following form(
Ḡ
(
h̄, l̄
)
+

12S
(1−B)

)
∂2P̄

∂θ2 + F
(
h̄, l̄
) ∂P̄
∂θ

+
1

4a2

{(
Ḡ
(
h̄, l̄
)
+

12S
(1−B)

)
∂2P̄

∂z̄2

}
+

1
4a2

(
M
(
h̄, l̄
) ∂P̄
∂z̄

)
= 12 cos (θ) . (4.22)

Here, Ḡ
(
h̄, l̄
)
= h̄3−12l̄2

(
h̄− 2l̄ tanh

(
h̄
2l̄

))
, F

(
h̄, l̄
)
=

∂(Ḡ(h̄,l̄))
∂θ , andM

(
h̄, l̄
)
=

∂(Ḡ(h̄,l̄))
∂z̄

The pertinent boundary conditions are P̄ = 0 at θ = π
2 ,

3π
2 , and P̄ = 0 at z̄ = ± 1

2 .
Applying the finite difference approximations to Eq. (4.22), we obtained the linear system and by
using the HWAMGM presented in section 3, the obtained numerical solution of the lubrication
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problem 4 is presented in Figure 5 with the varying ratio parameter ′a′. Figure 6 represents the
variation of non-dimensional pressure P̄ obtained with the aid of HWAMGM with the varying
couple stress parameter l̄. The load carrying capacity is calculated and it is presented in Figure 7
and Figure 8 by varying the couple stress parameter l̄ with the permeability parameter S = 0.001
and S = 0.01 respectively.

Pressure distribution of the Lubrication Problem:
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Figure 5. Non-dimensional pressure distribution for l̄ = 0.2, B = 0.3, S = 0.001, and ε = 0.4
at different values of a ((a) a = 0.48, (b) a = 0.8, (c) a = 1.2).

From Figure 5 we can observe that the non-dimensional squeeze film pressure distribution ob-
tained by the HWAMGM is increased with the increasing values of the ratio parameter ′a′.



HAAR WAVELET ALGEBRAIC MULTIGRID METHOD 593

0

0.5

10

0.25 270

20

N
o
n
-d
im

e
n
s
io
n
a
l
P
r
e
s
s
u
r
e

225

30

z̄

0

θ

180

40

-0.25
135

-0.5 90

l̄=0

(a)

0
0.5

10

20

0.25 270

N
o
n
-d
im

e
n
s
io
n
a
l
P
r
e
s
s
u
r
e

30

225

z̄

40

0

θ

180

50

-0.25
135

-0.5 90

l̄=0.1

(b)

0

0.5

20

0.25 270

40

N
o
n
-d
im

e
n
s
io
n
a
l
P
r
e
s
s
u
r
e

225

60

z̄

0

θ

180

80

-0.25
135

-0.5 90

l̄ = 0.2

(c)

Figure 6. Non-dimensional pressure distribution for a = 1.2, B = 0.3, S = 0.001, and ε = 0.4
at different values of l̄ ((i) l̄ = 0, (ii) l̄ = 0.1, (iii) l̄ = 0.2).

From Figure 6 we can observe that the non-dimensional squeeze film pressure distribution ob-
tained by the HWAMGM is increased with the increasing values of the couple stress parameters
l̄.
Load-carrying capacity: The variation of the load-carrying capacity of the lubrication problem
4 is given by,

Load = ∆θ.∆z̄

J∑
i=1

J∑
j=1

P̄i,j cos (θi)

The non-dimensional pressure obtained by the HWAMGM is used to calculate the load-carrying
capacity variation with respect to eccentricity ratio ε, as shown in Figure 7. In addition, we can
see in Figure 7 that as the couple stress parameter is increased, the load capacity increases.
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Figure 7. The variation of load capacity for a = 0.48, B = 0.3, andS = 0.001 at different
values of l̄.
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Figure 8. The variation of load capacity for a = 0.48, B = 0.3, andS = 0.01 at different values
of l̄.

Figure 8 represents the variation of load capacity with respect to eccentricity ratio ε. Also, from
Figure 8 it is observed that the load capacity increases with increasing values of couple stress
parameter.

5 Conclusion

In this article, we have provided an effective Haar wavelet algebraic multigrid method (HWAM
GM) to solve the modified Reynolds equation corresponding to the squeeze film lubrication of
finite porous journal bearing with the couple stress fluid as a lubricant. This method initially
reduces the modified Reynolds equation to a system of linear algebraic equations. To minimize
the error associated with this linear system, the Haar wavelet filters based multigrid operators
are used. Moreover, the results obtained are compared with the FDM, MGM, and HWMGM
for three numerical examples having the exact solutions. From the obtained solutions we ob-
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served that the HWAMGM solutions are well compared with the exact solution for increasing
the value of J (resolution of the Haar wavelet) with lesser computational CPU time. Due to
the high accuracy with a lesser computational time of the proposed method can be extended
to analyze the pressure distribution and the load-carrying capacity in porous journal bearing by
solving the corresponding non-dimensional modified Reynolds equation, and it is observed that
the squeeze film pressure distribution increases with increasing the values of ratio parameter and
couple stress parameter. Also, as the values of the couple stress parameter are increased, the
load capacity increases. Finally, it is predicted that the projected method can be set up compre-
hensively and suitable for the solution of various types of equations that arise in Hydrodynamic
lubrication theory.
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