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Abstract. In the present paper, we introduce the class of bounded turning func-
tions associated with tan hyperbolic functions. Sharp upper bounds for some of
the initial coefficients, Fekete-Szegö functional, third Hankel determinant, Zal-
cman conjecture and Krushkal inequality are investigated for the class defined.
Further, Fekete-Szegö inequality for the function ξ

h(ξ) and inverse function h−1 for
the above mentioned class are obtained.

1 Introduction and Motivation

Let B represent the family of holomorphic function h(ξ) defined in the region of
open unit disk ∆ := {ξ ∈ C : |ξ| < 1} having normalized by h(0) = h′(0)−1 = 0.
The function h(ξ) can be expressed in Taylor-Maclaurin series as:

h(ξ) = ξ +
∞∑
n=2

hnξ
n (ξ ∈ ∆). (1.1)

Let S denote the subclass of B consisting of univalent functions. An analytic func-
tion h is subordinate to another analytic function g written as h ≺ g if there is an
analytic function w with w(0) = 0 and |w(ξ)| < 1 such that h(ξ) = g(w(ξ)). If g
is univalent, then h ≺ g if and only if h(0) = g(0) and h(∆) ⊆ g(∆).

In Geometric Function Theory, the subclasses of the class S which plays a
significant role are the family S∗ of starlike functions, C of convex functions and
R of bounded turning functions defined in terms of subordination as follows:

S∗(φ) =
{
h ∈ S :

ξh′(ξ)

h(ξ)
≺ φ(ξ)

}
,

C(φ) =
{
h ∈ S : 1 +

ξh′′(ξ)

h′(ξ)
≺ φ(ξ)

}
,

R(φ) = {h ∈ S : h′(ξ) ≺ φ(ξ)} (1.2)

where the function φ is an analytic univalent function such that <(φ(ξ)) > 0 in
∆ with φ(0) = 1 and φ′(0) > 0 and φ maps ∆ onto a region starlike with respect
to 1 and symmetric with respect to real axis. The class S∗(φ) was introduced and
studied by Ma and Minda [16].

If we consider φ(ξ) = 1+ξ
1−ξ = 1 + 2

∑∞
n=2 ξ

n (ξ ∈ ∆) then the class S∗(φ) is
the well-known class of starlike functions.
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By varying the function φ on the right hand side of (1.2) we get some subclasses
of the set S which have several geometric properties. We here mention some of the
families that are associated with different functions as follows:

• If we take φ(ξ) = 1+Aξ
1+Bξ (−1 ≤ B < A ≤ 1), we get the class S∗(A,B)

studied by Janowski [7].

• If we take φ(ξ) = 1 + sinξ, we obtain the class S∗sin = S∗(1 + sin ξ) intro-
duced and studied by [5]

• Choosing φ(ξ) = eξ, the class S∗e = S∗(eξ) was introduced and studied by
Arif et.al. [2] (also see [17]).

• The class SN = S∗(φ(ξ)) where φ(ξ) = 1+ξ− ξ3

3 , a nephroid shaped domain
was introduced and investigated by Wani and Swaminathan [29].

• Taking φ(ξ) =
√

1 + ξ, the class S∗L = S∗(
√

1 + ξ) was developed by Sokòl
and Stankiewicz [27]. The function φ(ξ) =

√
1 + ξ maps the region ∆ onto

the image domain which is bounded by |w2−1| < 1 (Lemniscate of Bernoulli
in right half plane).

• The family Sc = S∗(φ(ξ)) with φ(ξ) = ξ+
√

1 + ξ2 which maps ∆ to crescent
shaped region was introduced by Raina and Sokòl [23].

• For φ(ξ) = 1+ 4
3ξ+

2
3ξ

2, the class S∗(φ(ξ)) = S∗c was introduced by Sharma
et. al. [25](also see [26]).

• If we take φ(ξ) = 1 + sinh−1ξ the the class S∗p = S∗(1 + sinh−1ξ) was
studied by Kumar and Arora [14].

• Taking φ(ξ) = 2
1+e−ξ , we get the class S∗(φ(ξ)) = S∗SG was introduced by

Goel and Kumar [6].

• For φ(ξ) = coshξ, the class S∗cosh = S∗(φ(ξ)) was introduced by Alotaibi et.
al. [1].

One of the interesting area of research in the Geometric Function Theory is the
study of coefficient problem and Hankel determinant is one of the medium for the
estimating it. It is very useful in the investigations of the singularities and power
series with integral coefficients.
For the function h ∈ B of the form (1.1), Pommerenke [21, 22] introduced the
Hankel determinant Hq,n(h) as:

Hq,n(h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hn hn+1 · · · hn+q−1

hn+1 hn+2 · · · hn+q

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

hn+q−1 hn+q · · · hn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n, q ∈ N := {1, 2, 3, · · · }, h1 = 1).

In particular, for different values of q and n, we obtain Hankel determinant of
various orders:
For n = 1 and q = 2,

H2,1(h) =

∣∣∣∣∣h1 h2

h2 h3

∣∣∣∣∣ = h3 − h2
2
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is popularly known as Feteke-Szegö functional. For different subclasses of B, the
upper bounds for |H2,1(h)| was investigated by different authors [10, 11, 20].
For n = q = 2, we have

H2,2(h) =

∣∣∣∣∣h2 h3

h3 h4

∣∣∣∣∣ = h2h4 − h2
3

is well-known as the second Hankel determinant. In recent time, many authors
have contributed their results in form of research papers for finding the upper
bounds of |H2,2(h)| for various subclasses of analytic function and their results
are listed in literature For details, see [4, 8, 9, 15, 18].
For n = 1 and q = 3,

H3,1(h) =

∣∣∣∣∣∣∣
h1 h2 h3

h2 h3 h4

h3 h4 h5

∣∣∣∣∣∣∣ = (h2h4 − h2
3)h3 − h4(h4 − h2h3) + h5(h3 − h2

2) (1.3)

is known as the third Hankel determinant. Babalola [3] obtained the upper bound
of |H3,1(h)| for the family of S∗, C and the class R. Later, many researchers ex-
tended their ideas for finding the upper bounds of |H3,1(h)| for various subclasses
of holomorphic functions which stood as a base for research in the field of Geo-
metric Function Theory. For recent exposition works on third Hankel determinant,
see [19, 24, 26, 28, 30].
Recently, a family of bounded turning function associated with modified sigmoid
function was introduced by Khan et. al. [12] as

RSG = {h ∈ S : h′(ξ) ≺ 2
1 + e−ξ

(ξ ∈ ∆)}.

Motivated by the aforementioned works, in this article we introduce the classRtanh
defined as follows:

Definition 1.1. A function h ∈ B is said to be in the class Rtanh if it satisfy the
following subordination condition:

Rtanh = {h ∈ B : h′(ξ) ≺ 1 + tanhξ, (ξ ∈ ∆)}. (1.4)

We demonstrate by means of example to show that the class Rtanh defined
above is non-empty. For that let a > 0. Let us consider the function

ha(ξ) = ξ + aξ2 ∈ B.

Then, the function ha ∈ Rtanh if and only if

ϕ(ξ) := 2aξ ≺ tanh ξ =: Φ(ξ).

We can see in the below Figure 1 made by using the MAPLE™ computer software,
we have ϕ(∆) ⊂ Φ(∆) for 0 ≤ a ≤ 0.35. Therefore, ha(ξ) = ξ + aξ2 ∈ Rtanh
whenever 0 ≤ a ≤ 0.35, hence Rtanh 6= ∅.

In this paper, we investigate some of the sharp results related to coefficient
bounds, Fekete-Szegö inequality, second and third Hankel determinant, Zalcman
conjecture and Krushkal inequality for the functional class Rtanh. Furthermore,
Fekete-Szegö inequality for the function ξ

h(ξ) and h−1 for the class Rtanh are ob-
tained.
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Figure 1. The image of ϕ(∆) and Φ (eit), t ∈ [0, 2π]

2 Preliminaries

Let P denote the set of all functions q that are analytic in ∆ with Re(q(ξ)) > 0 and
has the following form:

q(ξ) = 1 +
∞∑
n=1

qnξ
n (ξ ∈ ∆). (2.1)

We need the following lemmas in order to prove our main results.

Lemma 2.1. [11] If q(ξ) ∈ P and has of the form (2.1), then

|qn| ≤ 2 for n ≥ 1, (2.2)

|qn+k − δqnqk| ≤

{
2 for 0 ≤ δ ≤ 1,
2|2δ − 1| elsewhere,

(2.3)

|qmqn − qkql| < 4 for m+ n = l+ k, (2.4)

|qn+2k − δqnq2
k| ≤ 2(1 + 2δ) for δ ∈ R, (2.5)

and ∣∣∣∣q2 −
q2

1
2

∣∣∣∣ ≤ 2− |q1|2

2
. (2.6)

Lemma 2.2. (see[22]) Let the function q ∈ P be of the form (2.1). Then for com-
plex number ν, we have

|q2 − νq2
1 | ≤ 2max{1, |2ν − 1|}. (2.7)

Lemma 2.3. [2] If q ∈ P and has the series of the form (2.1), then

|Jq3
1 −Kq1q2 + Lq3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|, (2.8)

where J, K and L are real numbers.

Lemma 2.4. [16] If q ∈ P and is of the form (2.1), then

|q2 − µq2
1 | ≤


−4µ+ 2 (µ ≤ 0)
2 (0 ≤ µ ≤ 1)
4µ− 2 (µ ≥ 1).

(2.9)
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3 Coefficient bounds and Fekete-Szegö inequality

In this section we will discuss some results related to coefficient bounds and Fekete-
Szegö inequality for the function class Rtanh.

Theorem 3.1. If the function h ∈ B of the form (1.1) belongs to the class Rtanh
then

|h2| ≤
1
2
, (3.1)

|h3| ≤
1
3
, (3.2)

|h4| ≤
1
4
, (3.3)

|h5| ≤
3
5

(3.4)

and

|h6| ≤
163
180

. (3.5)

The first three estimates are sharp.

Proof. Let the function h(ξ) ∈ B of the form (1.1) be in the class Rtanh. Then
by Definition 1.1 there exists an analytic function ω(ξ) satisfying the conditions of
Schwarz lemma (i.e. ω(0) = 0, |ω(ξ)| < 1) such that

h′(ξ) = 1 + tanhω(ξ) (ξ ∈ ∆). (3.6)

It follows from (1.1) that

h′(ξ) = 1 + 2h2ξ + 3h3ξ
2 + 4h4ξ

3 + · · · . (3.7)

Define a function q such that

q(ξ) =
1 + ω(ξ)

1− ω(ξ)
= 1 + q1ξ + q2ξ

2 + q3ξ
3 + · · · . (3.8)

Clearly, q(0) = 1 and <{q(ξ)} > 0 which implies that q ∈ P . From (3.8) we have

ω(ξ) =
q(ξ)− 1
q(ξ) + 1

=
q1ξ + q2ξ

2 + q3ξ
3 + · · ·

2 + q1ξ + q2ξ2 + q3ξ3 + · · ·

=
q1

2
ξ +

(
q2

2
−
q2

1
4

)
ξ2 +

(
q3

2
− q1q2

2
+
q3

1
8

)
ξ3

+

(
q4

2
− q1q3

2
+

3
8
q2

1q2 −
q4

1
16
−
q2

2
4

)
ξ4

+

(
q5

2
− q1q4

2
+

3
8
q1q

2
2 +

3
8
q2

1q3 −
1
4
q3

1q2 −
q2q3

2
+
q5

1
32

)
ξ5 + · · · . (3.9)
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Using relation (3.9) in the series expansion of tanhω(ξ), we get

1 + tanhω(ξ) = 1 +
q1

2
ξ +

(
q2

2
−
q2

1
4

)
ξ2 +

(
q3

1
12
− q1q2

2
+
q3

2

)
ξ3 +

(
q4

2
− q1q3

2
+

1
4
q2

1q2 −
q2

2
4

)
ξ4

+

(
q5

2
− q1q4

2
+

1
4
q1q

2
2 +

1
4
q2

1q3 −
q2q3

2
− 13

480
q5

1

)
ξ5 + · · · .

(3.10)

Using (3.7) and (3.10) in (3.6) and then comparing the coefficients of various pow-
ers of ξ, we obtain

h2 =
q1

4
, (3.11)

h3 =
q2

6
−
q2

1
12
, (3.12)

h4 =
q3

1
48
− q1q2

8
+
q3

8
, (3.13)

h5 =
q4

10
− q1q3

10
+

1
20
q2

1q2 −
q2

2
20
, (3.14)

and
h6 =

q5

12
− q1q4

12
+

1
24
q1q

2
2 +

1
24
q2

1q3 −
q2q3

12
− 13

2880
q5

1 . (3.15)

Using the relation (2.2) of Lemma 2.1 in (3.11) we get

|h2| ≤
1
2
.

From (3.12) we have

|h3| =
1
6

∣∣∣∣q2 −
q2

1
2

∣∣∣∣ . (3.16)

Applying relation (2.3) of Lemma 2.1 in (3.16) we get

|h3| ≤
1
3
.

An application of Lemma 2.3 in (3.13) gives the bounds for |h4|. Rearranging the
terms in (3.14) and application of triangle inequality followed by Lemma 2.1 yield

|h5| =
∣∣∣∣ 1
10

(
q4 −

q2
2
2

)
− q1

10

(
q3 −

q1q2

2

)∣∣∣∣
≤ 1

10

∣∣∣∣q4 −
q2

2
2

∣∣∣∣+ |q1|
10

∣∣∣q3 −
q1q2

2

∣∣∣
≤ 3

5
.

By reordering the terms in (3.15), it yields

|h6| =
∣∣∣∣( 1

24
q2

1q3 −
13

2880
q5

1

)
+

(
q1q

2
2

24
− q2q3

12

)
+
( q5

12
− q1q4

12

)∣∣∣∣
=

∣∣∣∣ 1
24
q2

1

(
q3 −

13
120

q3
1

)
− q2

12

(
q3 −

q1q2

2

)
+

1
12

(q5 − q1q4)

∣∣∣∣ .
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Application of triangle inequality and followed by Lemma 2.1 give

|h6| ≤
|q1|2

24

∣∣∣∣q3 −
13
20
q3

1

∣∣∣∣+ |q2|
12

∣∣∣q3 −
q1q2

2

∣∣∣+ 1
12
|q5 − q1q4|

≤ 163
180

.

The coefficient bounds of h2, h3 and h4 are sharp. For that consider a function

h′n(ξ) = 1 + tanhξn (n = 1, 2, 3). (3.17)

Thus we have

h1(ξ) =

∫ ξ

0
(1 + tanht)dt = ξ +

ξ2

2
− ξ4

12
+ · · · , (3.18)

h2(ξ) =

∫ ξ

0
(1 + tanht2)dt = ξ +

ξ3

3
− ξ7

21
+ · · · , (3.19)

h3(ξ) =

∫ ξ

0
(1 + tanht3)dt = ξ +

ξ4

4
− ξ10

30
+ · · · . (3.20)

This completes the proof of Theorem 3.1.

Theorem 3.2. If h is of the form (1.1) belongs to the class Rtanh, then for any
complex number µ, we have

|h3 − µh2
2| ≤

1
3
max{1, 3

4
|µ|}. (3.21)

The estimate is sharp for the function h2 defined in (3.19) for |µ| ≤ 4
3 and the

function h1 defined in (3.18) for |µ| ≥ 4
3 .

Proof. From (3.11) and (3.12) we get

|h3 − µh2
2| =

∣∣∣∣q2

6
−
q2

1
12
− µ

q2
1

16

∣∣∣∣ = 1
6

∣∣∣∣q2 −
3µ+ 4

8
q2

1

∣∣∣∣ .
Application of Lemma 2.2 we get

|h3 − µh2
2| ≤

1
3
max

{
1,
∣∣∣∣2(3µ− 4

8

)
− 1
∣∣∣∣} .

Simple calculation shows

|h3 − µh2
2| ≤

1
3
max

{
1,

3|µ|
4

}
.

For the sharpness we consider the function

h2(ξ) = ξ +
ξ3

3
− ξ7

21
+ · · · ,

which gives the equality in (3.21) when |µ| ≤ 4
3 , namely

|h3 − µh2
2| = |h3| =

1
3
=

1
3
max

{
1,

3
4
|µ|
}
.
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For |µ| ≥ 4
3 , we take the function

h1(ξ) = ξ +
ξ2

2
− ξ4

12
+ · · ·

which yields

|h3 − µh2
2| = |µh2

2| =
|µ|
4
.

The proof of Theorem 3.2 is thus completed.

Letting µ = 1 in Theorem 3.2 we get the following corollary:

Corollary 3.3. If h ∈ B of the form (1.1) belongs to the class Rtanh, then

|h3 − h2
2| ≤

1
3
.

The following theorem gives the Fekete-Szegö functional for the class Rtanh
when µ is real.

Theorem 3.4. Let h(ξ) ∈ Rtanh be of the form (1.1). Then for µ ∈ R, we have

|h3 − µh2
2| ≤


−µ4 µ ≤ − 4

3 ,
1
3 − 4

3 ≤ µ ≤
4
3

µ
4 µ ≥ 4

3 .

Proof. From (3.11) and (3.12) we obtain

|h3 − µh2
2| =

1
6
|q2 − νq2

1 |

where

ν =
3µ+ 4

8
.

The assertion of Theorem 3.4 follows by virtue of Lemma 2.4.

4 Coefficient Inequalities for the function h−1

Theorem 4.1. If the function h ∈ Rtanh given by (1.1) and h−1(w) = w +∑∞
n=2 lnw

n is the analytic continuation to ∆ of the inverse function of h with
|w| < r0 where r0 ≥ 1

4 is the radius of the Koebe domain, then for any complex
number µ, we have

|l2| ≤
1
2

(4.1)

|l3| ≤
1
2

(4.2)

and

|l3 − µl22| ≤
1
3
max

{
1,

3
4
|2− µ|

}
. (4.3)
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Proof. Since

h−1(w) = w +
∞∑
n=2

lnw
n (4.4)

is the inverse function of h, we have

h−1(h(ξ)) = h(h−1(ξ)) = ξ. (4.5)

From (4.5) we have

h−1(ξ +
∞∑
n=2

hnξ
n) = ξ (4.6)

From (4.4) and (4.6) we get

ξ + (h2 + l2)ξ
2 + (h3 + 2h2l2 + l3)ξ

3 + · · · = ξ (4.7)

Equating the coefficients of ξ2 and ξ3 on both sides of (4.7) we get

l2 = −h2, (4.8)

and
l3 = −h3 − 2h2l2 = 2h2

2 − h3. (4.9)

From relations (3.11), (3.12) and (4.8) and (4.9) we obtain

l2 = −
q1

4
, (4.10)

and

l3 = 2h2
2 − h3

=
q2

1
8
−
(
q2

6
−
q2

1
12

)
= −1

6

(
q2 −

5
4
q2

1

)
. (4.11)

Taking modulus on both sides of (4.10) and (4.11) and applying inequality (2.2)
and (2.3) of Lemma 2.1 respectively give the estimate (4.1) and (4.2).
Further, for any complex number µ, we have

|l3 − µl22| =
∣∣∣∣ 5
24
q2

1 −
q2

6
− µ

q2
1

16

∣∣∣∣
= −1

6

∣∣∣∣q2 −
10− 3µ

8
q2

1

∣∣∣∣ . (4.12)

Taking modulus on the both sides of (4.12) and applying relation (2.7) of Lemma
2.2 we get

|l3 − µl22| =
1
3
max

{
1,
∣∣∣∣10− 3µ

4
− 1
∣∣∣∣}

=
1
3
max

{
1,

3
4
|2− µ|

}
.

This proves the result of Theorem 4.1.
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5 Coefficient functional associated with ξ
h(ξ)

In this section, we determine Fekete-Szegö coefficient functional bounds associ-
ated with the function M(ξ) defined as

M(ξ) =
ξ

h(ξ)
= 1 +

∞∑
n=2

unξ
n (ξ ∈ ∆) (5.1)

where the function h is in the class Rtanh.

Theorem 5.1. Let h ∈ Rtanh and M(ξ) = ξ
h(ξ) = 1 +

∑∞
n=2 unξ

n. Then for any
complex number µ, we have

|u2 − µu2
1| ≤

1
3
max{1, 3

4
|1− µ|}. (5.2)

Proof. By simple calculation, it can be shown that

M(ξ) =
ξ

h(ξ)
= 1− h2ξ + (h2

2 − h3)ξ
2 + · · · . (5.3)

From (5.1) and (5.3) we obtain

u1 = −h2, (5.4)

and
u2 = h2

2 − h3. (5.5)

Using (3.11) and (3.12) in (5.4) and (5.5) we get

u1 = −
q1

4
,

and

u2 =
q2

1
16
−
(
q2

6
−
q2

1
12

)
=

7
48
q2

1 −
q2

6
.

Thus for any complex number µ we have

|u2 − µu2
1| =

1
6

∣∣∣∣q2 −
7− 3µ

8
q2

1

∣∣∣∣ .
Application of Lemma 2.2 we get

|u2 − µu2
1| ≤

1
3
max

{
1,
∣∣∣∣7− 3µ

4
− 1
∣∣∣∣} =

1
3
max

{
1,

3
4
|1− µ|

}
.

The prove of Theorem 5.1 is thus completed.

6 Hankel determinant for the class Rtanh

Theorem 6.1. If the function h of the form (1.1) belongs to the class Rtanh, then

|H2,2(h)| = |h2h4 − h2
3| ≤

1
4
. (6.1)
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Proof. Using (3.11)-(3.13) we have

H2,2(h) = h2h4 − h2
3 =

q1

16

[
q3

1
12
− q1q2

2
+
q3

2

]
−
(
q2

6
−
q2

1
12

)2

= − 1
576

q4
1 −

q2
1q2

288
+
q1q3

32
−
q2

2
36

= q1

(
− 1

576
q3

1 −
q1q2

288
+
q3

32

)
−
q2

2
36
.

Applications of triangle inequality and followed by Lemma 2.3 give

|H2,2(h)| = |h2h4 − h2
3| ≤ |q1|

∣∣∣∣− 1
576

q3
1 −

q1q2

288
+
q3

32

∣∣∣∣+ |q2|2

36

= 4
(

1
576

+
1

144
+

15
576

)
+

1
9

=
1
4
.

This proves the Theorem 6.1.

Theorem 6.2. Let h(ξ) ∈ Rtanh be of the form (1.1). Then

|h2h3 − h4| ≤
1
4
. (6.2)

The result is sharp for the function h3 defined in (3.20).

Proof. From (3.11) to (3.13) we obtain

h2h3 − h4 =
q3

1
4

(
q2

6
−
q2

1
12

)
−
(
q3

1
48
− q1q2

8
+
q3

8

)
=
q1q2

6
−
q3

1
24
− q3

8
. (6.3)

An application of Lemma 2.3 to (6.3) gives required estimate.
For the sharpness we take the function h3(ξ) from (3.20) as

h3(ξ) = ξ +
ξ4

4
− ξ10

30
+ · · · .

Here h2 = h3 = 0 and h4 =
1
4 so that

|h2h3 − h4| = | −
1
4
| = 1

4
.

The proof of Theorem 6.2 is complete.

Theorem 6.3. If h ∈ B belongs to the class Rtanh, then

|H3,1(h)| ≤
83
240

. (6.4)

Proof. Applying triangle inequality to relation (1.3) yields

|H3,1(h)| ≤ |h3||h2h4 − h2
3|+ |h4||h4 − h2h3|+ |h5||h3 − h2

2|. (6.5)

Implementing the results obtained in Theorem 3.1, Corollary 3.3, Theorem 6.1,
6.2 in (6.5) we obtain the desired estimate mentioned in (6.4). This proves the
Theorem 6.3.
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7 Zalcman Functional

One of the classical conjecture in the filed of Geometric Function Theory intro-
duced by Lawrence Zalcman in 1960 is that the coefficient of the functional class
S satisfy the relation

|h2
n − h2n−1| ≤ (n− 1)2. (7.1)

Equality holds for the well-known Koebe function h(z) = z
(1−z)2 or its rotation.

Many researchers have investigated the coefficient estimate for Zalcman conjecture
for different subclasses of S in different direction and their results are available in
literature.

Theorem 7.1. If h(ξ) = ξ +
∑∞
n=2 hnξ

n is in the class Rtanh, then

|h2
3 − h5| ≤

3
5
. (7.2)

Proof. From (3.12) and (3.14), it follows that

|h2
3 − h5| =

∣∣∣∣∣
(
q2

6
−
q2

1
12

)2

−
(
q4

10
− q1q3

10
+
q2

1q2

20
−
q2

2
20

)∣∣∣∣∣
=

∣∣∣∣q1

(
q3

1
144
− 7

90
q1q2 +

q3

10

)
− 1

10

(
q4 −

7
90
q2

2

)∣∣∣∣ .
Application of triangle inequality and followed by Lemma 2.3 give

|h2
3 − h5| ≤ |q1|

∣∣∣∣ q3
1

144
− 7

90
q1q2 +

q3

10

∣∣∣∣+ 1
10

∣∣∣∣q4 −
7
90
q2

2

∣∣∣∣
≤ 4

[
1

144
+

∣∣∣∣ 7
90
− 1

72

∣∣∣∣+ ∣∣∣∣ 1
144
− 7

90
+

1
10

∣∣∣∣]+ 1
5

=
3
5
.

The proof of Theorem 7.1 is complete.

8 Krushkal Inequality

For the class of univalent functions S, Krushkal (see [13]) introduced and proved
the inequality

|hpn − h
p(n−1)
2 | ≤ 2p(n−1) − np. (8.1)

The following theorems prove the inequality (8.1) for the cases n = 4, p = 1 and
n = 5, p = 1 for the class Rtanh.

Theorem 8.1. Let h ∈ B be in the class Rtanh. Then

|h4 − h3
2| ≤

1
4
. (8.2)

The result is sharp for the function h3(ξ) defined in (3.20).
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Proof. From (3.11) and (3.13) we get

|h4 − h3
2| =

∣∣∣∣ 1
192

q3
1 −

q1q2

8
+
q3

8

∣∣∣∣ . (8.3)

An application of Lemma 2.3 to (8.3) gives required estimate as stated in the theo-
rem. This completes the proof of Theorem 8.1.

Theorem 8.2. Let h ∈ B be in the function class Rtanh. Then

|h5 − h4
2| ≤

3
5
. (8.4)

Proof. Putting the values from (3.11) and (3.14) in the coefficient functional (h5−
h4

2) we get

h5 − h4
2 = −q1

(
q3

1
256
− 1

20
q1q2 +

q3

10

)
+

1
10

(
q4 −

q2
2
2

)
. (8.5)

An application of triangle inequality and followed by Lemma 2.1, 2.3 to the rela-
tion (8.5) gives the desired estimate. This proves the result of Theorem 8.2.

Concluding Remark: In the present paper, the authors have introduced the
family of bounded turning functions related to tan hyperbolic function and ob-
tained sharp upper bounds of some of the initial coefficients, Fekete-Szegö inequal-
ity, Hankel determinant of order two and three, Zaclman conjecture and Krushkal
inequality. One can use (p, q)-calculus 0 < |q| < p ≤ 1 to define the functional
class and results in this paper can be generalized which give new direction to the
research.
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