INDEPENDENT STRONG DOMINATION NUMBER OF INDU-BALA PRODUCT OF GRAPHS

M. Priyadharshini and N. Parvathi and Ismail Naci Cangul
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C69, 05C76.
Keywords and phrases: graph product, Indu-Bala product, domination, strong domination, strong domination number.

Abstract

A set $D \subset V$ be the strong dominating set of G if every vertex in $V-D$ is strongly dominated by at least one vertex in D. The strong domination number $\gamma_{s t}(G)$ of G is the minimum cardinality of a strong dominating set. The independent strong domination number $i_{s}(G)$ of a graph G is the minimum cardinality of a strong dominating set which is independent. In this paper, by means of the degree sequences (DS) of graphs and some graph theoretical methods, we determine the independent strong domination number of Indu-Bala product of simple connected graphs and null graphs.

1 Introduction

Topological indices are numerical parameters that are very important in Mathematics and have a lot of applications in fields such as Molecular Chemistry,quantitative structure-activity relationships (QSARs), and many other areas. Most of the topological indices are defined in terms of degrees sequence of the vertices. The degree sequence $(D S)$ of a graph is the list of degree of all the vertices. It gives a lot of information about the physico-chemical properties of the graph.

The notion of degree of a graph provides users an area to study various structural properties of graphs and hence attracts the attention of many graph theorists. If the degrees of the vertices v_{i} of a graph G are d_{i} for $1 \leq i \leq n$, then the degree sequence of G is $\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$. In many research studies, the DS is taken to be a non-decreasing sequence, whenever possible.

If the degree d_{i} of the vertex v_{i} is repeated z_{i} times in the DS of a graph G, then

$$
\left\{\alpha_{1}=d_{1}^{z_{1}}, \alpha_{2}=d_{2}^{z_{2}}, \cdots, \alpha_{r}=d_{r}^{z_{r}}\right\}
$$

is used instead of $\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$ where $r \leq n$: Here the numbers z_{i} represent the frequencies of the degrees. In Fig. 1, the DS of $T_{3,2}$ is $\{1,1,2,2,3\}$, or briefly $\left\{\alpha_{1}=1^{2}, \alpha_{2}=2^{2}, \alpha_{3}=3^{1}\right\}$.

There are several graph operations used in calculating some chemical invariants of graphs, such as join, cartesian, corona product, union, disjunction and symmetric difference. Several graph operations have been examined in research by means of DS. After discussing the join operation, the DS of Indu-Bala product of graphs will be determined in the present study.

Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices and q_{1} and q_{2} edges, respectively. The join $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph union $G_{1} \cup G_{2}$ together with all the edges joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. Then $\left|V\left(G_{1} \vee G_{2}\right)\right|=n_{1}+n_{2}$ and $\left|E\left(G_{1} \vee G_{2}\right)\right|=q_{1}+q_{2}+n_{1} n_{2}$.

The Indu-Bala product of any two graphs was introduced by G. Indulal and R. Balakrishnan, [9]. This graph product is based on classic loop switching problem analyzed by Graham and Pollack, [10]. The classic loop switching problem is used for wireless communication network theory. The Indu-Bala product $G_{1} \mathbf{V}$ 解 of graphs G_{1} and G_{2} is obtained by two disjoint copies of the join $G_{1} \vee G_{2}$ where the corresponding vertices of two copies of G_{2} are connected by an

Figure 1: $T_{3,2}$
edge. It is obvious that $\left|V\left(G_{1} \nabla G_{2}\right)\right|=2\left|V\left(G_{1} \vee G_{2}\right)\right|=2\left(n_{1}+n_{2}\right)$ and that

$$
\left|E\left(G_{1} \nabla G_{2}\right)\right|=2\left|E\left(G_{1} \vee G_{2}\right)\right|+n_{2}=2\left(q_{1}\right)+2\left(q_{2}\right)+2\left(n_{1} n_{2}\right)+n_{2}
$$

Theorem 1.1. Let G_{1} and G_{2} be two connected graphs with $D S\left(G_{1}\right)=\left\{\eta_{11}{ }^{\lambda 11}, \cdots, \eta_{1 p_{1}}{ }^{\lambda 1 p_{1}}\right\}$ and $D S\left(G_{2}\right)=\left\{\eta_{21}{ }^{\lambda 21}, \cdots, \eta_{2 p_{2}}{ }^{\lambda 2 p_{2}}\right\}$, respectively. Then the DS of the Indu-Bala product of the graphs G_{1} and G_{2} is given by
$\left\{\alpha_{1}=\left(n_{2}+\eta_{11}\right)^{2 \lambda 11}, \cdots, \alpha_{i}=\left(n_{2}+\eta_{1 p_{1}}\right)^{2 \lambda 1 p_{1}}, \beta_{1}=\left(1+n_{1}+\eta_{21}\right)^{2 \lambda 21}, \cdots, \beta_{i}=\left(1+n_{2}+\eta_{2 p_{2}}\right)^{2 \lambda 2 p_{2}}\right\}$.
Proof: The DS of the join of the graphs G_{1} and G_{2} was obtained in [9] as
$\left\{\alpha_{1}=\left(n_{2}+\eta_{11}\right)^{\lambda 11}, \cdots, \alpha_{i}=\left(n_{2}+\eta_{1 p_{1}}\right)^{\lambda 1 p_{1}}, \beta_{1}=\left(n_{1}+\eta_{21}\right)^{\lambda 21}, \cdots, \beta_{i}=\left(n_{2}+\eta_{2 p_{2}}\right)^{\lambda 2 p_{2}}\right\}$.
To obtain $D S\left(G_{1} \vee G_{2}\right)$, add the number of vertices n_{2} of G_{2} to each degree $\eta_{1 j}$ where $1 \leq j \leq p_{1}$ without changing the powers $\lambda_{1 j}$ and add the number of vertices n_{1} of G_{1} to each degree $\eta_{2 j}$ where $1 \leq j \leq p_{2}$ without changing the powers $\lambda_{2 j}$. The Indu-Bala product of graphs G_{1} and G_{2} is obtained by two copies of join $G_{1} \vee G_{2}$ where the corresponding vertices of two copies of G_{2} are connected by an edge. That is, all the multiplicities of the degrees are multiplied by 2 and all the degrees of β_{i} are added one. Then the DS of the Indu-Bala product of graphs G_{1} and G_{2} is

$$
\left\{\alpha_{1}=\left(n_{2}+\eta_{11}\right)^{2 \lambda 11}, \cdots, \alpha_{i}=\left(n_{2}+\eta_{1 p_{1}}\right)^{2 \lambda 1 p_{1}}, \beta_{1}=\left(1+n_{1}+\eta_{21}\right)^{2 \lambda 21}, \cdots, \beta_{i}=\left(1+n_{2}+\eta_{2 p_{2}}\right)^{2 \lambda 2 p_{2}}\right\} .
$$

Theorem 1.2. The null graphs G_{1} and G_{2} have vertex sets consisting of n_{1} and n_{2} vertices, respectively. Then, the DS of the Indu-Bala product of the graphs G_{1} and G_{2} is given by

$$
D S\left(G_{1} \nabla G_{2}\right)=\left\{\alpha_{1}=\left(n_{1}\right)^{2 n_{2}}, \beta_{1}=\left(1+n_{2}\right)^{2 n_{1}}\right\}
$$

Proof: The DS of the join of the graphs G_{1} and G_{2} was given in [9] as

$$
D S\left(G_{1} \vee G_{2}\right)=\left\{\alpha_{1}=\left(n_{1}\right)^{n_{2}}, \beta_{1}=\left(n_{2}\right)^{n_{1}}\right\}
$$

To obtain $D S\left(G_{1} \vee G_{2}\right)$, add the number of vertices n_{2} of G_{2} to the degrees of all the vertices of G_{1}. The Indu-Bala product of the two graphs G_{1} and G_{2} is obtained by two copies of join $\left(G_{1} \vee G_{2}\right)$ and the corresponding vertices of two copies of G_{2} are connected by an edge. That is, all the multiplicities of the degrees are multiplied by 2 and all the degrees of β_{i} are added one. Then the DS of the Indu-Bala product of the graphs G_{1} and G_{2} is $\left\{\left(n_{1}\right)^{2 n_{2}},\left(1+n_{2}\right)^{2 n_{1}}\right\}$.

G_{1}	G_{2}	G_{1} 『 G_{2}
P_{k}	P_{n}	$\left\{(n+1)^{2(2)},(n+2)^{2(k-2)},(k+2)^{2(2)},(k+3)^{2(n-2)}\right\}$
P_{k}	C_{n}	$\left\{(n+1)^{2(2)},(n+2)^{2(k-2)},(k+3)^{2(n)}\right\}$
P_{k}	$S_{1, n}$	$\left\{(n+2)^{2(2)},(n+3)^{2(k-2)},(k+2)^{2(n)},(k+n+1)^{2}\right\}$
P_{k}	K_{n}	$\left\{(n+1)^{2(2)},(n+2)^{2(k-2)},(k+n)^{2(n)}\right\}$
P_{k}	$W_{1, n}$	$\left\{(n+2)^{2(2)},(n+3)^{2(k-2)},(k+4)^{2},(k+n+1)^{2}\right\}$
C_{k}	P_{n}	$\left\{(n+2)^{2(r)},(k+2)^{2(2)},(k+3)^{2(n-2)}\right\}$
C_{k}	C_{n}	$\left\{(n+2)^{2(k)},(k+3)^{2(n)}\right\}$
C_{k}	$S_{1, n}$	$\left\{(n+3)^{2(k)},(k+2)^{2(n)},(k+n+1)^{2}\right\}$
C_{k}	K_{n}	$\left\{(n+2)^{2(k)},(k+n-1)^{2(n)}\right\}$
C_{k}	$W_{1, n}$	(n+3) $\left.{ }^{2(k)},(k+4)^{2(n)},(r+s+1)^{2}\right\}$
$S_{1, k}$	P_{n}	$\left\{(n+1)^{2(r)},(n+k)^{2},(k+3)^{2(2)},(k+4)^{2(n-2)}\right\}$
$S_{1, k}$	C_{n}	$\left\{(n+1)^{2(k)},(n+k)^{2},(k+4)^{2(n)}\right\}$
$S_{1, k}$	$S_{1, n}$	(n+2) $\left.{ }^{2(k)},(n+k+2)^{2(2)},(k+3)^{2(n)}\right\}$
$S_{1, k}$	K_{n}	$\left\{(n+2)^{2(k)},(n+k+2)^{2},(k+n+2)^{2(n)}\right\}$
$S_{1, k}$	$W_{1, n}$	$\left\{(n+2)^{2(r)},(n+k+1)^{2},(k+n+2)^{2},(k+5)^{2(n)}\right\}$
K_{k}	P_{n}	$\left\{(n+k-1)^{2(k)},(k+2)^{2(2)},(k+3)^{2(n-2)}\right\}$
K_{k}	C_{n}	$\left\{(n+k-1)^{2(k)},(k+3)^{2(n)}\right\}$
K_{k}	$S_{1, n}$	$\left\{(n+k)^{2(k)},(k+2)^{2(n)},(k+n+1)^{2}\right\}$
K_{k}	K_{n}	$\left\{(n+k-1)^{2(k)},(k+n)^{2(n)}\right\}$
K_{k}	$W_{1, n}$	$\left\{(n+k)^{2(k)},(k+4)^{2(n)},(k+n+1)^{2}\right\}$
$W_{1, k}$	P_{n}	$\left\{(n+k)^{2},(n+3)^{2(k)},(k+3)^{2(2)},(k+4)^{2(n-2)}\right\}$
$W_{1, k}$	C_{n}	$\left\{(n+k)^{2},(n+3)^{2(k)},(k+4)^{2(n}\right\}$
$W_{1, k}$	$S_{1, n}$	$\left\{(n+k+1)^{2},(n+4)^{2(k)},(k+3)^{2(n)},(k+n+2)^{2}\right\}$
$W_{1, k}$	K_{n}	$\left\{(n+k)^{2},(n+3)^{2(k)},(k+n+1)^{2(n)}\right\}$
$\begin{gathered} W_{1, k} \\ \bar{K}_{k} \end{gathered}$	$W_{1, n}$ \bar{K}_{n}	$\begin{gathered} \left\{(n+k+1)^{2},(n+4)^{2(k)},(k+n+2)^{2},(k+5)^{2(n)}\right\} \\ \left\{(n)^{2(k)},(1+k)^{2(n)}\right\} \end{gathered}$

Table 1. Degree sequence of Indu-Bala product of graphs

Figure 2: \bar{K}_{3} and \bar{K}_{4}

2 Independent strong domination number of Indu-Bala product of graphs

Let $G=(V, E)$ be a graph and $u, v \in V$. Then u strongly dominates v if $u v \in E$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. A set $D \subset V$ be the strong dominating set of G if every vertex in $V-D$ is strongly dominated by at least one vertex in D. The strong domination number $\gamma_{s t}(G)$ of G is the minimum cardinality of a strong dominating set. A set $D \subseteq V$ is an independent set if no two vertices of D are adjacent. The independent strong domination number $i_{s}(G)$ of a graph G is the minimum cardinality of a strong dominating set which is independent. In this section, we determine the independent strong domination (ISD) number of Indu-Bala product of graphs by means of degree sequence.

Theorem 2.1. Let $P_{k} \backslash P_{n}$ be the Indu-Bala product of paths P_{k} and P_{n}. Then

$$
i_{s}\left(P_{k} \mathbf{v} P_{n}\right)=\left\{\begin{array}{c}
\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 0(\bmod 3) \\
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil+\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 1,2(\bmod 3)
\end{array}, \forall k<n .\right.
$$

Proof: Consider the Indu-Bala product of two paths $P_{k} \mathbf{\nabla} P_{n}$. Let $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, \ldots,, r_{k}^{\prime}\right)$ be the vertices of two copies of P_{k} and $\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $P_{n}, \forall k<n$. By the definition of the Indu-Bala product, all the vertices of P_{k} are adjacent with n vertices of P_{n} and the corresponding vertices of two copies of P_{n} are connected by an edge. Since $k<n$, the degree of P_{k} is always greater than or equal to the degree of P_{n}. The minimum independent dominating set of P_{k} is $D=\left\lceil\frac{k}{3}\right\rceil$. The DS of $P_{k} \mathbf{v} P_{n}$ is $\left\{\alpha_{1}=(n+1)^{2(2)}, \alpha_{2}=(n+2)^{2(k-2)}, \beta_{1}=(k+2)^{2(2)}, \beta_{2}=(k+3)^{2(n-2)}\right\}$ and the cardinality of $\left|\alpha_{1}\right|=4$ and $\left|\alpha_{2}\right|=2(k-2)$. It concludes that,

$$
i_{s}\left(P_{k} \mathbf{v} P_{n}\right)=\left\{\begin{array}{c}
\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 0(\bmod 3) \\
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil+\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 1,2(\bmod 3)
\end{array}, \forall k<n .\right.
$$

Observation 2.1. Let $P_{k} \mathbf{v} C_{n}$ be the Indu-Bala product of path P_{k} and the cycle C_{n}. Then, $i_{s}\left(P_{k} \mathbf{\nabla} C_{n}\right)=\left\{\begin{array}{c}\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 0(\bmod 3) \\ \left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil+\left\lceil\frac{\left|\alpha_{2}\right|}{3}\right\rceil ; \text { for } k \equiv 1,2(\bmod 3)\end{array}, \forall k<n\right.$.
Theorem 2.2. The independent strong domination number of the Indu-Bala product of the cycle C_{k} and the path P_{n} is given by $i_{s}\left(C_{k} \mathbf{v} P_{n}\right)=\left\{\begin{array}{c}\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil ; \text { for } k \equiv 0,2(\bmod 3) \\ \left\lceil\frac{\left|\alpha \alpha_{1}\right|}{3}\right\rceil+1 ; \text { for } k \equiv 1(\bmod 3)\end{array}, \forall 4 \leq k<n\right.$.

Figure 3: Coloured vertices constitute the $I S D$ set of $P_{3} \mathbf{\rightharpoonup} P_{4}$

Proof: Consider the Indu-Bala product of two paths $C_{k} \nabla P_{n}$. Let $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, \ldots,, r_{k}^{\prime}\right)$ be the vertices of two copies of C_{k} and $\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $P_{n}, \forall k<n$, respectively. By the definition of Indu-Bala product, all the vertices of C_{k} are adjacent with n vertices of P_{n} and the corresponding vertices of two copies of P_{n} are connected by an edge. Given $k<n$, the degree of C_{k} is always greater than or equal to the degree of P_{n}. The minimum independent dominating set of C_{k} has $\left\lceil\frac{k}{3}\right\rceil$ elements. The DS of $C_{k} \nabla P_{n}$ is $\left\{\alpha_{1}=(\mathrm{n}+2)^{2 k}, \beta_{1}=(k+2)^{2 \cdot 2}, \beta_{2}=(k+3)^{2(n-2)}\right\}$ and $\left|\alpha_{1}\right|=2 k$. It follows that

$$
i_{s}\left(C_{k} \nabla P_{n}\right)=\left\{\begin{array}{c}
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil ; \text { for } k \equiv 0,2(\bmod 3) \\
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil+1 ; \text { for } k \equiv 1(\bmod 3)
\end{array}\right.
$$

for $4 \leq k<n$.
Observation 2.2. Let the Indu-Bala product of the two cycles C_{k} and C_{n} be $C_{k} \nabla C_{n}$. Then for $4 \leq k<n$, we have

$$
i_{s}\left(C_{k} \nabla C_{n}\right)=\left\{\begin{array}{c}
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil ; \text { for } k \equiv 0,2(\bmod 3) \\
\left\lceil\frac{\left|\alpha_{1}\right|}{3}\right\rceil+1 ; \text { for } k \equiv 1(\bmod 3)
\end{array}\right.
$$

Theorem 2.3. The independent strong domination number of the Indu-Bala product of $P_{k} \nabla S_{1, n}$ is given by $i_{s}\left(P_{k} \nabla S_{1, n}\right)=1+\left\lceil\frac{k}{3}\right\rceil$ for $4 \leq k<n$.

Proof: Consider the Indu-Bala product of $P_{k} \nabla S_{1, n}$. Let $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, \ldots, r_{k}^{\prime}\right)$ be the vertices of two copies of P_{k} and $\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $S_{1, n}, \forall k<n$. By the definition of Indu-Bala product, all the vertices of P_{k} are adjacent with all $n+1$ vertices of $S_{1, n}$ and the corresponding vertices of two copies of $S_{1, n}$ are connected by an edge. The DS of $P_{k} \nabla S_{1, n}$ is

$$
\left\{\alpha_{1}=(n+2)^{2 \cdot 2}, \alpha_{2}=(n+3)^{2(k-2)}, \beta_{1}=(k+2)^{2 n}, \beta_{2}=(k+\mathrm{n}+1)^{2}\right\}
$$

The maximum degree of $P_{k} \nabla S_{1, n}$ is β_{2} where $\left|\beta_{2}\right|=2$ dominates all the vertices of the graph $P_{k} \nabla S_{1, n}$. If the two vertices of degree β_{2} in the dominating set D are considered, then the set D is not an independent set. So one vertex of $\operatorname{deg}\left(\beta_{2}\right) \in D$ is included which will dominate all the vertices of $P_{k} \vee S_{1, n}$ and the minimum independent dominating set of P_{k} has $\left\lceil\frac{k}{3}\right\rceil$ elements. Therefore the independent strong domination number of $P_{k} \nabla S_{1, n}$ is $1+\left\lceil\frac{k}{3}\right\rceil$ for $4 \leq k<n$.

Figure 4: Coloured vertices constitute the ISD set of C_{3} and C_{4}

Figure 5: Coloured vertices constitute the ISD set of C_{3} and $S_{1,4}$

Observation 2.3. The independent strong domination number of $C_{k} \nabla S_{1, n}$ is $i_{s}\left(C_{k} \nabla S_{1, n}\right)=$ $1+\left\lceil\frac{k}{3}\right\rceil$ for $4 \leq k<n$.

Theorem 2.4. Let $S_{1, n} \nabla G$ be the Indu-Bala product of star $S_{1, n}$ and a connected graph G. Then $i_{s}\left(S_{1, n} \nabla G\right)=2, \forall 4 \leq n<k$.

Proof: Consider the Indu-Bala product of $S_{1, n} \nabla P_{k}$. Let $\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right),\left(y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $S_{1, n}$ and $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, \ldots, r_{n}^{\prime}\right)$ be the vertices of two copies of P_{k} for $n<k$. By the definition of Indu-Bala product, all the vertices of $S_{1, n}$ are adjacent with k vertices of P_{k} and the corresponding vertices of two copies of P_{k} are connected by an edge. The DS of $S_{1, n} \nabla P_{k}$ is given as follows:

$$
\left\{\alpha_{1}=(k+1)^{2(n)}, \alpha_{2}=(n+k)^{2}, \beta_{1}=(n+3)^{2(2)}, \beta_{2}=(n+4)^{2(k-2)}\right\}
$$

The maximum degree of $S_{1, n} \nabla P_{k}$ is α_{2}, where $\left|\alpha_{2}\right|=2$ dominates all the vertices of the graph $S_{1, n} \nabla P_{k}$. The vertices whose degree is α_{2} are non-adjacent in $S_{1, n} \nabla P_{k}$. So the vertices of $\operatorname{deg}\left(\alpha_{2}\right)$ are to be included in D and they dominate all the vertices of $S_{1, n} \nabla P_{k}$ which implies that the set D is an minimum independent strong dominating set. Therefore $i_{s}\left(S_{1, n} \nabla P_{k}\right)=2$

Figure 6: Coloured vertices constitute the ISD set of K_{4} and P_{5}
for $4 \leq n<k$. It follows that the independent strong domination number of $S_{1, n} \nabla G$ is 2 for $4 \leq n<k$.

Theorem 2.5. The independent strong domination number of the Indu-Bala product of $K_{n} \nabla G$ is given by

$$
i_{s}\left(K_{n} \nabla G\right)=2, \forall 4 \leq n<k
$$

Proof: Consider the Indu-Bala product of $K_{n} \nabla P_{k}$. Let $\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime} \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of K_{n} and $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime} \ldots, r_{k}^{\prime}\right)$ be the vertices of two copies of $P_{k}, \forall n<k$. By the definition of Indu-Bala product, all the vertices of K_{n} are adjacent with k vertices of P_{k} and the corresponding vertices of two copies of P_{k} are connected by an edge. The DS of $K_{n} \nabla P_{k}$ is $\left\{\alpha_{1}=(n+k-1)^{2(n)}, \beta_{1}=(n+2)^{2(2)}, \beta_{2}=(n+3)^{2(k-2)}\right\}$. The maximum degree of $K_{n} \nabla P_{k}$ is α_{1}, where two vertices of degree α_{1} are needed to dominate all the vertices of the graph $K_{n} \nabla P_{k}$. That is, one vertex of degree α_{1} from each copies of join $K_{n} \vee P_{k}$ dominate all the vertices of the graph $K_{n} \nabla P_{k}$. It concludes that two vertices of $\operatorname{deg}\left(\alpha_{1}\right) \in D$ will dominate all the vertices of $K_{n} \nabla P_{k}$ and the set D is an minimum independent strong dominating set. Hence, it follows that $i_{s}\left(K_{n} \nabla P_{k}\right)=2$ for $4 \leq n<k$.

Observation 2.4. The independent strong domination number of the Indu-Bala product of $G \nabla K_{n}$ is $2, \forall 4 \leq n<k$.

Theorem 2.6. Let $W_{1, n} \nabla G$ be the Indu-Bala product of the wheel $W_{1, n}$ and the connected graph G. Then, $i_{s}\left(W_{1, n} \nabla G\right)=2, \forall 5 \leq n<k$.

Proof: Consider the Indu-Bala product of $W_{1, n} \nabla P_{k}$. Let $\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime} \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $W_{1, n}$ and $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime} \ldots, r_{k}^{\prime}\right)$ be the vertices of two copies of $P_{k}, \forall n<k$. By the definition of Indu-Bala product, all the vertices of $W_{1, n}$ are adjacent with k vertices of P_{k} and the corresponding vertices of two copies of P_{k} are connected by an edge. The DS of $W_{1, n} \nabla P_{k}$ is

$$
\left\{\alpha_{1}=(k+n)^{2}, \alpha_{2}=(\mathrm{k}+3)^{2(n)}, \beta_{1}=(n+3)^{2(2)}, \beta_{2}=(n+4)^{2(k-2)}\right\} .
$$

The maximum degree of $W_{1, n} \nabla P_{k}$ is α_{1} and $W_{1, n} \nabla P_{k}$ will dominate all the vertices of the graph $W_{1, n} \nabla P_{k}$. That is, one vertex of degree α_{1} from each copies of join $W_{1, n} \vee P_{k}$ dominates all the vertices of the graph $W_{1, n} \nabla P_{k}$. It concludes that two vertices of $\operatorname{deg}\left(\alpha_{1}\right) \in D$ will dominate
all the vertices of $W_{1, n} \nabla P_{k}$ and the set D is a minimum independent strong dominating set. As a result, the independent strong dominating set of $W_{1, n} \nabla P_{k}$ is 2 for $5 \leq n<k$. Similarly, the independent strong domination number of $W_{1, n} \nabla G$ is 2 for $5 \leq n<k$.

Theorem 2.7. The independent strong domination number of the Indu-Bala product of $P_{k} \nabla W_{1, n}$ is given by $i_{s}\left(C_{k} \nabla W_{1, n}\right)=1+\left\lceil\frac{k}{3}\right\rceil$ for $5 \leq k<n$.
Proof: Consider the Indu-Bala product of $P_{k} \nabla W_{1, n}$. Let $\left(r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime} \ldots, r_{k}^{\prime}\right)$ be the vertices of two copies of P_{k} and $\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right),\left(y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime} \ldots, y_{n}^{\prime}\right)$ be the vertices of two copies of $W_{1, n}, \forall k<n$. By the definition of Indu-Bala product, all the vertices of P_{k} are adjacent with $n+1$ vertices of $W_{1, n}$ and the corresponding vertices of two copies of $W_{1, n}$ are connected by an edge. The DS of $P_{k} \nabla W_{1, n}$ is given as follows:

$$
\left\{\alpha_{1}=(n+2)^{2 \cdot 2}, \alpha_{2}=(n+3)^{2(k-2)}, \beta_{1}=(k+2)^{2 n}, \beta_{2}=(k+\mathrm{n}+1)^{2}\right\}
$$

The maximum degree of $P_{k} \nabla W_{1, n}$ is β_{2}, where $\left|\beta_{2}\right|=2$ dominates all the vertices of the graph $P_{k} \nabla W_{1, n}$. If the two vertices of degree β_{2} in the dominating set D are considered, then the set D is not an independent set. So, one vertex of degree β_{2} is included in D and it dominates all the vertices of $P_{k} \vee W_{1, n}$; the minimum independent dominating set of P_{k} is $\left\lceil\frac{k}{3}\right\rceil$. It follows that the independent strong domination number of $P_{k} \nabla W_{1, n}$ is $1+\left\lceil\frac{k}{3}\right\rceil$ for $5 \leq k<n$.

Observe that the independent strong domination number of $C_{k} \nabla W_{1, n}$ is $i_{s}\left(C_{k} \nabla W_{1, n}\right)=$ $1+\left\lceil\frac{k}{3}\right\rceil$ for $5 \leq k<n$.

3 CONCLUSION

In this work, the degree sequence of the Indu-Bala product $G_{1} \nabla G_{2}$ of two connected graphs is given. The independent strong domination number of the Indu-Bala product of some pairs of families of graphs are determined in terms of degree sequence.

References

[1] Bondy, J. A., and Murty, U. S. R., 1976, Graph Theory With Applications, London: Macmillan, 290.
[2] Haynes, T. W., Hedetniemi, S., and Slater, P., 1998, Domination In Graphs: Advanced Topics, Marcel Dekker Inc., New York.
[3] Haynes, T. W., Hedetniemi, S., and Slater, P., 1998, Fundamentals Of Domination In Graphs, CRC press.
[4] Bollobas, B., 1981, Degree sequences of random graphs, Discrete Mathematics, 33 (1), 1-19.
[5] Tyshkevich, R. I., Mel'nikov, O. I. and Kotov, V. M., 1981, Graphs and degree sequences: Canonical decomposition, Cybernetics, 17 (6), 722-727.
[6] Tyshkevich, R. I., Chernyak, A. A. and Chernyak, Z. A., 1987, Graphs and degree sequences, I. Cybernetics, 23 (6), 734-745.
[7] J. Miller, W., Reduced Criteria for Degree Sequences, Discrete Math. 313 (2013), 550-562.
[8] Mishra, V. N., Delen, S. and Cangul, I. N., 2018, Algebraic structure of graph operations in terms of degree sequences, International Journal of Analysis and Applications, 16 (6), 809-821.
[9] Mishra, V. N., Delen, S., Cangul, I. N., 2019, Degree Sequences of Join and Corona Products of Graphs, EJMAA-Electronic Journal of Analysis and Applications, 7 (1), 5-13
[10] Indulal, G., and Balakrishnan R., 2016, Distance spectrum of Indu-Bala product of graphs, AKCE Int. J. Graphs Comb., 13 (3), 230-234.
[11] Graham, R. L. and Pollak, H. O., 1971, On the addressing problem for loop switching, The Bell System Technical Journal, 50 (8), 2495-2519.
[12] Sampathkumar, E., and Latha, L. P., 1996, Strong weak domination and domination balance in a graph, Discrete Mathematics, 161, 235-242.
[13] Domke, G. S., Hattingh, J. H., Markus, L. R., and Ungerer, E., 2002, On parameters related to strong and weak domination in graphs, Discrete Mathematics, 258, 1-11.
[14] Boutrig, R. and Chellali, M., 2012, A note on a relation between the weak and strong domination numbers of a graph, Opuscula Mathematica, 32, 235-238.
[15] Rautenbach, D., 2000, Bounds on the strong domination number, Discrete Mathematics, 215, 201-212.
[16] Berberler, Z. N. and Berberler, M. E., 2020, Independent strong domination in complementary prisms, Electronic Journal of Graph Theory and Applications, 8 (1), 1-8.

Author information

M. Priyadharshini and N. Parvathi, Department of Mathematics, SRMIST, Kattankulathur-603203, Tamilnadu, India.
E-mail: priyadharshini.m@ktr.srmuniv.ac.in, parvathi3403@gmail.com
Ismail Naci Cangul, Department of Mathematics, Bursa Uludag University, Gorukle 16059 Bursa, Turkey.
E-mail: cangul@uludag.edu.tr
Received: 2022-01-17
Accepted: 2022-06-06

