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Abstract This paper deals with some properties of the infinitesimal form of the Kobayashi pseudo-distance. This form is
shown to be a continuous function in the parameters of a differentiable deformation of each Riemann surface.
It is also shown in this paper that, each non elliptic Riemann surface has a non-trivial differentiable deformation.

NOTATIONS
Let a be a complex number and r,R, s strictly positive real numbers with r < s. Set :
∆R(a) = {z ∈ C : |z − a| < R}.
∆R = ∆R(0).
∆ = ∆1 : the open unit disc of C.
∆ = {z ∈ C : |z| 6 1} : the closed unit disc of C.
S1 = {z ∈ C : |z| = 1} : the unit circle of C.
A(r, s) = {z ∈ C : r < |z| < s} : the open annulus of C with centre 0, radius r and s.
For t ∈ ∆, Mt = (M,Jt) where M is a complex manifold and Jt a complex structure on M .

1 Introduction

Let M be a complex manifold and B a differentiable manifold.
Let {Jt : t ∈ B} be a differentiable family of complex structures on the underlying differentiable manifold of M and for each
complex structure Jt, let Mt the corresponding complex manifold. Let FMt

be the Kobayashi-Royden pseudo-metric on TMt.
MARCUS WRIGHT has shown in [8] that FMt

is upper semi-continuons in t. It is also mentioned in this article that the lower
semi-continuity of FMt

in t still remained an open question, even if M is compact. However, when M is a compact hyperbolic
complex manifold, with a result of ROBERT BRODY in [9] and MARCUS WRIGHT quoted above, FMt

is continuous in t, for
all t in the parameters space.
In this document, we show that, if M is a Riemann surface with certain conditions on the family of complex structures, FMt

is
lower semi-continuous in t and thus continuous in t when we take the MARCUS WRIGHT result.
With this result we also show in this document that, each non elliptic Riemann surface has a non-trivial differentiable deformation.

The following theorems are proved :

Theorem A
Let (M,J) be a Riemann surface. Let Ω be a nonempty connected relatively compact open subset of M . Assume that there is a
differentiable family of complex structures Jt (t ∈ ∆) on M such that J0 = J and all the complex structures Jt agree outside Ω.
Then the map F : TM × ∆ −→ R+ given by the Kobayashi-Royden pseudo-metric on TM with respect to the family of complex
structures Jt (t ∈ ∆) is continuous on TM × ∆.

Theorem B
Let (M,J) be a Riemann surface which is not biholomorphic to P1.
Then there exists a differentiable family of complex structures Jt on M parametrized by t ∈ ∆ such that J0 = J and (M,J1) is
not biholomorphic to (M,J).

2 DEFORMATIONS OF COMPLEX STRUCTURES.

This section is founded on the fundamental and fruitful idea of Kunihiko Kodaira and D.C. Spencer which is the basis of their
theory of deformation of complex structures. The following definition is accorded to them :

Definition 2.1. (Deformations of a complex structure).
A deformation of the complex structure on a complex manifold M is another complex structure on the underlying differentiable
manifold of M obtained by using the same local complex coordinate charts on M but with different transition functions.
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Remark 2.2. Let M be a complex manifold. When we put a new complex structure on the underlying differentiable manifold of
M , the complex manifold obtained is a deformation of the complex manifold M .

Presentation (of deformations of a complex manifold).
A complex manifold M of dimension n is obtained by glueing domains
V1, V2, ..., Vj , ... of Cn and by identifying zj ∈ Vj with zk = ϕjk(zj) ∈ Vk via the transition functions {ϕjk} given by an atlas
{(Uj , zj) : j ∈ N∗} of M such that zj(Uj) = Vj and ϕjk = zk ◦ (zj)−1. Hence M = ∪jUj is identified with ∪jVj (a countable
and locally finite cover because M is paracompact).
These transition functions ϕjk : zj 7−→ ϕjk(zj) = zk = (z1

k, ..., z
n
k ) are biholomorphic maps of Vjk = zj(Uj ∩ Uk) ⊂ Vj onto

Vkj = zk(Uj ∩ Uk) ⊂ Vk.

A deformation of M is considered to be a complex manifold obtained by glueing the same domains which cover M via
different transition functions.
In other words, we replace the transition functions ϕjk by the transition functions (ϕjk)t such that

(ϕjk)t(zj) = ϕjk(zj , t) = ϕjk(zj , t1, ..., tm),

of variables (zj , t) where the parameter t = (t1, ..., tm) ∈ B (the parameters space B is a connected differentiable or complex
manifold of dimension m) with the initial conditions ϕjk(zj , 0) = ϕjk(zj).
Then the deformations Mt of M =M0 are obtained by glueing the same domains V1, ..., Vj , ... which cover M and by identifying
zj ∈ Vj with zk = ϕjk(zj , t) ∈ Vk, where in clear ϕjk(zj , t) = (zk, t′) and t′ ∈ B is identified with t in B.

Definition 2.3. Let M be a complex manifold and ∀t ∈ B, Mt the deformations of M .
Let Jt be the complex structure of the complex manifold Mt for t ∈ B.
Consider the notations of the previous presentation.

•A deformation of the complex structure ofM is said to be continuous or there exists a continuous family of complex structures {Jt}
on the underlying differentiable manifold of M , when the transition functions (ϕjk)t are continuous maps with respect to the pa-
rameter t.

•A deformation of the complex structure ofM is said to be differentiable or there exists a differentiable family of complex structures {Jt}
on the underlying differentiable manifold of M , when the transition functions (ϕjk)t are differentiable maps with respect to the
parameter t.

•A deformation of the complex structure ofM is said to be holomorphic or there exists a holomorphic family of complex structures {Jt}
on the underlying differentiable manifold of M , when the transition functions (ϕjk)t are holomorphic maps with respect to the
parameter t.

Remark 2.4. With the definition of the transition functions given in the previous presentation, if the chart maps are homeomor-
phic (resp. diffeomorphic or biholomorphic) with respect to the parameter t, then the transition functions are continuous (resp.
differentiable or holomorphic) maps with respect to the parameter t.

If the complex structure of the complex manifold M is given by an atlas with only one chart, then it is enough for the chart
map to be continuous (resp. differentiable or holomorphic) with respect to the parameter t to have in order each of the above
deformations listed.

Notation and terminology.
• In all cases of above deformation of the complex structure of M , the deformations are noted Mt = (M,Jt) and M = M0 =
(M,J0).
•When the deformation of the complex structure of M is continuous (resp.
differentiable or holomorphic), the deformations Mt are called continuous (resp. differentiable or holomorphic) deformations of
M .

Definition 2.5. (Trivial deformation of complex structures).
Let M be a complex manifold. A deformation of the complex structure of M is said to be trivial when all the deformations Mt

are biholomorphic to M =M0.

We recall these two following theorems to make a remark on theorem B.

Theorem 2.6. (Uniformization theorem).
The set of Riemann surfaces can be divided in three subsets : the elliptic Riemann surfaces, the parabolic Riemann surfaces and
the hyperbolic Riemann surfaces.
• The elliptic Riemann surfaces : These are the Riemann surfaces M isomorphic (i.e. biholomorphic) to the Riemann sphere P1.
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They are characterized by the fact that there is a non-constant holomorphic map P1 −→M .
• The parabolic Riemann surfaces : These are the Riemann surfaces M isomorphic to C or to C∗ or to an elliptic curve C/Λ (Λ
is a lattice of C). They are characterized by the fact that they are not elliptic and that there is a non-constant holomorphic map
C −→M .
• The hyperbolic Riemann surfaces : These are the Riemann surfaces M isomorphic to a quotient H/Γ where Γ is a discrete
subgroup of PSL(2,R) which acts on H in a properly discontinuous manner without fixed point. They are characterized by the
fact that there is no non-constant holomorphic map C −→M .

Proof. See [4], chapter 1. 2

Theorem 2.7. (Calabi-Vesentini).
Let M be a locally symmetric compact hermitian manifold of dimension n ≥ 2 obtained as a quotient M = Bn/Γ of the unit ball
Bn of Cn by a discrete subgroup Γ of the group PU(1, n) of biholomorphic isometries of the ball Bn with the Bergmann metric,
which is properly discontinuous and fixed point free on Bn.
Then the first cohomology group of M with values in the holomorphic tangent bundle TM is nil. What is written

H1(M,TM) = 0.

This implies that there is no deformation of the complex structure of M .

Proof. See [3]. 2

Remark 2.8. (Remark on theorem B).
In theorem B, the elliptic Riemann surfaces are excluded because, according to the uniformization theorem, the elliptic Riemann
surfaces are biholomorphic to the Riemann sphere P1. Due to KODAIRA in [7], page 216, H1(Pn, TPn) = 0,∀n ∈ N∗. This
implies that there is no deformation of the complex structure of Pn,∀n ∈ N∗ (Theorem 2.7).

3 SPECIAL CASES OF THEOREM B.

(i) When (M,J) is a parabolic Riemann surface, the result is given in [6].

(ii) Let’s show that for M = ∆ and J the canonical complex structure of ∆,
theorem B is fulfilled.
Let t ∈ ∆, set ∀z ∈ ∆

φt(z) =
z

1− |z|2
(1− |z|2 + |t|2tan(π

2
|z|2))

By definition, φt(z) is a differentiable map with respect to t.
• For t = 0, φ0 = id∆. Thus φ0 is a diffeomorphism of ∆ onto itself .
• For t 6= 0, let’s show that φt is a diffeomorphism of ∆ onto C.
- Let’s show that φt is surjective.
It is clear that φt is continuous on ∆. So |φt| is continuous on ∆.
We also have |φt(0)| = 0 and lim

|z|→1
|φt(z)| = +∞.

Since |φt| is continuous, then ∀z ∈ ∆, |φt(z)| takes all values in [0,+∞[ and φt(z) takes all possibles arguments. Thus Imφt = C.
Hence φt is surjective.
- Let’s show that φt is injective.
Let z1, z2 ∈ ∆ such that φt(z1) = φt(z2), that is

(∗) z1

1− |z1|2
(1− |z1|2 + |t|2tan(

π

2
|z1|2)) =

z2

1− |z2|2
(1− |z2|2 + |t|2tan(

π

2
|z2|2))

(a) If |z1| = |z2|, then

1
1− |z1|2

(1− |z1|2 + |t|2tan(
π

2
|z1|2)) =

1
1− |z2|2

(1− |z2|2 + |t|2tan(
π

2
|z2|2))

and the equality (∗) gives z1 = z2.
(b) If |z1| 6= |z2| with 0 < |z1| < |z2|, then the equality (∗) gives :

|z1|
1− |z1|2

(1− |z1|2 + |t|2tan(
π

2
|z1|2)) =

|z2|
1− |z2|2

(1− |z2|2 + |t|2tan(
π

2
|z2|2))

|z1|(1− |z2|2)(1− |z1|2 + |t|2tan(π2 |z1|2))
|z2|(1− |z1|2)(1− |z2|2 + |t|2tan(π2 |z2|2))

= 1
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(1− |z2|2)(1− |z1|2 + |t|2tan(π2 |z1|2))
(1− |z1|2)(1− |z2|2 + |t|2tan(π2 |z2|2))

=
|z2|
|z1|

> 1.

Hence
(1− |z2|2)(1− |z1|2 + |t|2tan(

π

2
|z1|2)) > (1− |z1|2)(1− |z2|2 + |t|2tan(

π

2
|z2|2)).

(1− |z2|2)(1− |z1|2) + (1− |z2|2)(|t|2tan(π2 |z1|2)) > (1− |z1|2)(1− |z2|2) + (1− |z1|2)(|t|2tan(π2 |z2|2)).
Thus

(1− |z2|2)(|t|2tan(
π

2
|z1|2)) > (1− |z1|2)(|t|2tan(

π

2
|z2|2)).

That is absurd because |z1| < |z2| and
(1− |z2|2)(|t|2tan(π2 |z1|2)) < (1− |z1|2)(|t|2tan(π2 |z2|2)). So |z1| = |z2|. This gives z1 = z2. And then φt (t ∈ ∆

∗
) is injective.

Therefore φt (t ∈ ∆
∗
) is a bijective map of ∆ onto C.

- Let’s show that φt (t ∈ ∆
∗
) is of class C1 and its derivative is invertible at each point.

Recall : (Inverse function theorem).
Let Ω be an open set of Rn and f : Ω −→ Rn a injective map of class C1.
If MJ(f)(a) the Jacobian matrix of f in a is invertible for each a ∈ Ω then U = f(Ω) is an open subset of Rn and f is a
C1-diffeomorphism of Ω onto U .

Identify ∆ with B2 = {(x, y) ∈ R2 : ‖(x, y)‖ < 1} and also C with R2.
Then φt : B2 −→ R2 such that ∀(x, y) ∈ B2, φt(x, y) = (φ1

t(x, y), φ
2
t(x, y) with

φ1
t(x, y) =

x

1− (x2 + y2)
(1− (x2 + y2) + |t|2tan(π

2
(x2 + y2)))

φ2
t(x, y) =

y

1− (x2 + y2)
(1− (x2 + y2) + |t|2tan(π

2
(x2 + y2)))

Hence φt is a differentiable map. Then the partial derivatives of each component of φt exist.
Let (x, y) ∈ B2, set

MJ(φt)(x, y) =


∂φ1

t

∂x
(x, y)

∂φ1
t

∂y
(x, y)

∂φ2
t

∂x
(x, y)

∂φ2
t

∂y
(x, y)

 =

(
A B

C D

)

the Jacobian matrix of φt in (x, y).
Set r = x2 + y2, we have :

A = ∂φ1
t

∂x (x, y) =

[(1− r + |t|2tanπ2 r) + x2(−2 + π|t|2(1 + tan2 π
2 r))][1− r] + 2x2(1− r + |t|2tanπ2 r)

(1− r)2

A =
1− r + |t|2tanπ2 r

1− r
+
x2(−2 + π|t|2(1 + tan2 π

2 r))

1− r
+

2x2(1− r + |t|2tanπ2 r)
(1− r)2

B =
∂φ1

t

∂y
(x, y) =

xy(−2 + π|t|2(1 + tan2 π
2 r))(1− r) + 2xy(1− r + |t|2tanπ2 r)

(1− r)2

B =
xy(−2 + π|t|2(1 + tan2 π

2 r))

1− r
+

2xy(1− r + |t|2tanπ2 r)
(1− r)2

C =
∂φ2

t

∂x
(x, y) =

xy(−2 + π|t|2(1 + tan2 π
2 r))(1− r) + 2xy(1− r + |t|2tanπ2 r)

(1− r)2

C =
xy(−2 + π|t|2(1 + tan2 π

2 r))

1− r
+

2xy(1− r + |t|2tanπ2 r)
(1− r)2

D = ∂φ2
t

∂y (x, y) =

[(1− r + |t|2tanπ2 r) + y2(−2 + π|t|2(1 + tan2 π
2 r))][1− r] + 2y2(1− r + |t|2tanπ2 r)

(1− r)2

D =
1− r + |t|2tanπ2 r

1− r
+
y2(−2 + π|t|2(1 + tan2 π

2 r))

1− r
+

2y2(1− r + |t|2tanπ2 r)
(1− r)2
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Since ∀(x, y) ∈ B2, r = x2 + y2 < 1, then each partial derivative of φt is continuous. Therefore φt is of class C1 on B2 (and thus
on ∆).
We have

detMJ(φt)(x, y) = A×D −B × C.

Let’s show that detMJ(φt)(x, y) 6= 0. We simply writeMJ(φt)(x, y) =MJ(φt).

detMJ(φt) =
1

(1−r)2 (1− r+ |t|2tanπ2 r)
2 + x2+y2

(1−r)2 (1− r+ |t|2tanπ2 r)(−2+ π|t|2(1+ tan2 π
2 r)) +

2x2+2y2

(1−r)3 (1− r+ |t|2tanπ2 r)
2 +

x2y2

(1−r)2 (−2 + π|t|2(1 + tan2 π
2 r))

2+

2x2y2 + 2x2y2

(1− r)3 (1− r + |t|2tanπ
2
r)(−2 + π|t|2(1 + tan2π

2
r)) +

4x2y2

(1− r)4 (1− r + |t|
2tan

π

2
r)2

− x2y2

(1−r)2 (−2 + π|t|2(1 + tan2 π
2 r))

2 − 2x2y2+2x2y2

(1−r)3 (1− r + |t|2tanπ2 r)(−2 + π|t|2(1 + tan2 π
2 r)) −

4x2y2

(1−r)4 (1− r + |t|2tanπ2 r)
2

detMJ(φt) =
1

(1−r)2 (1− r + |t|2tanπ2 r)
2 + r

(1−r)2 (1− r + |t|2tanπ2 r)(−2 + π|t|2(1 + tan2 π
2 r)) +

2r
(1−r)3 (1− r + |t|2tanπ2 r)

2.

Assume that detMJ(φt) = 0, then

1
(1− r)2 (1− r + |t|

2tan
π

2
r)2 +

r

(1− r)2 (1− r + |t|
2tan

π

2
r)(π|t|2(1 + tan2π

2
r))

+
2r

(1− r)3 (1− r + |t|
2tan

π

2
r)2 =

2r
(1− r)2 (1− r + |t|

2tan
π

2
r)

Set
K =

1
(1− r)2 (1− r + |t|

2tan
π

2
r)2 +

r

(1− r)2 (1− r + |t|
2tan

π

2
r)(π|t|2(1 + tan2π

2
r))

then K > 0. Hence

K +
2r

(1− r)3 ((1− r)
2 + 2(1− r)|t|2tanπ

2
r + (|t|2tanπ

2
r)2) =

2r
(1− r)2 (1− r + |t|

2tan
π

2
r)

K +
2r

1− r
+

4r
(1− r)2 |t|

2tan
π

2
r +

2r
(1− r)3 (|t|

2tan
π

2
r)2 =

2r
1− r

+
2r

(1− r)2 |t|
2tan

π

2
r

Thus
K +

2r
(1− r)2 |t|

2tan
π

2
r +

2r
(1− r)3 (|t|

2tan
π

2
r)2 = 0.

That is absurd because K > 0. Hence detMJ(φt)(x, y) 6= 0, ∀(x, y) ∈ B2.
So the derivative of φt at each point (x, y) ∈ B2 is invertible.
Therefore φt (t ∈ ∆

∗
) is a diffeomorphism of class C1 of ∆ onto C. (According to the inverse function theorem).

Then :
For t = 0. Let J be the canonical complex structure of ∆ ∼= B2. Set J0 = J .
Then (∆, J0) is biholomorphic to (∆, J) with the atlas {(∆, φ0 = Id∆)}.
For t 6= 0. Let J ′ be the canonical complex structure of C ∼= R2.
Set Jt = (φ−1

t )T ◦J ′ ◦ (φt)T . Then φt : (∆, Jt) −→ (C, J ′) is a biholomorphism map with the atlas of M = ∆ given by {(∆, φt)}.

Hence, since φt is differentiable in t, then there exists a differentiable family of complex structures Jt on ∆ parametrized by t ∈ ∆

such that J0 = J (J is the canonical complex structure of ∆).
However (∆, J0) is not biholomorphic to (∆, J1). If so, since (∆, J1) is biholomorphic to (C, J ′), then (∆, J0) would be biholo-
morphic to (C, J ′). According to Liouville’s theorem this is impossible.
Then in this case, the Riemann surface C is a differentiable deformation of the hyperbolic Riemann surface ∆. Thus theorem B is
fulfilled for (M,J) = ∆.

NB : In [6] (section 3), a map φ∗t allows to have similarly to (ii) that the Riemann surface ∆ is a differentiable deformation of
the Riemann surface C. It is also shown in this article that ∆∗ = ∆ \ {0} is a differentiable deformation of the Riemann surface
C∗ = C \ {0}.

(iii) When the map φt is restricted to ∆∗ or to ∆ \ {0; 1
2}, we obtain the same results as in (ii) and thus theorem B is fulfilled for

(M,J) = ∆∗ = ∆ \ {0} and also for (M,J) = ∆ \ {0; 1
2}.

When the map φ∗t in [6] (section 3, point (i)) is restricted to ∆ \ {0; 1
2} then theorem B is fulfilled for (M,J) = P1 \ {0; 1;+∞} ≡

C \ {0; 1}.
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Hence the Riemann surface C∗ = C \ {0} is a differentiable deformation of the hyperbolic Riemann surface ∆∗.
Moreover the hyperbolic Riemann surface P1 \{0; 1;+∞} ≡ C\{0; 1} is a differentiable deformation of the hyperbolic Riemann
surface ∆ \ {0; 1

2} and vice versa.

Finally, the following proposition has been proved :

Proposition 3.1. Let (M,J) be a Riemann surface biholomorphic to ∆, ∆∗, ∆ \ {0, 1
2} or to

P1 \ {0, 1,∞}.
Then there exists a differentiable family of complex structures Jt on M parametrized by t ∈ ∆ such that J0 = J and (M,J1) is
not biholomorphic to (M,J).

According to section 3, we still have to see the hyperbolic Riemann surfaces in their generality so that theorem B is fulfilled for
all Riemann surfaces except P1. For the remaining Riemann surfaces, we will use other concepts to achieve this. Hence the
following orientation :

4 HYPERBOLIC LENGTH

On the unit disc, the Poincaré metric is considered to be the complete Riemannian metric defined by

ds2 =
dzdz

(1− |z|2)2

The Poincaré distance ρ is the distance on ∆ defined by the Poincaré metric.

Definition 4.1. (Kobayashi pseudo-distance).
Let M be a connected complex manifold. The Kobayashi pseudo-distance on M is the map defined as follows : Let p, q ∈ M ,
choose a finite sequence of points p = p0, ..., pn = q in M and the holomorphic maps fi : ∆ −→ M with pi−1, pi ∈ fi(∆), i =
1, ..., n. Then

dM (p, q) = inf
{pi},{fi}

n∑
i=1

ρ(f−1
i (pi−1), f

−1
i (pi)).

The map dM is a pseudo-distance on M . If dM is a distance, M is said to be a hyperbolic manifold. In particular the hyperbolic
Riemann surfaces defined in uniformization theorem 2.6 are hyperbolic manifolds.

Proposition 4.2. [10]
(1) If M and N are connected complex manifolds, then

∀f ∈ Hol(M,N) and ∀p, q ∈M, dN (f(p), f(q)) ≤ dM (p, q).

(2) For the unit disc ∆, the pseudo-distance d∆ coincides with ρ (i.e. d∆ = ρ).

Definition 4.3. (Kobayashi-Royden Pseudo-metric).
Let M be a connected complex manifold.
The (infinitesimal) Kobayashi-Royden pseudo-metric is the real positive values function FM : TM −→ R+ defined by ∀(x, v) =
v ∈ TM

(FM )(v) = inf
f∈Hol(∆,M)

{‖u‖ : u ∈ T∆ et fT (u) = v}

where ‖u‖ = ‖u‖ds2 .

Remark 4.4. - The map FM restricted to each fiber TpM is continuous.
- When Ω ⊂M is open and v = (x, v) ∈ TM with x ∈ Ω, then we have :

(FM )(v) = inf
f∈Hol(∆,Ω)

{‖u‖ : u ∈ T∆ et fT (u) = v}.

Definition 4.5. (Hyperbolic length).
Let M be a hyperbolic Riemann surface and S1 = {z ∈ C : |z| = 1}. Let γ : S1 −→M be a differentiable curve in M .
The hyperbolic length of γ is the real positive number

LM (γ) =

∫ 1

0
(FM )(γ′(t))dt.
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Proposition 4.6. The hyperbolic length of γ above defined is stable by biholomorphism i.e. when G : M −→M ′ is a biholomor-
phic map then LM (γ) = LM ′(G(γ)).

Proof. Let G : M −→ M ′ be a biholomorphic map. Then GT : TM −→ TM ′ is a diffeomorphism and (G−1)T = (GT )−1.
Hence ∀v′ ∈ TM ′,∃! v ∈ TM such that GT (v) = v′.

(FM ′)(v
′) = inf

f∈Hol(∆,M ′)
{‖u‖ : u ∈ T∆ et fT (u) = v′}.

(FM ′)(v
′) = inf

f∈Hol(∆,M ′)
{‖u‖ : u ∈ T∆ et fT (u) = GT (v)}.

(FM ′)(v
′) = inf

f∈Hol(∆,M ′)
{‖u‖ : u ∈ T∆ et (GT )−1 ◦ fT (u) = v}.

(FM ′)(v
′) = inf

(G−1◦f)∈Hol(∆,M)
{‖u‖ : u ∈ T∆ et (G−1 ◦ f)T (u) = v}.

Thus (FM ′)(v′) ≥ inf
g∈Hol(∆,M)

{‖u‖ : u ∈ T∆ et gT (u) = v}. Therefore

(FM ′)(v
′) ≥ (FM )(v).

Similarly (FM )(v) ≥ (FM ′)(v′). Hence (FM )(v) = (FM ′)(v′). 2

Definition 4.7. (Simple curve).
Let M be a complex manifold.
A simple curve on M is an injective and immersive differentiable map γ : S1 →M .

Definition 4.8. (Hyperbolic length spectrum).
Let M be a hyperbolic Riemann surface and ΓM the set of homotopy classes of simple curves in M . For every classe [γ] ∈ ΓM ,
we call stable hyperbolic length of γ classe, the real number denoted by Λ([γ]) which is the infimum of the hyperbolic length of
all simple curves in the homotopy classe of γ.
We call Hyperbolic length spectrum of M the set ΣM of the stable hyperbolic lengths Λ([γ]) for every classe [γ] ∈ ΓM .

When M is a complete hyperbolic manifold, then the Hyperbolic length spectrum ΣM = {Λ([γ]) : [γ] ∈ ΓM} is countable.

NB : According to proposition 4.6, ΣM is an invariant of the complex structure on M (i.e. if (M,J) is biholomorphic to (M,J ′),
then Σ(M,J) = Σ(M,J′)).

Proposition 4.9. Let M be a hyperbolic Riemann surface. Assume that every simple curve in M can be deformed to a curve of
arbitrarily small hyperbolic length (i.e. the spectrum ΣM is trivial (ΣM = {0})).
Then M is biholomorphic to one of the following Riemann surface :
( i ) the unit disc ∆ ;
( ii ) the punctured unit disc ∆∗ ;
( iii ) P1 \ {0, 1,∞}.

Proof. See [5], page 8. 2

Lemma 4.10. Let r, α ∈ R∗+ such that Logr > α > 2π. Then there is a holomorphic map from the unit disc ∆ to the annulus
A( 1

r , r) = {z ∈ C : 1
r < |z| < r} mapping the real interval [0, 2π

α ] onto S1 = {z ∈ C : |z| = 1}.

Proof. Take the map z 7−→ exp(iαz ) and note that |z| < 1 induces |Im(z)| < 1. Since Logr > α, then 1
r < |exp(iαz )| < r. 2

Corollary 4.11. For r > 1, let µ(r) denote the hyperbolic length of S1 as a curve in the Riemann surface A( 1
r , r). Then

lim
r→+∞

µ(r) = 0.

Proof. According to lemma 4.10 µ(r) is bounded from above by the hyperbolic length of [0, 2π
α ], for Logr > α > 2π. When

α→ +∞ our assertion is fulfilled. 2

Lemma 4.12. Let γ be a simple curve in the hyperbolic Riemann surface (M,J). Let ε > 0 and c ∈ ∆ with |c| = 1. Then there
exists a differentiable family of complex structures Jt (t ∈ ∆) such that :
(1) The hyperbolic length of γ with respect to the complex structure Jc is less than ε ;
(2) J0 equals the given complex structure J ;
(3) There is a nonempty connected relatively compact subset Ω of M such that (Jt)x = (Js)x for all x /∈ Ω and for all s, t ∈ ∆,
i.e. all the complex structures Jt agree outside Ω.
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Proof. We choose real constants r and r′ such that r > r′ > 1. Then there is an open neighbourhood V of γ diffeomorphic to
the annulus A( 1

r , r) taking γ to the unit circle S1 = {z ∈ C : |z| = 1}. Let ψ be this diffeomorphism. Since A( 1
r′ , r

′) ⊂ A( 1
r , r),

define W = ψ−1(A( 1
r′ , r

′)). Choose a differentable real function θ : M → [0, 1] such that :
(1) θ|W ≡ 1,
(2) θ is the constant map zero in some open neighbourhood of M \ V .
Next we choose a hermitian metric h on M and a hermitian metric τ on A( 1

r , r). We define Ht = (1− |t|2θ)h+ |t|2θψ∗τ (where
(ψ∗τ)(x) = τ(ψ(x)),∀x ∈ V ). Ht is a Riemannian metric on M which determines a complex structure Jt on M with J0 being
the original complex structure on M . By construction (W,Jc) is biholomorphic to A( 1

r′ , r
′). Since the choice of the constants

r > r′ > 1 was arbitrary, the value of r′ may be as large as desired. Then the hyperbolic length of γ with respect to (W,Jc)
becomes as small as desired (Corollary 4.11). Since the injection of (W,Jc) into (M,Jc) is distance-decreasing, because it is a
holomorphic map (Proposition 4.2), then we obtain our required assertion if we set Ω = V . 2

5 CONTINUITY OF KOBAYASHI-ROYDEN PSEUDO-METRIC.

Definition 5.1. (Equicontinuity).
Let X be a topological space and Y a metric space with distance function d.
Let C(X,Y ) be the set of continuous functions of X into Y with the compact-open topology. Let F ⊂ C(X,Y ) and x ∈ X .
The family F is said to be equicontinuous at x if for every ε > 0, there exists a neighbourhood U of x such that d(f(x), f(x′)) < ε,
∀x′ ∈ U and ∀f ∈ F .

Theorem 5.2. (Arzela-Ascoli theorem).
Let X be a locally compact, separable space (i.e. X contains a countable, dense subset) and Y a locally compact metric space.
Then a family F ⊂ C(X,Y ) is relatively compact in C(X,Y ) if and only if :
(a) F is equicontinuous at every point x ∈ X ;
(b) for every x ∈ X , the set {f(x) : f ∈ F} is relatively compact in Y .

Proof. See [10], page 8. 2

Remark on Arzela-Ascoli theorem.
If a family F ⊂ C(X,Y ) is relatively compact in C(X,Y ) with the compact-open topology, then, according to [10] (page 8),
every sequence of maps fn ∈ F contains a subsequence which converges to some map f ∈ C(X,Y ) uniformly on every compact
subset of X .

Theorem A
Let (M,J) be a Riemann surface. Let Ω be a nonempty connected relatively compact open subset of M . Assume that there is a
differentiable family of complex structures Jt (t ∈ ∆) on M such that J0 = J and all the complex structures Jt agree outside Ω.
Then the map F : TM × ∆ −→ R+ given by the Kobayashi-Royden pseudo-metric on TM with respect to the family of complex
structures Jt (t ∈ ∆) is continuous on TM × ∆.

We note that ∀((x, v), t) = (v, t) ∈ TM × ∆,

F (v, t) = F(M,Jt)(v) = FMt
(v) = inf

f∈Hol(∆,Mt)
{‖u‖ : u ∈ T∆ et fT (u) = v}.

Remark on theorem A.
It is important that we deform the complex structure only inside some fixed nonempty relatively compact subset of M . Without
this assumption the statement is not true. For example, we have seen that there is a family of complex structures Jt (t ∈ ∆) on ∆

such that (M,J0) is biholomorphic to the unit disc while (M,Jt) for every t 6= 0 is biholomorphic to C. Evidently for this family
F is not continuous, since it vanishes for t 6= 0 and is non-zero for t = 0.

For theorem A’s proof, we shall use the two following lemmas :

In this section, for a complex manifold M , we assume the existence of a hermitian metric h on M and denote ‖ ‖h the norm
defined by the metric h.
For all map of class C∞, f : ∆ −→M , we define ‖f ′(z0)‖h := ‖dz0f(

∂
∂z |0)‖h.

Lemma 5.3. Let M be a complex manifold of dimension 1 and Ω ⊂ M a relatively compact open subset of M . Let h be a
hermitian metric on M .
If M is hyperbolic then supf∈Hol(∆,Ω) ‖f ′(0)‖h < +∞.

Proof. Let M be a hyperbolic complex manifold of dimension 1.
Assume that supf∈Hol(∆,Ω) ‖f ′(0)‖h = +∞.
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Then there exists a sequence (fn)n∈N of maps in Hol(∆,Ω) such that ‖f ′n(0)‖h is monotonic increasing and converges to +∞.
Since Ω is relatively compact in M , then Hol(∆,Ω) is relatively compact in Hol(∆,M) with the compact-open topology. Hence
one can assume that fn −→ f ∈ Hol(∆,M). Therefore fn(0) −→ f(0) = x ∈ M . Choose a chart ϕ : U −→ Cn where U is
an open neighbourhood of x with ϕ(U) ⊃ B(0, s) and ϕ(x) = 0. Let r < 1. According to Cauchy’s integral formula and to the
analycity of holomorphic function, we have

(ϕ ◦ fn)′(0) =
1

2πi

∫
Cr

(ϕ ◦ fn)(w)
(w − 0)2 dw

where Cr = {w ∈ C : |w| = r} = {reit ∈ C : −π ≤ t ≤ π}.
Then, for ‖.‖euc the Euclidian norm on C (i.e. ∀z ∈ C, ‖z‖euc = |z|) and for n such that (ϕ ◦ fn)(∆r) ⊂ B(0, s), we obtain :

‖(ϕ ◦ fn)′(0)‖euc ≤ |
1

2πi
|
∫
Cr

|(ϕ ◦ fn)(w)
w2 dw|

‖(ϕ ◦ fn)′(0)‖euc ≤
1

2π
s

r2

∫
Cr

|dw| = 1
2π

s

r2

∫ π

−π
|d(reit)|

‖(ϕ ◦ fn)′(0)‖euc ≤
1

2π
s

r2

∫ π

−π
|rieitdt| = 1

2π
s

r

∫ π

−π
|eit|dt

‖(ϕ ◦ fn)′(0)‖euc ≤
1

2π
s

r

∫ π

−π
dt =

1
2π

s

r
(π + π) =

s

r

‖(ϕ ◦ fn)′(0)‖euc ≤
s

r
.

Hence ‖(ϕ ◦ fn)′(0)‖euc ≤ s
r for every n such that ϕ ◦ fn(∆r) ⊂ B(0, s). This implies ‖ϕ′(x)f ′n(0)‖euc ≤ s

r and by compacity
of ϕ−1(B(0, s) there exists A > 0 such that ‖f ′n(0)‖h ≤ As

r . (Moreover the two norms ‖.‖h and ‖.‖ϕ∗euc are equivalent).
When ‖f ′n(0)‖h −→ +∞, then r = r(n) → 0. Thus ∀m ∈ N∗, there exists n sufficiently large such that ϕ ◦ fn(∆ 1

m
) is not con-

tained inB(0, s) and ϕ◦fn(∆ 1
m
)∩∂B(0, s) 6= ∅. Therefore there is a sequence (xm) where xm ∈ fn(∆ 1

m
) and ϕ(xm) ∈ ∂B(0, s).

That induces dM (fn(0), xm) ≤ ρ(0, qm)→ 0 when m→ +∞ (qm ∈ ∆ 1
m

). Since dM is continuous and ϕ−1(∂B(0, s) is compact,
then xm → y ∈ ϕ−1(∂B(0, s).
Hence dM (x, y) = 0. So M is not hyperbolic (absurd).
Therefore supf∈Hol(∆,Ω) ‖f ′(0)‖h < +∞. 2

Lemma 5.4. (Parametrization of Brody).
Let M be a complex manifold with Hermitian metric h. Let f ∈ Hol(∆r,M), (r ∈ R∗+) with ‖f ′(0)‖h ≥ c > 0.

Then there exists
∼
f ∈ Hol(∆r,M) such that

sup
z∈∆r

‖
∼
f
′
(z)‖h(

r2 − |z|2

r2 ) = ‖
∼
f
′
(0)‖h = c

Proof. See [9], page 3. 2

Remark 5.5. Let M be a complex manifold with Hermitian metric h and c ∈ R∗+.
Let Ω1 and Ω2 be two nonempty relatively compact subsets of M such that Ω1 ⊂ Ω2.

Due to lemma 5.4, for every map f ∈ Hol(∆,Ω1) with ‖f ′(0)‖h ≥ c, there exists
∼
f ∈ Hol(∆,Ω1) such that sup

z∈∆

‖
∼
f
′
(z)‖h < +∞,

because
sup
z∈∆

‖
∼
f
′
(z)‖h(1− |z|2) = ‖

∼
f
′
(0)‖h = c < +∞ and ∀z ∈ ∆, 0 < (1− |z|2) ≤ 1.

Hence every family F of maps of class C∞ of ∆ into Ω1 which fulfills lemma 5.4’s conditions, for fixed number c, is relatively
compact in the compact-open topology of C(∆,Ω2). (According to Arzela-Ascoli theorem).
Indeed :
- The family F is equicontinuous because for every compact subset K ⊂ ∆, there is a uniform bound on ‖

∼
f
′
(z)‖h for all

∼
f ∈ F

and all z ∈ K ;
- For all x ∈ ∆, the set {

∼
f (x) :

∼
f ∈ F} is relatively compact in Ω2, because {

∼
f (x) :

∼
f ∈ F} ⊂ Ω1 and Ω1 is relatively compact

in Ω2.
Then all sequence of maps in F contains a subsequence which converges in C(∆,Ω2) uniformly on every compact subset of ∆

for the compact-open topology of C(∆,Ω2).
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Proof of Theorem A.
We will need the result only for the case where M is hyperbolic. However, the statement holds if M is not hyperbolic. Indeed M
is not hyperbolic if and only if one of the following conditions are fulfilled :
(1) M is compact and b1(M) 6 2.

(2) There exists a complex analytic compactification M ↪→
∼
M such that

∼
M is simply-connected and

∼
M \M contains at most two

points.
In this formulation it is clear that the property of not being hyperbolic can not be changed by modifying the complex structure
only inside some fixed nonempty relatively compact subset of M . Then F(M,Jt) vanish for all t if F(M,J0) vanishes (due to uni-
formization theorem). In this case the Kobayashi-Royden pseudo-metric depends continuously on t, because it is constantly zero.

So, we will proove theorem A for (M,J0) a hyperbolic Riemann surface.
Let Ω1, Ω2 be nonempty connected relatively compact open subsets of M such that Ω ⊂ Ω1 and Ω1 ⊂ Ω2.
• Let (x, v) ∈ TM with x /∈ Ω and t ∈ ∆.
Since all the complex structures are equal on M \ Ω then ∀(x, v) ∈ TM with x /∈ Ω and ∀t ∈ ∆, F (v, t) is continuous in (v, t),
because F (v, t) = F(M,J)(v) and the result is given by [10], proposition 3.5.38, page 98.
• Let (x, v) ∈ TM with x ∈ Ω1 and t ∈ ∆.
Let

Dj(t) = sup
f∈Hol(∆,Ωj

t )

‖f ′(0)‖h , j = 1, 2.

According to lemma 5.3, Dj(t) < +∞,∀t ∈ ∆ and ∀j = 1, 2.
Let’s show that for (x, v) ∈ TM with x ∈ Ω1 and ∀t ∈ ∆, F (v, t) = ‖v‖h

D2(t)
.

In this case F (v, t) can be defined by

F (v, t) = inf
f∈Hol(∆,Ω2

t)
{‖u‖ : u ∈ T0∆, f(0) = x et fT|T0∆

(u) = v}.

Let u ∈ T0∆, t ∈ ∆, f ∈ Hol(∆,Ω2
t) with fT (u) = v and ‖.‖ the Poincaré norm on ∆. We have :

‖u‖ = ‖(‖u‖( ∂
∂z |0

))‖

and

fT|T0∆
(‖u‖( ∂

∂z |0
)) = ‖u‖fT|T0∆

(
∂

∂z |0
)

because fT|T0∆
= d0f is linear. Then

‖d0f(‖u‖(
∂

∂z |0
))‖h = ‖‖u‖d0f(

∂

∂z |0
)‖h = ‖v‖h.

Thus

‖u‖‖d0f(
∂

∂z |0
)‖h = ‖v‖h with ‖d0f(

∂

∂z |0
)‖h = ‖f ′(0)‖h > 0.

So

‖u‖ = ‖v‖h
‖f ′(0)‖h

.

Hence

F (v, t) = inf
f∈Hol(∆,Ω2

t)
{‖u‖ : u ∈ T0∆, f(0) = x et fT|T0∆

(u) = v} = ‖v‖h
sup

f∈Hol(∆,Ω2
t)

‖f ′(0)‖h
.

Therefore F (v, t) = ‖v‖h
D2(t)

.

Then F (v, t) = F1(v)× F2(t) with F1(v) = ‖v‖h and F2(t) =
1

D2(t)
.

Thus F = (F1 ◦ pr1)× (F2 ◦ pr2) where pri, i = 1, 2 are the canonical projections.

The map F1 and the canonical projections are continuous.

Let’s show that D2 is continuous.
According to Marcus Wright in [8], D2 is upper semi-continuous.
Let’s show the lower semi-continuity of D2.
Let c ∈ R∗+. Assume given a sequence ti → t0 with D1(ti) ≥ c > 0. This also give D2(ti) ≥ c > 0.
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Hence by definition there is a sequence of maps fi ∈ Hol(∆,Ω1
ti) with ‖f ′i(0)‖h ≥ c.

Applying lemma 5.4, we obtain a sequence of maps
∼
fi ∈ Hol(∆,Ω1

ti) such that
∼
fi fulfills

sup
z∈∆

‖
∼
fi
′
(z)‖h(1− |z|2) = ‖

∼
fi
′
(0)‖h = c.

According to remark 5.5, the sequence (
∼
fi) contains a subsequence which uniformly converges on every compact set ; the limit

map
∼
f0 ∈ Hol(∆,Ω2

t0
) with ‖

∼
f ′0(0)‖h = c and thus D2(t0) ≥ c.

Since c was arbitrary, then D2 is lower semi-continuous on ∆.
Thus D2 is continuous. Furthermore D2(t) > 0, ∀t ∈ ∆. Therefore F2 is continuous.

Finally F = (F1 ◦ pr1)× (F2 ◦ pr2) is continuous.
Which achieves the proof of theorem A. 2

Proposition 5.6. Let (M,J) be a hyperbolic Riemann surface and Jt (t ∈ ∆) a differentiable family of complex structures on M
which agree outside a nonempty relatively compact open subset Ω of M such that J = J0. Let γ be a simple curve in M and for
each t define λ(t) as the infimum of the hyperbolic length (with respect to the complex structure Jt) of simple curves homotopic
to γ.
Then the function t 7−→ λ(t) is continuous.

Proof. We have λ : ∆ −→ R and ∀t ∈ ∆, λ(t) = inf
ξ∈[γ]

Lt(ξ) where ξ is a simple curve homotopic to γ and Lt(ξ) = L(M,Jt)(ξ) =∫ 1
0 (F(M,Jt))(ξ

′(s))ds.
According to theorem A, F is continuous on TM × ∆. Then the map (s, t) ∈ [0, 1]× ∆ 7→ (F(M,Jt))ξ(s)(ξ

′(s)), where ξ ∈ [γ], is
continuous. Thus the map t ∈ ∆ 7→

∫ 1
0 (F(M,Jt))ξ(s)(ξ

′(s))ds is continuous on ∆.
So ∀t0 ∈ ∆ and ∀ε > 0,∃δ > 0 such that ∀t ∈ ∆δ(t0),

∣∣ ∫ 1

0
(F(M,Jt))ξ(s)(ξ

′(s))ds−
∫ 1

0
(F(M,Jt0 )

)ξ(s)(ξ
′(s))ds

∣∣ ≤ ε.
Then ∫ 1

0
(F(M,Jt0 )

)ξ(s)(ξ
′(s))ds− ε ≤

∫ 1

0
(F(M,Jt))ξ(s)(ξ

′(s))ds ≤
∫ 1

0
(F(M,Jt0 )

)ξ(s)(ξ
′(s))ds+ ε.

Hence ∫ 1

0
(F(M,Jt))ξ(s)(ξ

′(s))ds ≤
∫ 1

0
(F(M,Jt0 )

)ξ(s)(ξ
′(s))ds+ ε

Lt(ξ) ≤ Lt0(ξ) + ε.

Therefore
inf
ξ∈[γ]

Lt(ξ) ≤ inf
ξ∈[γ]

Lt0(ξ) + ε

λ(t) ≤ λ(t0) + ε, ∀t ∈ ∆δ(t0).

Thus λ is upper semi-continuous.
Similary we show that λ is lower semi-continuous always using the continuity of F , but with the following inequality∫ 1

0 (F(M,Jt0 )
)ξ(s)(ξ

′(s))ds− ε ≤
∫ 1

0 (F(M,Jt))ξ(s)(ξ
′(s))ds. 2

6 PROOF OF THEOREM B.

Proof. Let M be a non elliptic Riemann surface. We distinguish the following cases :
(1) M is parabolic.
(2) M is hyperbolic, but the hyperbolic length spectrum is trivial.
(3) M is hyperbolic and the hyperbolic length spectrum is not trivial.

Let’s show that theorem B is fulfilled for case (1).
Since M is parabolic then the result is given in [6] and recalled in section 3 at (i).

Let’s show that theorem B is fulfilled for case (2).
For this case, according to proposition 4.9, M is biholomorphic to ∆ or to ∆∗ or to P1 \ {0, 1,∞} and the result is given by
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proposition 3.1.

Let’s show that theorem B is fulfilled for case (3).
In this case M = (M,J) is hyperbolic and there exists a simple curve γ and a constant a > 0 such that every simple curve homo-
topic to γ has a hyperbolic length at least a with respect to the complex structure J of M . Fix such a curve γ and let λγ(0) = a
its stable hyperbolic length, i.e. the infimum of the hyperbolic length of all simple curves homotopic to γ.
Lemma 4.12 implies that there is a nonempty relatively compact open subset Ω ⊂ M and a differentiable family of complex
structures Jt (t ∈ ∆) on M such that all these complex structures agree outside Ω, J = J0 and such that the hyperbolic length
L(M,Jc)(γ) of γ with respect to the complex structure Jc fulfills the inequality L(M,Jc)(γ) < a (c ∈ ∆, |c| = 1). For each
t ∈ ∆ we define λ(t) as the infimum of the hyperbolic length (with respect to the complex structure Jt) of simple curves ho-
motopic to γ. Now the function t 7−→ λ(t) is continuous due to proposition 5.6 and furthermore non-constant by construction
(λ(0) = a > λ(c)).
With the definition of the hyperbolic lenght spectrum given in section 4, Σt = Σ(M,Jt) is a countable subset of R+ for every t ∈ ∆.
Since the function λ is continuous and non-constant, then there exists a parameter s ∈ ∆ such that λ(s) /∈ Σ0. Hence Σs 6= Σ0 and
therefore (M,Js) is not biholomorphic to (M,J0).
In particular Σc 6= Σ0 and (M,Jc) is not biholomorphic to (M,J0). 2
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