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Abstract. This work takes up the study of the existence and uniqueness of solutions to a class
of impulsive fractional boundary value problems of order ¢ € (1,2). The results are obtained by
using multiple base points and by transforming the boundary value problem into an equivalent
integral equation in a Banach space. Various properties of fractional calculus and a number
of familiar fixed point theorems are used to obtain the results. A nonlinear operator is defined
in a Banach space whose fixed point gives the solution. The obtained results can be seen as
more general since Erdélyi-Kober integrals are known to be more general operators in fractional
calculus and they reduce to Riemann-Liouville integrals with a power weight. An example is
also provided which illustrates our abstract result.

1 Introduction

In the recent past, fractional differential equations have received reasonable importance because
of their growing number of applications in many areas of science and engineering. The main
advantage that fractional differential equations holds over their integer-order counterpart is that
they provides an excellent tool in describing various processes with regard to their memory and
hereditary properties. For detailed discussion of the theory and applications in this field, the
readers are referred to the descriptions in the books [1, 2, 3] and in the articles [4, 5, 6].

Differential equations of an impulsive nature arise in real world problems while describing
the dynamics of processes that exhibit sudden or discontinuous jumps. Such processes are natu-
rally available in various areas of biology, physics, economics, engineering, etc. [7, 8].

The idea and understanding of the solution of an impulsive fractional differential equation
have been the subject of discussion in many works, and for more details, the readers are referred
to the works in [9, 10, 11, 12, 13, 14, 15]. An impulsive fractional differential equation is mainly
of two types:

(i) the fractional derivative with a unique starting point: D? = D{,
(ii) the fractional derivative involving multiple starting points, i.e., D¢ = D{.

In [16], Wang considered the following problem:

CDIv(t) = F(t,v(t)), te€[0,1]\ {wi,ws,...,w}, qe(1,2],
Av(w,) = E.(v(wy)), AV (w.) = E.(v(w))), £=1,2,...,1,

av(0) — b’ (0) = vy, cv(1l) + dv'(1) = vy. |

In [17], Ahmad and Sivasundaram examined the existence of a solution of the impulsive problem
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governed by a fractional differential equation in Caputo derivative of the form

“Dv(t) = F(t,v(t), te[0,1]\ {w,w,...,w}, qe(1,2],
Av(w) = Eo(v(wy)), AV (we) = Ex(v(wy)), k=1,2,...,1,

av(O)erv’(O):/O a1 (v(s))ds, av(1)+bv’(l):/0 o (0(s))ds.

It may be noted that integral boundary conditions have found their place in several applica-
tions, mainly in computational fluid dynamics (CFD) and other fields of applied mathematics
such as population dynamics, chemical engineering, etc. Hemodynamic conditions can be com-
pletely characterised by CFD techniques under appropriate boundary conditions. But the major-
ity of the CFD-based hemodynamic investigations constitute in vitro conditions, which cannot
fully represent the actual patient hemodynamic conditions [18, 20]. The difficulties caused are,
in fact, related to the prescribed boundary conditions because it is not always justifiable to as-
sume the geometry of the blood vessel to be circular. Therefore, it is advisable to utilise integral
boundary conditions to model blood flow problems more accurately.

The following presents a practical example which can be converted into a problem with
integral boundary condition [19]:

—"(t) = F(t)G(t,v(t)), t€ (0,1),
v(0) =0, w'(1)=v(§), £€(0,1],

where 1 > 0 is a constant. This represents the mathematical model of a thermostat. This problem
can be solved to obtain the stationary solutions of the one-dimensional heat equation in a metallic
bar with a controller placed at 1, which can add or remove heat as per the temperature detected by
a sensor at £. This problem can be generalised by considering the heat equation with a nonlinear
gradient source term that varies in time. In this case, the heated bar, with a controller at 1, adds
or removes heat depending on the temperature detected by sensors located at any point of the
bar depending on how the function H is defined in the following condition. Subsequently, this
problem can be expressed in the following form which contains an integral boundary condition:

' (t) = G(t,v(t),v' (1)),

1
0(0) =0, V(1) = / o(s)dH (s).
0

An important fractional integral operator, known as the Erdélyi-Kober fractional integral op-
erator, was defined and introduced by Erdélyi and Kober in 1940 [21]. Its usual application is
found in the theory of radiative transfer, the kinetic theory of gases, etc. For some recent devel-
opments in this direction, we refer the readers to the works carried out in [24, 23, 22]. To the best
of the knowledge of the current authors, the existence of solutions to boundary value problems
governed by impulsive fractional differential equations with an Erdélyi-Kober integral operator
has not been studied to date. To fill this gap, the following integral boundary value problem is
taken up:

“Div(t) = F(t,o(t)), tel =1I\{w,w,...,w}, qe(1,2),
Av(wy) = Lo (v(wy)), k=1,2,...,1, (1.1)
AV (wy) = Te(v(wy)), k=1,2,...,1,
with integral conditions on the boundary given by
Y
0(0) — v (0) = / h(o(s))ds, v(X) = mIPu(€), €€ (0,uy), (12)
0
where I = [0, Y], Y > 0. Here, © D{ represents the Caputo fractional derivative at the base points

t=we,k=12,... 1 ie, DI . jo(t) = DL v(t)forall t € (w,, we1]. The function
F: 1 xR — Ris continuous, Z, J, € C(R,R), x = 1,2,...,1, the function h: R — R is
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given to be continuous, ;7 > 0, uy > 0 are given constants. Further, Iﬁ“ﬁ is the Erdélyi-Kober
fractional integral of order 5 > 0 where v > 0, a € R.

With this introduction section presenting relevant works, the problem statement, and motiva-
tion, the other sections in the paper are arranged as follows: Section 2 states some definitions,
lemmas, and theorems required for establishing the results, Section 3 elaborates the results along
with all hypotheses and proofs, an example is also provided. Section 4 presents expected results
if any general sub-interval is considered, and Section 5 summarises the present study.

2 Preliminaries

Let0 =wy < w; <...<w; <wpgy =Y. Then PC(I,R) ={v:I— Rlv € C((wy,wes1],R), k =
0,1,...,0 and v(w} ), v(w]) exist, s = 1,...,1, with v(w;) = v(w,)} is a Banach space with
respect to the norm |[v||.. = sup,c;|v(t)|. By Denoting PC'(I,R) = {v € PC(I,R)|v €
PC(I1,R)} and setting ||v|| pct = ||v]| pe + |0]| por» We have (PC'(I,R),
[l ... ) as a Banach space.

Let I, denote the Riemann-Liouville integral with base point a.

Definition 2.1. [22] The Erdélyi-Kober fractional integral of order of 5 > O with v > 0, & € R
of a continuous function F : (0,00) — R is defined as follows:

—y(atB) pt gvaty—1
Io"ﬁF(t) _ ~t / s F(s)
7 @) Jo @57

provided that the right-hand side is pointwise defined on R, .

ds,

Lemma 2.2. [23] Let 3 > 0, v > 0and o, ¢ € R. Then
th(a+ £ 4+1) .
Fla+2+p5+1)

a,Brqg
I’v t? =

Definition 2.3. A function v € PC'(I,R) with its Caputo derivative of order ¢ existing on I is
said to be a solution of (1.1) if it satisfies the problem (1.1).

Lemma 2.4. [16] Letting q > 0, the differential equation © DYF(t) = 0 has the solution
F(t)=ap+ait+...+ap_1t™""
where a; € R, fori =0,1,...,m — 1 with m denoting the least integer > q.
Lemma 2.5. [16] Let ¢ > 0. Then
I'°DIF(t) = F(t) +ao+art + ...+ ap_1t™"
for some a; € R, fori=0,1,...,m— 1.

Theorem 2.6. [16] Let S be an open bounded subset of a Banach space X with the zero element
of Xin S. Also, let ¥: S — X be a compact and continuous mapping such that |Ws|| < ||s|| for
all s € 9S. Then ¥ has a fixed point in S.

Theorem 2.7. (Schaefer’s fixed point theorem)[12] Let ¥ : X — X be a completely continuous
map on a Banach space X. If E(¥) = {z € X : x = APz for some A € [0,1]} C X is
bounded, then ¥ has fixed points.

Theorem 2.8. (Leray-Schauder’s nonlinear alternative)[23] Let S be a closed convex subset of
a Banach space X, S| an open subset of S and the zero element of X belongs to S|. Suppose that
W: S| — S is a completely continuous map. Then ¥ satisfies one of the following properties:
(i) ¥(s) = s for s € Sy, or

(ii) there exist s € 0S) (represents boundary of S in S) and a constant A satisfying 0 < A < 1,
with s = AWs.

Throughout this work, for each r > 0, B, represents the open ball of radius r in PC(I,R),
that is, B, = {v € PC(I,R): ||[v]|po <T}.



136 Bandita Roy and Swaroop Nandan Bora

3 Existence Results

To investigate the existence of solution of (1.1) with boundary conditions given by (1.2), we

require the following result:

Lemma 3.1. For f € C([0,Y],R), the boundary value problem

CDiv(t)
Av(wy) = Lo (v(wy)), k=1,2,...,1,
AV (wy) = Te(w(wy)), k=1,2,...,1,

f(t)? tEI/:I\{’U)],’U)z,...,wl}, qc (1,2),

v(0) — p1v'(0) :/0 h(v(s))ds, v(Y)= uzl‘w"’ﬂv(g), &€ (0,w),

is equivalent to the following integral equation

F(lq Jot— )71 f(s )ds+M“+M“t t € [0,w],

+Z T(q — 1)/ (w82 (s)ds

v(t) =
+ZF¢4/]wJ@Mﬂ>
—|—sz(’0 +Zt_wnu7j +Z w]*7j
i=1 Jj=1
+MP + M3t te (we,wer1], ,'4;—1,2,...,17
where
1
M{J:—;[—muzl Pra. Tz/ h(v ds—i—u]ZI
J=1
'Hlle wy)Jj (v ‘Htlz —w;)Jj(v(w;)
7j=1
P2 Loy
+W (wj — )17 f(s) dS—HﬂZ ll)/ (wj — )12 f(s)ds
j=17Wji-1 Wj—1
s )
S ) RO
=1 Wi —1
My =—= [ Io‘ﬂl+f()(§)+T1/O ds+> T

l
+ 3 (C —w)Jj(w(wy)) + D (wr —w;) T (v(w;)

=1 j=1

+Zr / wi = )" ) d”Z qu —wll) /wj (w; = 5)772f(s)ds

Wj—1

rq_1 A} wy — )72 (s)ds].

ﬁfﬁ (t—s)7""f(5) ds+zr /“’7 (w; — )77 f(s)ds

v(w;

w;'))

i)

3.1)

(3.2)
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with
1
pal (o + 1) ot (a+ 2 +1)
=T+ #0, Ty=1- 122270 oy .
w=Tm+T#0, T Cla+p+1) 2 o+ +5+1)
Proof. Let v be a solution of (3.1). Then for ¢ € [0, ¢;], we have
1 /t .
v(t) = = t—s)9 s)ds — c; — oot 3.3)
(t) F(Q)0< )1 f(s) 1
where ¢y, ¢, € R are constants, and
1 t
v’t:7/ t— )21 (s)ds — c,. (3.4)

Then, using the impulse conditions Av(w,,) = Z.(v(w})) and Av'(wy) = Tk (v(wy)), for K =
1,2,...,land t € (ws, w,+1], we have

e Jo, (=971 1(5) ds+Zr< e s

wj—

+ZF = 1 /w] l(t—s)q_zf(s)ds
v(t) = . (3.5)

+qu71 /'l(t—s)q—2f(s)ds+§zj(v(w]))

+Z(t —we) T (0(w;)) + Y (we —w)Tj(v(wy)) — 1 —eat.

J=1 j=1
Using the condition v(0) — uyv’(0) = fg h(v(s))ds, (3.3) and (3.4) imply —c| = fo ))ds—
p1cz. Therefore, for ¢ € [0, wy],

1 el !
o(t) = F(q)/o (t—s) f(s)ds—i—/o h(o(s))ds — ex(put +£).

Forx =1,2,...,land t € (wy, wx+1], (3.5) gives

ot) = F(lq) / K(t— s)q‘lf(S)der;r(lq) [ s

+qu_] /w (t — )92 f(s) ds—i—ZI )

T
+Z )T (0(w)) + S (we — w) T (w(w ) + / h(v(s))ds

- Cz(m +t).
Next, we use the boundary condition v(Y) = IS v(€), where £ € (0,w;). For this, we have

I+1 l

ZF o=+ g [ -
T
rq—1/ $)972f(s) ds+ZI +/0 h(v(s))ds
-1
+ZY wp) T (v(w +Z wy — w;) T (v(w))) — o + 2,

Jj=1 Jj=1



138 Bandita Roy and Swaroop Nandan Bora

and for ¢ € (0, w,),

T
a,f a,f _ Mzr(a + 1)
I u(E) = I I S0 + [ [ ho(s))ds — eom | FEEES
pél(a+1 +1)
— e ’
"Tla+1+p+1)
which gives ¢; = —M/} and ¢; = —M;. Upon substitution of the values of ¢, ¢ in (3.3) and

(3.5) gives (3.2).

For the converse part, it can be easily shown that the integral equation given by (3.2) satisfies
the first three equations of (3.1).

Next, we have v(0) = M} and v'(0) = M}, therefore v(0) — p1v'(0) = MY — My =

onhUS ds

It remains to verify that v(Y) = p2I9Pv(€), € € (0,w;). From (3.2), we get

and for ¢ € (0,w;), we have
palPu(€) = pa ISP TG F(1)(€) + (1= )M + (Y = To) My,

Substituting the expressions for M}, M} and combining the terms, we get the desired equality. O

Theorem 3.2. Assume that there exists a function f € L*([0,Y],[0, o)) and positive constants
T, J and H, such that forallt € I, u, v € Rand xk = 1,2,...,1, the following conditions hold

IF(t,u) - F(t,0)| < F@)lu 1,
1 Z(u) = L (v)| < Zfu — v
T (u) = T (v)] < Tlu— v

[7(u) = h(v)| < Hlu = v|

Then, our considered problem has only one solution if

(@ T(a+2+1 _
1/ {( A Gt )+(T+m+lwl)rq< 1 +2l 1)}

lwl | T(g+ DI (e+ 2+ 5+1) I(g+1)  TI(q)

HY

Y
adl ) +(ITVY + o)) < L.

jwl

+(IZ+ (20— 1)YJ)<1 + o]
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Proof. Define a map ¥: PC(I,R) — PC(I,RR) by

fo VI F(s,v(8))ds + MY + Myt, t€[0,w],
f (t — s)q 'F(s,v(s))ds

+Zr] /w] j = 8)7 F(s,0(s))ds

+ZFq—l) (
7 2
Fq—l /w i — )1 F(s,v(s ds—i—ZI )

+Z — w,) T (v +Z —w;)J;(v(w;))

+M1 + Mj't, te(wmw,{ﬂ], k=1,2,...,1

w; — 8)172F (s, v(s))ds

!
For u, v € PC(I,R) and ¢t € [0, w;] U ( U (w,i,w,ﬁl]), we have
r=1

[(Wu)(t) — (Po) (1)

(I+1)Y? (20— 1)Y4
“f& <<q+w* f )+n4(u—anu—mpc

+ M = MY| + [My' — My|Y,

where
A < T 2§ (a+ £ +1) (I + 1) xe
o \l FA\D(q+ DT+ 2+ 8+1) ' T(g+1)
20 — 1)y Y4
(r(q)§“> T HY + T + (21 — D YT | |lu — v o
and
-t < s plMat 5 +1) (DY
2R e [T+ Da+ 2+ 8+ 1) " T(g+1)
20— 1)T4
(r((;))> + T HY +1T + 21— DYT | ||u — 0| oo,
Therefore,

+ (X + p1 + w|)Y?
|l

W — W, < [llfllm{(1+m)u2£qr(a+3+1)

L+ Dl (a+2+5+1)

I+1  20—1 A
x(r(q+l>+ F(q)>}+(ll+(21—l)TJ)<l+ o )

+ (Y + [T2]) 7 o] ] lu =l pe-

Now, using Banach fixed point theorem we get a unique fixed point of ¥ on PC(I,R). O
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Lt %) — 0, 1im 22— 0 1im T — ¢ gng 1im ") g,
v—0 v v—0 (Y v—=>0 U
then problem (1.1) with mtegral boundary condition possesses at least one solution.

Theorem 3.3. Assume that hm

Proof. Let » > 0 and define a map ¥ on B, by

7 Jo (E = 8)T F(s,v(s))ds + MY + Mgt, ¢ € [0,w],

ﬁf; (t —s)17F(s,0(s))ds
’i 1 N -1 S,U(s S
+anLK = )7 (s, v(s))d
n_iw"{ wj w._sq—Z s (s s
(Wo)(t) = +jZIF(q—1) /wj_]( i = 8)*F (s, 0(s))d

wm_w] 'll)]' q 2
F I
+Zr(q1>/l(wj s) (s,v( ds—l—z

+Zt_w“‘7] +Z w]~7j ( ))

j=1
+M} + Mjt, te(wﬁ,wﬁ+1], k=1,2,...,1.

Then, we have

, 1
1< L [l 18, @)@+ 12 [ o)

jwl

l
+ Y |Zi(w(wy) \+mZY—wz |75 (v(w; )]
j=1 j=1
I+l

+u12wl—w])uj( F“—Z w; — )17V F(s,v(s))|ds
7=1

’le

l

+mZ o wl) /wj (wj — 8)172|F (s, 0(s))|ds

wj—1

+ Z = [ Gy = 2o

_ ﬂzr(a+;+ D&+ (I + DY (a+ £+ B+ 1)
N wil(g + D (e + £ +5+1)

(21 — 1)Y¢ (21— 1Y T |Y
— L3 +
w|T(q) Wl ]

1Ly

l
— 1Ly + Ly,

u1Ly +
|wl
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and
1 l _
V31 < L [l B PO+ 1T [ Inelds + 3 ot

ZYzmm \+Z = w))|7;(v(w;)|
|y

o (105 = 5)" ! F(s, (s))lds
F(Q)jz_;/wj,

+ Y e [ = s (s

- mwa+ 2+ 180+ (1+ DT (a+2+54+1) N (21— 1)Y9
= WC(g+ D(a+ £+ B+1) " wlC(g)
l 20— 1)Y Y
+7L2+( ) L3+| l| Ly,
| || |

where the positive constants L;, (i = 1,2,3,4) satisfy |F(¢,v(t))] < L1, |Z:(v(¢¥))| < Lo,
|7 (v(t))| < Ls, |h(v(t))| < Ly, for all v € B, and t € I. Therefore, P is well-defined on B,
and it can also be shown that Wv € PC(I,R) for v € B,..

Next, to show that ¥: B, — PC(I,R) is completely continuous, we split the proof into the
following steps:
Step 1: To show that {¥v|v € B,.} is equicontinuous in (w,, w.11), & = 0,1,..., 1.

Letv € B, and 0 < s; < s, < w;. Subsequently,

1 " a1 -1 s,v(s))|ds
|(Pv)(s2) — (Po)(s1)] < F(q)/o (52— 8)T7" — (51— 8)" ]| F(s,v(s))|d

1= - )
+F(q)/ (s2 = 8)7 1| (s,0(s))|ds + [M3|(s2 — 51)

<L
“T(g+1)

For w, < s1 < s < wke1, k= 1,.

(o) (s2) = (Fo)(s1)] <

[s3—s]] — 0 ass; — s;.

L,
[; [(52 — 8)71 — (51 — 8)77"]| P (5, 0(s))Ids

by [ el
‘Z qu—_sll / (wj — 8)172F(s,v(s))ds
+\§;w—smzwwnﬂ M (2 — 1)
I ; (52— )"

L q
< W[Q(Sz —s1) = (s2— 1) + Tq+1D)

l l
+ (82 — S])Ll ZYq_l + (82 — 81) ZL;; + ‘Mf‘(SQ — 81)
- i

—0 as sp — Si.
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Thus ¥ B, is equicontinuous in (w,, w.41), £ = 0,1,...,1.
Step 2: To show that {Pv|v € B, } is a uniformly bounded subset of PC(I,R).
Forv € B, and t € (wy,wy+1), £ =0,1,...,1, we have

Wo(t)] < - / (t — )7 | F (s, 0(s))|ds

W

wj—1

N AR OO

N IR Ao

rk—1 W
Wy — W ’ i)

+Zt—wn |7 (v |+Z — wy)|T; (0(wy)| + | M} | + | M |Y
7=1
Lqu Loyr ALy
ZF lr(q)+; 1“(61)+JZIL2

l -1
+Y YLs+ > YLy + M|+ | M3 |Y
j=1 j=1
T+ Dw e+ 2+ 8+ 1)+ pl(a+ 2 + 1)§qL
- wl(g+ DI+ £ +8+1)

(+ DY T(a+2+8+1)(m+1Y) Y720 — 1) (jw| + 1 + )

1

L
W(g+ D(a+£+8+1) w[T(q) :
y el tm ) YR D] +m +0) \T]\TZL
wl wl T wl
LOB g
wl

It follows that ||¥v|| .. < L* forall v € B,..
Step 3: To show that ¥ is continuous on B,..

Using the continuity of the functions F, Z,;, J,, h, and Lemma 2.2, it can be shown that ¥ is
continuous on B,..

Therefore, the Arzeld-Ascoli theorem ensures that ¥: B, — PC(I,R) is completely contin-

uous. . .

Further, since lim M =0, 1 L =0, ] j“(v) @
v—0 v —0 v —0 v v— v

0,7 =1,2,3,4, there exists a ry > 0 such that | F(¢, v)| < e1)v], |Zs(v)] < e2|v], | T (V)] < e3]v]

and |h(v )| < ea]v| for 0 < |u| < ro where €;, ¢ = 1,2, 3,4 are chosen such that

= (0 and lirrz) =0, fore¢; >

Y+ Dwl(a+ 2+ B8 +1) + (pal(a+ £ + 1)¢
wl(g+ DI (a+ 2 +B5+1)
(+ YT+ 2+ 8+ D)) (m+Y) Y92 — 1)(jw]| + 1 + )
Wllg+ DT+ Z+3+1) [w[T(q)

ool g +X) Y@= D (w|+pm +X) YWY +[Ta))
wl @ wl ’ wl

€1

€1

es < 1.
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Define S = B,,. Then we have

Y+ DwT(a+ 2+ 8+ 1) + (pal(a + £ + 1)¢
wil(g+ D (a+ 2 +54+1)
(I+ DY (+ £+ 8+ 1)) ( + )
wil(g+ D (a+ 2 +54+1)
V=Dl tm+1) o Uwl+pm+T)

H\ILUHPC S €1

€1

1 €2
w[I'(g) |w]
T2l — D(jw|+p1 + 7Y Y(|T1|Y + | T
+ ( )(|w|| M1 )€3+ (| 1||w| | 2|)€4 ||UHPC7

which gives [¥v||,. < [|v]|c, for v € 9B,,. Therefore, by applying Theorem 2.6, it is estab-
lished that the operator ¥ has at least one fixed point on B,,. O

Theorem 3.4. Assume that there exist L; > 0, i = 1,2,3,4 satisfying |F(t,v)| < Ly, |Zs(v)| <
Ly, |J.(v)| < Lz and |h(v)| < Ly fort € J, v € Rand k = 1,2,...,1. Then the problem
defined by (1.1) and (1.2) has at least one solution.

Proof. Under the above assumptions and using the continuity of the involved functions F, Z,,
Jx» h, it can be shown that ¥: PC(I,R) — PC(I,R) is well-defined and completely continu-
ous. Also, ||[v]|,, < L* forall v € E(¥) and for some L* € R (same as in theorem 3.3, Step 2).
Therefore, Theorem 2.7 assures the existence of a fixed point of ¥ on PC(I,R). O

Theorem 3.5. Assume that ]
(H1) there exists a constant q; € (0,1) with 14+q; < g such that a function f € L ([0,Y], [0, 00))
and a nondecreasing L' function g: [0, 00) — (0, 00) exist such that

|F(t,v)| < f(t)g(jv]), forallt eI, veR,

(H2) there exists a positive constant L such that

L

A L . B
] +9( )HfHLW[O,T]

> 1,

where
q-q  q—2
- , €= 9
1-q I —aq
A= (u +Y)(ILo+ (2L = 1)YL3) + (|T3| + |T1|YX)Y La,

a

Y (jwl 4+ + ) 1+1 201
b= ] (r<q><a+1>1—m T D 1>1-q'>

€970 (1 + YT+ 21 4 1)
wi(a +1)!=0T(a + S8 + 5+ 1)

Then problem (1.1) with boundary conditions given by (1.2) has at least one solution.

Proof. Here the proof is accomplished with the help of Leray-Schauder’s nonlinear alternative.
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Taking S = PC(I,R), we define a nonlinear map P on B,. by

r(]q fot VI F (s,v(8))ds + MY + Myt, t € [0,w],
r(]q) Jo (= S)q 'F(s,v(s))ds
+ = w; —8)1 F(s,v(s))ds
jer(q) | (wg =) (s ()
3 [ s
(Po)(t) = =\ wj—1
rk—1 W
Wy — W i
+ M/ w; = 2F (s,v(s))ds + T(
;F(q_w me ) Z
+Z t— w, jj Z (w]_))
+MIJ+M2”t, te (wmwm], k=1,2,...,1

Under the given assumptions, it can be shown that P is well-defined on B, and Wv € PC(I,R)
for v € B,. Next, to show that ¥: B, — PC(I,R) is completely continuous, the proof is split
into the following parts:

Step 1: To show, {¥v|v € B,.} is a uniformly bounded subset of PC(I, R).

Forv € B, and t € (w,,w.11), & =0,1,...,l, we have
g(r)Ylathi-a) ( yirleth—ar)
\7} AN EANYAL D
o)) < Fosr a2 o Feoaa e M o
g(r)iyteri-a)+ g(r)( = DY (“')“_‘“) !
I'(g—1)(c+1)l-a |f”Lﬁ[0,Y] I'(g—1)(c+ 1)l-a Hf”quT[o,r]
+ 1Ly + (20 = 1)YLs + |M7| + |M7T,
that is,
[+1 20 —1
Wy < Yla—ar)
H ’U”Pc = ( ) Hf”qu [0T]< ( )(a+ 1)1_41 =+ F(q— 1)(C+ 1)1—q,>
+1Ly+ (21— D)YL3 + M7 | + | M7,
where
| < g (r )HfHqu 0.1] mgq—qlr(a+%+1)
B |w] (a+D-al(a+ 2 +5+1)

—a I+1 201
o <r<q><a+1>1—m+r<q—1><c+1>l—m>

pilLy + MI(ZZ — 1)TL3 n "LU2|TL4
|wl jwl

)

g

qu [0,Y]

_ [+1 20 -1
4+ Y@
<r<q><a+ D gD+ Do )1
L 20- 1YL YL
n 2+ ( ) 3 4 [welTLs

@l ]

with the positive constants L, L3 and Ly satisfying |Z,. (v(t))| < Lo, | T (v(t))] < L3, [h(v(¢))] <
Ly, forallt € 1.

€T+ 22 4 1)

M| <
M (at ) -0T(a+ 4 4 5+ 1)

i
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Step 2: To show that {Pv|v € B,} is equicontinuous in (w,, wet1), 5 = 0,1,...,1.
Letv € B, and 0 < 51 < s < wy, then

|H®@ﬁ—ﬂ%@M<IL[Y&—ﬁ““%&—Q“WN&MmMS

(g
e -
F /(o s ) s+ 105 o2 1)
g(rIfIl +
La[o,Y a a a l—q
< Ty (587 = s+ (2 — o))
TG
T @t e 52 )T M2 = )
— 0 as Sy — S1.
Forw, < s; < sy Swga1, k=1,...,1,
TG .
|(Pv)(s2) — (Po)(s1)] < W[(a—k 1)(s2 = s1) — (52— s1)*"]
g £l
* @ T2 )" )i
OGN
+ qu7q1(827$1)+|M2v|(527$1)

I'(g—1)(c+ 1)l
— 0 ass; — sy

Thus, Arzeld-Ascoli theorem ensures that ¥ B, is a relatively compact subset of PC(I,R). Also,
using (H1), it follows that ¥ is continuous on B,. Thus, ¥: B, — PC(I,R) is completely
continuous.

Now, for each ¢ € [0, Y] and following the similar computation procedure as earlier, we find
that

e

ol

In view of (H2), we have ||v|| . # L. Set S = {v € PC(I,R)|||v||, < L}. Then, the operator
¥: S| — PC(I,R) is completely continuous. Also, from the choice of S, there does not exist
any v € 95 such that v = AW for some A € (0, 1). Thus, Theorem 2.8 gives the existence of
a fixed point of the function ¥ on S;. O

lv

Example 3.6. Consider the following fractional impulsive differential equation:

sin S+ Ju(t)[*
pan(e) = BN FELON oy 1), ge .2
Iy _exp(—3) +sinv(z) o1y _exp(—0i(3))
m(y) = e (3)- 5+sinv(l)

cosv(s)

wm—uwmnzéAﬁ;ﬂ@mw,
o(1) = eI u(@), €< (0,3):

in’ (v Stlu()* v
Here, | = 1, w; = 2, F(t,v(t)) = 2sin (1(3;:?3:)? @) LI (v(t)) = “p(]()% Ji(v(t)) =

w and h( (t)) lcloj‘v((tt)) Thus all the assumptions of Theorem 3.4 are satisfied with

L1 =31, = 5, Lz = 4, L4 = 11 and therefore, we can conclude the existence of solution of
our problem.

ai |l
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4 Further development with respect to general sub-intervals

In Section 3, the proofs were accomplished by using the right terminal condition where £ belongs
to the initial sub-interval (0, w;). In other words, in equation (1.2), at the end point ¢ = Y, we

consider the boundary condition v(Y) = ppI$-Pv(€) for & € (0,wy).

As a step towards more generalization, instead of taking £ € (0,w;), it may be assumed

that £ € (wy, wet1), & = 1,,...,1. Following the same procedure as in the earlier section, this
extended problem may also be taken up by considering £ in any arbitrary sub-interval. That is,
for £ € (wy,wx11), K =1,,...,1,in view of Lemma 3.1, consider the following operator:

Y, on PC(I,R), (i = 1,2,3) defined as

7 fo (= 9)17 F(s,0(s))ds

’wj,1

j=1

where, for £ € (wy, wet1), k= 1,,...,0 -2,

i (6 = 57 F(s.o(s))ds + 1

+MU +M te(wfmwkal]a

J T M5, te [O,wl],

+Y g [ (=) s o(e)ds
+ Z F(7”) /w_,»_, (wj — 5)972F(s,v(s))ds
+zr€qf>/l<w] G+ T

—i—Zt—wﬂjj +Z

—w;)J;(v(w;))

Miy = = [ =i T F(o)(©) =T [ ho(s)ds

l

+T1,LL]ZI +/L1 Z IJ(U(’LUJ_))

Jj=k+1

Y (T = w) T (v(w

j=1

o S (T w50l + S — Ty (o)

j=r+1 j=1
-1

+ Z (wp = w;) T (v(w +w1mzfq

j=r+1
I+1

F(t,v(t))(w;)

+ Z 15 F(tv ))(wj)+M1Z(Tz—wz)IZﬂIF(t,”(t))(wj)

Jj=r+1 j=1
l

Y (C—w) I F(t0(8) (wh) + g Y (wn = Trwg ) I F (8 0(1)) (w))

Jj=r+1
-1

> (= w) I (o) (wy)]

Jj=K+l1

j=1

i)
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1
Mf’zz—;[ I I F +T1/ h(v ds+TIZI (w;))

l l
+ Z Z;(v(wy)) + Z(Tz —wy)J;(v(wy)) + Z (Y — w) T (v(w))

-1

+ > (w = Tiwy) T (o(w; ) + Y (wr = w;) Tj(v(w;)

j=1 j=r+1
I+1
—|—T]Z o Z I F(t,v(t))(wj)
j=r+1
K l
+Z(T2 —wl)lg};_llF(t v Z T wl Iq ! F(t,v(t))(wj)
j=1 Rt
—1
+Z wy — Tyw;) 19! F(t Z —w;)I9” lF(t,v(t))(wj)].
Jj=r+1
For £ € (wi_2,wi—1),
MY :—l{ o018, F(t, T/ h(v
21 i Wi_s o( 2
-2 l
+wlim Y Tiww;)) +m Y Liww;)) + m Z (T2 — Tvw;) T (v(w; )
J=1 j=1—1 =1
1
+m Yy (F=w)J;(v +Tlmz ;u(t)) (wy)

j=l—1

I+1

+ [ Z Iq t ’U w] —|—,ulz T2_T1’LU] ]q 1F(t,v(t))(wj)
gj=l—1 7j=1

l

Fa 30 (0= w1 (o) )],

—

Y -2
M = =2 [ =B 1 P G®)O +T1 [ b))+ T 3T (0tw))
l -2 l
£ 3 L)+ Yo - TG ew)) + 3 (00— ;) (o)
j=1 j=1 j=i-1

-2 l
+ Y (T = Tyw))TE ! F(t,0(t) (wy) +m Y (X —w))IE " F(t, v(t))(wj)} :

j=1 j=l-1
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For ¢ € (w;, ),

1
ngl:_i[_ﬂlﬂzlaﬁlq F(tl] Tz/ h 5
w

l
+ Ty ZI](v(w;)) + Z T — Tvw) Jj(v(w;))
-1
+mTi Y (wn—w;)T;(v(wy)) + I, F(tv()(Y)
j=1
! l
T qu F(t,v(t))(w;) 4 p (T2 —lez)ZIg;‘lF(t,v(t))(wﬁ
-1
T Y — w1 F(t o(t) ()],
j=1
1 ' l
My = ——| = L1, F(t,0(8) () + T /O A(v(s))ds + T DT (v(w]))
l -1
+ Y (T = Tyw) T (v(w ) + T1 > (wr — wy) T; (v(w) ) + I, F(t, 0(t))(X)
j=1 J=1
l
+lezq F(t,v(t))(wy) + (T2 = Trwn) Y I8 P(to() (w)) + T

j=1
-1
XY (wy —wy) I8 llF(t,U(t))(wj)]
j=1
Further, we have the following:
w=Tm+T, #0,
Dla+ 141
with lel—m’ TZZT— M2§( 5 )

Cla+p4+1) Dla+1+5+1)

Subsequently, under similar kind of assumptions on the functions F, Z,;, J, and h (as in Sec-
tion 3), different results can be obtained for the existence and uniqueness of solutions for £ €
(Wey Wrt1), & =1,..., 1.

5 Conclusion

This work investigates the existence and uniqueness of the solution of a class of impulsive bound-
ary value problems governed by a fractional differential equation with multiple base points. Here
we define a nonlinear operator ¥ on the Banach space whose fixed point gives the solution of the
boundary value problem. Our results are more general in the sense that Erdélyi-Kober integrals
are known to be more general operators in fractional calculus, and they reduce to Riemann-
Liouville integrals with a power weight for « = 0, v = 1. Furthermore, those integrals include
Hadamard integrals as a special case. For further research in this direction, it is very likely
possible to examine the existence and uniqueness of solutions of boundary value problems for
impulsive evolution equations by considering Erdélyi-Kober conditions at both ends, and also
two, three, or even multi-point boundary value problems involving Erdélyi-Kober conditions.

Remark 5.1. This work is an excerpt from the first author’s thesis titled On the existence, unique-
ness and approximate controllability of some classes of differential equations with different types
of fractional derivatives which is available at gyan.iitg.ernet.in.


http://gyan.iitg.ernet.in/
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