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Abstract. This work takes up the study of the existence and uniqueness of solutions to a class
of impulsive fractional boundary value problems of order q ∈ (1, 2). The results are obtained by
using multiple base points and by transforming the boundary value problem into an equivalent
integral equation in a Banach space. Various properties of fractional calculus and a number
of familiar fixed point theorems are used to obtain the results. A nonlinear operator is defined
in a Banach space whose fixed point gives the solution. The obtained results can be seen as
more general since Erdélyi-Kober integrals are known to be more general operators in fractional
calculus and they reduce to Riemann-Liouville integrals with a power weight. An example is
also provided which illustrates our abstract result.

1 Introduction

In the recent past, fractional differential equations have received reasonable importance because
of their growing number of applications in many areas of science and engineering. The main
advantage that fractional differential equations holds over their integer-order counterpart is that
they provides an excellent tool in describing various processes with regard to their memory and
hereditary properties. For detailed discussion of the theory and applications in this field, the
readers are referred to the descriptions in the books [1, 2, 3] and in the articles [4, 5, 6].

Differential equations of an impulsive nature arise in real world problems while describing
the dynamics of processes that exhibit sudden or discontinuous jumps. Such processes are natu-
rally available in various areas of biology, physics, economics, engineering, etc. [7, 8].

The idea and understanding of the solution of an impulsive fractional differential equation
have been the subject of discussion in many works, and for more details, the readers are referred
to the works in [9, 10, 11, 12, 13, 14, 15]. An impulsive fractional differential equation is mainly
of two types :
(i) the fractional derivative with a unique starting point : Dq = Dq

0 ,
(ii) the fractional derivative involving multiple starting points, i.e., Dq = Dq

∗.
In [16], Wang considered the following problem:

CDq
∗v(t) = F (t, v(t)), t ∈ [0, 1] \ {w1, w2, . . . , wl}, q ∈ (1, 2],

∆v(wκ) = Eκ(v(w
−
κ )), ∆v′(wκ) = Ēκ(v(w

−
κ )), κ = 1, 2, . . . , l,

av(0)− bv′(0) = v0, cv(1) + dv′(1) = v1.

In [17], Ahmad and Sivasundaram examined the existence of a solution of the impulsive problem
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governed by a fractional differential equation in Caputo derivative of the form

CDq
∗v(t) = F (t, v(t)), t ∈ [0, 1] \ {w1, w2, . . . , wl}, q ∈ (1, 2],

∆v(wκ) = Eκ(v(w
−
κ )), ∆v′(wκ) = Ēκ(v(w

−
κ )), κ = 1, 2, . . . , l,

av(0) + bv′(0) =
∫ 1

0
q1(v(s))ds, av(1) + bv′(1) =

∫ 1

0
q2(v(s))ds.

It may be noted that integral boundary conditions have found their place in several applica-
tions, mainly in computational fluid dynamics (CFD) and other fields of applied mathematics
such as population dynamics, chemical engineering, etc. Hemodynamic conditions can be com-
pletely characterised by CFD techniques under appropriate boundary conditions. But the major-
ity of the CFD-based hemodynamic investigations constitute in vitro conditions, which cannot
fully represent the actual patient hemodynamic conditions [18, 20]. The difficulties caused are,
in fact, related to the prescribed boundary conditions because it is not always justifiable to as-
sume the geometry of the blood vessel to be circular. Therefore, it is advisable to utilise integral
boundary conditions to model blood flow problems more accurately.

The following presents a practical example which can be converted into a problem with
integral boundary condition [19]:

−v′′(t) = F (t)G(t, v(t)), t ∈ (0, 1),

v(0) = 0, µv′(1) = v(ξ), ξ ∈ (0, 1],

where µ > 0 is a constant. This represents the mathematical model of a thermostat. This problem
can be solved to obtain the stationary solutions of the one-dimensional heat equation in a metallic
bar with a controller placed at 1, which can add or remove heat as per the temperature detected by
a sensor at ξ. This problem can be generalised by considering the heat equation with a nonlinear
gradient source term that varies in time. In this case, the heated bar, with a controller at 1, adds
or removes heat depending on the temperature detected by sensors located at any point of the
bar depending on how the function H is defined in the following condition. Subsequently, this
problem can be expressed in the following form which contains an integral boundary condition:

v′′(t) = G(t, v(t), v′(t)),

v(0) = 0, v′(1) =
∫ 1

0
v(s)dH(s).

An important fractional integral operator, known as the Erdélyi-Kober fractional integral op-
erator, was defined and introduced by Erdélyi and Kober in 1940 [21]. Its usual application is
found in the theory of radiative transfer, the kinetic theory of gases, etc. For some recent devel-
opments in this direction, we refer the readers to the works carried out in [24, 23, 22]. To the best
of the knowledge of the current authors, the existence of solutions to boundary value problems
governed by impulsive fractional differential equations with an Erdélyi-Kober integral operator
has not been studied to date. To fill this gap, the following integral boundary value problem is
taken up:

CDq
∗v(t) = F (t, v(t)), t ∈ I ′ = I \ {w1, w2, . . . , wl}, q ∈ (1, 2),

∆v(wκ) = Iκ(v(w−κ )), κ = 1, 2, . . . , l,

∆v′(wκ) = Jκ(v(w−κ )), κ = 1, 2, . . . , l,

 (1.1)

with integral conditions on the boundary given by

v(0)− µ1v
′(0) =

∫ ϒ

0
h(v(s))ds, v(ϒ) = µ2I

α,β
γ v(ξ), ξ ∈ (0, w1), (1.2)

where I = [0,ϒ], ϒ > 0. Here, CDq
∗ represents the Caputo fractional derivative at the base points

t = wκ, κ = 1, 2, . . . , l, i.e., CDq
∗|(wκ,wκ+1]v(t) =

CDq
w+
κ
v(t) for all t ∈ (wκ, wκ+1]. The function

F : I × R → R is continuous, Iκ,Jκ ∈ C(R,R), κ = 1, 2, . . . , l, the function h : R → R is
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given to be continuous, µ1 ≥ 0, µ2 > 0 are given constants. Further, Iα,βγ is the Erdélyi-Kober
fractional integral of order β > 0 where γ > 0, α ∈ R.

With this introduction section presenting relevant works, the problem statement, and motiva-
tion, the other sections in the paper are arranged as follows: Section 2 states some definitions,
lemmas, and theorems required for establishing the results, Section 3 elaborates the results along
with all hypotheses and proofs, an example is also provided. Section 4 presents expected results
if any general sub-interval is considered, and Section 5 summarises the present study.

2 Preliminaries

Let 0 = w0 < w1 < . . . < wl < wl+1 = ϒ. Then PC(I,R) = {v : I → R|v ∈ C((wκ, wκ+1],R), κ =
0, 1, . . . , l and v(w−κ ), v(w+

κ ) exist, κ = 1, . . . , l, with v(w−κ ) = v(wκ)} is a Banach space with
respect to the norm ‖v‖

PC
= supt∈I |v(t)|. By Denoting PC1(I,R) = {v ∈ PC(I,R)|v̇ ∈

PC(I,R)} and setting ‖v‖PC1 = ‖v‖PC + ‖v̇‖
PC

, we have (PC1(I,R),
‖.‖

PC1 ) as a Banach space.
Let Iqa+ denote the Riemann-Liouville integral with base point a.

Definition 2.1. [22] The Erdélyi-Kober fractional integral of order of β > 0 with γ > 0, α ∈ R
of a continuous function F : (0,∞)→ R is defined as follows:

Iα,βγ F (t) =
γt−γ(α+β)

Γ(β)

∫ t

0

sγα+γ−1F (s)

(tγ − sγ)1−β ds,

provided that the right-hand side is pointwise defined on R+.

Lemma 2.2. [23] Let β > 0, γ > 0 and α, q ∈ R. Then

Iα,βγ tq =
tqΓ(α+ q

γ + 1)
Γ(α+ q

γ + β + 1)
.

Definition 2.3. A function v ∈ PC1(I,R) with its Caputo derivative of order q existing on I is
said to be a solution of (1.1) if it satisfies the problem (1.1).

Lemma 2.4. [16] Letting q > 0, the differential equation CDqF (t) = 0 has the solution

F (t) = a0 + a1t+ . . .+ am−1t
m−1

where ai ∈ R, for i = 0, 1, . . . ,m− 1 with m denoting the least integer ≥ q.

Lemma 2.5. [16] Let q > 0. Then

Iq CDqF (t) = F (t) + a0 + a1t+ . . .+ am−1t
m−1

for some ai ∈ R, for i = 0, 1, . . . ,m− 1.

Theorem 2.6. [16] Let S be an open bounded subset of a Banach space X with the zero element
of X in S. Also, let Ψ : S̄ → X be a compact and continuous mapping such that ‖Ψs‖ ≤ ‖s‖ for
all s ∈ ∂S. Then Ψ has a fixed point in S̄.

Theorem 2.7. (Schaefer’s fixed point theorem)[12] Let Ψ : X → X be a completely continuous
map on a Banach space X . If E(Ψ) = {x ∈ X : x = ΛΨx for some Λ ∈ [0, 1]} ⊂ X is
bounded, then Ψ has fixed points.

Theorem 2.8. (Leray-Schauder’s nonlinear alternative)[23] Let S be a closed convex subset of
a Banach spaceX , S1 an open subset of S and the zero element ofX belongs to S1. Suppose that
Ψ : S̄1 → S is a completely continuous map. Then Ψ satisfies one of the following properties :
(i) Ψ(s) = s for s ∈ S̄1, or
(ii) there exist s ∈ ∂S1 (represents boundary of S1 in S) and a constant Λ satisfying 0 < Λ < 1,
with s = ΛΨs.

Throughout this work, for each r > 0, Br represents the open ball of radius r in PC(I,R),
that is, Br = {v ∈ PC(I,R) : ‖v‖

PC
< r}.
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3 Existence Results

To investigate the existence of solution of (1.1) with boundary conditions given by (1.2), we
require the following result :

Lemma 3.1. For f ∈ C([0,ϒ],R), the boundary value problem

CDq
∗v(t) = f(t), t ∈ I ′ = I \ {w1, w2, . . . , wl}, q ∈ (1, 2),

∆v(wκ) = Iκ(v(w−κ )), κ = 1, 2, . . . , l,

∆v′(wκ) = Jκ(v(w−κ )), κ = 1, 2, . . . , l,

v(0)− µ1v
′(0) =

∫ ϒ

0
h(v(s))ds, v(ϒ) = µ2I

α,β
γ v(ξ), ξ ∈ (0, w1),


(3.1)

is equivalent to the following integral equation

v(t) =



1
Γ(q)

∫ t
0 (t− s)

q−1f(s)ds+Mv
1 +Mv

2 t, t ∈ [0, w1],

1
Γ(q)

∫ t
wκ

(t− s)q−1f(s)ds+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1f(s)ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+
κ∑
j=1

Ij(v(w−j )) +
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))

+Mv
1 +Mv

2 t, t ∈ (wκ, wκ+1], κ = 1, 2, . . . , l,

(3.2)

where

Mv
1 = − 1

ω

[
− µ1µ2I

α,β
γ Iq0+f(t)(ξ)− T2

∫ ϒ

0
h(v(s))ds+ µ1

l∑
j=1

Ij(v(w−j ))

+ µ1

l∑
j=1

(ϒ− wl)Jj(v(w−j )) + µ1

l−1∑
j=1

(wl − wj)Jj(v(w−j )

+
µ1

Γ(q)

l+1∑
j=1

∫ wj

wj−1

(wj − s)q−1f(s)ds+ µ1

l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+ µ1

l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds
]
,

Mv
2 = − 1

ω

[
− µ2I

α,β
γ Iq0+f(t)(ξ) + T1

∫ ϒ

0
h(v(s))ds+

l∑
j=1

Ij(v(w−j ))

+
l∑
j=1

(ϒ− wl)Jj(v(w−j )) +
l−1∑
j=1

(wl − wj)Jj(v(w−j )

+
l+1∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1f(s)ds+
l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+
l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds
]
,
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with

ω = T1µ1 + T2 6= 0, T1 = 1− µ2Γ(α+ 1)
Γ(α+ β + 1)

, T2 = ϒ−
µ2ξΓ(α+ 1

γ + 1)

Γ(α+ 1
γ + β + 1)

.

Proof. Let v be a solution of (3.1). Then for t ∈ [0, t1], we have

v(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds− c1 − c2t, (3.3)

where c1, c2 ∈ R are constants, and

v′(t) =
1

Γ(q − 1)

∫ t

0
(t− s)q−2f(s)ds− c2. (3.4)

Then, using the impulse conditions ∆v(wκ) = Iκ(v(w−κ )) and ∆v′(wκ) = Jκ(v(w−κ )), for κ =
1, 2, . . . , l and t ∈ (wκ, wκ+1], we have

v(t) =



1
Γ(q)

∫ t
wκ

(t− s)q−1f(s)ds+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(t− s)q−1f(s)ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(t− s)q−2f(s)ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(t− s)q−2f(s)ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))− c1 − c2t.

(3.5)

Using the condition v(0)−µ1v
′(0) =

∫ ϒ

0 h(v(s))ds, (3.3) and (3.4) imply−c1 =
∫ ϒ

0 h(v(s))ds−
µ1c2. Therefore, for t ∈ [0, w1],

v(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds+

∫ ϒ

0
h(v(s))ds− c2(µ1 + t).

For κ = 1, 2, . . . , l and t ∈ (wκ, wκ+1], (3.5) gives

v(t) =
1

Γ(q)

∫ t

wκ

(t− s)q−1f(s)ds+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(t− s)q−1f(s)ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(t− s)q−2f(s)ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(t− s)q−2f(s)ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j )) +
∫ ϒ

0
h(v(s))ds

− c2(µ1 + t).

Next, we use the boundary condition v(ϒ) = µ2I
α,β
γ v(ξ), where ξ ∈ (0, w1). For this, we have

v(ϒ) =
l+1∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1f(s)ds+
l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+
l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds+
l∑
j=1

Ij(v(w−j )) +
∫ ϒ

0
h(v(s))ds

+
l∑
j=1

(ϒ− wl)Jj(v(w−j )) +
l−1∑
j=1

(wl − wj)Jj(v(w−j ))− c2µ1 + c2ϒ,
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and for t ∈ (0, w1),

µ2I
α,β
γ v(ξ) = µ2I

α,β
γ Iq0+f(t)(ξ) +

[ ∫ ϒ

0
h(v(s))ds− c2µ1

] µ2Γ(α+ 1)
Γ(α+ β + 1)

− c2
µ2ξΓ(α+ 1

γ + 1)

Γ(α+ 1
γ + β + 1)

,

which gives c1 = −Mv
1 and c2 = −Mv

2 . Upon substitution of the values of c1, c2 in (3.3) and
(3.5) gives (3.2).

For the converse part, it can be easily shown that the integral equation given by (3.2) satisfies
the first three equations of (3.1).

Next, we have v(0) = Mv
1 and v′(0) = Mv

2 , therefore v(0) − µ1v
′(0) = Mv

1 − µ1M
v
2 =∫ ϒ

0 h(v(s))ds.
It remains to verify that v(ϒ) = µ2I

α,β
γ v(ξ), ξ ∈ (0, w1). From (3.2), we get

v(ϒ) =
1

Γ(q)

∫ ϒ

wl

(ϒ− s)q−1f(s)ds+
1

Γ(q)

l∑
j=1

∫ wj

wj−1

(wj − s)q−1f(s)ds

+
l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds

+
l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2f(s)ds+
l∑
j=1

Ij(v(w−j ))

+
l∑
j=1

(b− wl)Jj(v(w−j )) +
l−1∑
j=1

(wl − wj)Jj(v(w−j )) +Mv
1 +Mv

2 ϒ,

and for ξ ∈ (0, w1), we have

µ2I
α,β
γ v(ξ) = µ2I

α,β
γ Jq0 f(t)(ξ) + (1− T1)M

v
1 + (ϒ− T2)M

v
2 .

Substituting the expressions forMv
1 ,Mv

2 and combining the terms, we get the desired equality. 2

Theorem 3.2. Assume that there exists a function f ∈ L∞([0,ϒ], [0,∞)) and positive constants
I, J and H , such that for all t ∈ I , u, v ∈ R and κ = 1, 2, . . . , l, the following conditions hold

|F (t, u)− F (t, v)| ≤ f(t)|u− v|,
|Iκ(u)− Iκ(v)| ≤ I|u− v|
|Jκ(u)− Jκ(v)| ≤ J |u− v|
|h(u)− h(v)| ≤ H|u− v|.

Then, our considered problem has only one solution if

‖f‖L∞
|ω|

{
(1 + µ1)µ2ξ

qΓ(α+ q
γ + 1)

Γ(q + 1)Γ(α+ q
γ + β + 1)

+ (ϒ + µ1 + |ω|)ϒq
(

l+ 1
Γ(q + 1)

+
2l − 1
Γ(q)

)}

+ (lI + (2l − 1)ϒJ )

(
1 +

µ1 + ϒ

|ω|

)
+ (|T1|ϒ + |T2|)

Hϒ

|ω|
< 1.
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Proof. Define a map Ψ : PC(I,R)→ PC(I,R) by

(Ψv)(t) =



1
Γ(q)

∫ t
0 (t− s)

q−1F (s, v(s))ds+Mv
1 +Mv

2 t, t ∈ [0, w1],
1

Γ(q)

∫ t
wκ

(t− s)q−1F (s, v(s))ds

+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1F (s, v(s))ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))

+Mv
1 +Mv

2 t, t ∈ (wκ, wκ+1], κ = 1, 2, . . . , l.

For u, v ∈ PC(I,R) and t ∈ [0, w1] ∪
( l⋃
κ=1

(wκ, wκ+1]
)

, we have

|(Ψu)(t)− (Ψv)(t)|

≤

[
‖f‖L∞

(
(l+ 1)ϒq

Γ(q + 1)
+

(2l − 1)ϒq

Γ(q)

)
+ lI + (2l − 1)Jϒ

]
‖u− v‖

PC

+ |Mu
1 −Mv

1 |+ |Mu
2 −Mv

2 |ϒ,

where

|Mu
1 −Mv

1 | ≤
1
|ω|

[
‖f‖L∞

(
µ1µ2ξ

qΓ(α+ q
γ + 1)

Γ(q + 1)Γ(α+ q
γ + β + 1)

+
(l+ 1)µ1ϒq

Γ(q + 1)

+
(2l − 1)µ1ϒq

Γ(q)

)
+ |T2|Hϒ + lµ1I + (2l − 1)µ1ϒJ

]
‖u− v‖

PC

and

|Mu
2 −Mv

2 | ≤
1
|ω|

[
‖f‖L∞

(
µ2ξ

qΓ(α+ q
γ + 1)

Γ(q + 1)Γ(α+ q
γ + β + 1)

+
(l+ 1)ϒq

Γ(q + 1)

+
(2l − 1)ϒq

Γ(q)

)
+ |T1|Hϒ + lI + (2l − 1)ϒJ

]
‖u− v‖

PC
.

Therefore,

‖Ψu−Ψv‖
PC
≤

[
‖f‖L∞
|ω|

{
(1 + µ1)µ2ξ

qΓ(α+ q
γ + 1)

Γ(q + 1)Γ(α+ q
γ + β + 1)

+ (ϒ + µ1 + |ω|)ϒq

×

(
l+ 1

Γ(q + 1)
+

2l − 1
Γ(q)

)}
+ (lI + (2l − 1)ϒJ )

(
1 +

µ1 + ϒ

|ω|

)

+ (|T1|ϒ + |T2|)
Hϒ

|ω|

]
‖u− v‖

PC
.

Now, using Banach fixed point theorem we get a unique fixed point of Ψ on PC(I,R). 2
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Theorem 3.3. Assume that lim
v→0

F (t, v)

v
= 0, lim

v→0

Iκ(v)
v

= 0, lim
v→0

Jκ(v)
v

= 0 and lim
v→0

h(v)

v
= 0,

then problem (1.1) with integral boundary condition possesses at least one solution.

Proof. Let r > 0 and define a map Ψ on Br by

(Ψv)(t) =



1
Γ(q)

∫ t
0 (t− s)

q−1F (s, v(s))ds+Mv
1 +Mv

2 t, t ∈ [0, w1],
1

Γ(q)

∫ t
wκ

(t− s)q−1F (s, v(s))ds

+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1F (s, v(s))ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))

+Mv
1 +Mv

2 t, t ∈ (wκ, wκ+1], κ = 1, 2, . . . , l.

Then, we have

|Mv
1 | ≤

1
|ω|

[
µ1µ2|Iα,βγ Iq0+F (t, v(t))(ξ)|+ |T2|

∫ ϒ

0
|h(v(s))|ds

+ µ1

l∑
j=1

|Ij(v(w−j ))|+ µ1

l∑
j=1

(ϒ− wl)|Jj(v(w−j ))|

+ µ1

l−1∑
j=1

(wl − wj)|Jj(v(w−j )|+
µ1

Γ(q)

l+1∑
j=1

∫ wj

wj−1

(wj − s)q−1|F (s, v(s))|ds

+ µ1

l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds

+ µ1

l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds
]

≤
µ2Γ(α+ q

γ + 1)ξq + (l+ 1)ϒqΓ(α+ q
γ + β + 1)

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

µ1L1

+
(2l − 1)ϒq

|ω|Γ(q)
µ1L1 +

l

|ω|
µ1L2 +

(2l − 1)ϒ
|ω|

µ1L3 +
|T2|ϒ
|ω|

L4,
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and

|Mv
2 | ≤

1
|ω|

[
µ2|Iα,βγ Iq0+F (t, v(t))(ξ)|+ |T1|

∫ ϒ

0
|h(v(s))|ds+

l∑
j=1

|Ij(v(w−j ))|

+
l∑
j=1

(ϒ− wl)|Jj(v(w−j ))|+
l−1∑
j=1

(wl − wj)|Jj(v(w−j )|

+
1

Γ(q)

l+1∑
j=1

∫ wj

wj−1

(wj − s)q−1|F (s, v(s))|ds

+
l∑
j=1

ϒ− wl
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds

+
l−1∑
j=1

wl − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds
]

≤
µ2Γ(α+ q

γ + 1)ξq + (l+ 1)ϒqΓ(α+ q
γ + β + 1)

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

L1 +
(2l − 1)ϒq

|ω|Γ(q)
L1

+
l

|ω|
L2 +

(2l − 1)ϒ
|ω|

L3 +
|T1|ϒ
|ω|

L4,

where the positive constants Li, (i = 1, 2, 3, 4) satisfy |F (t, v(t))| ≤ L1, |Iκ(v(t))| ≤ L2,
|Jκ(v(t))| ≤ L3, |h(v(t))| ≤ L4, for all v ∈ B̄r and t ∈ I . Therefore, Ψ is well-defined on B̄r
and it can also be shown that Ψv ∈ PC(I,R) for v ∈ B̄r.

Next, to show that Ψ : B̄r → PC(I,R) is completely continuous, we split the proof into the
following steps :
Step 1: To show that {Ψv|v ∈ B̄r} is equicontinuous in (wκ, wκ+1), κ = 0, 1, . . . , l.

Let v ∈ B̄r and 0 ≤ s1 < s2 ≤ w1. Subsequently,

|(Ψv)(s2)− (Ψv)(s1)| ≤
1

Γ(q)

∫ s1

0
[(s2 − s)q−1 − (s1 − s)q−1]|F (s, v(s))|ds

+
1

Γ(q)

∫ s2

s1

(s2 − s)q−1|F (s, v(s))|ds+ |Mv
2 |(s2 − s1)

≤ L1

Γ(q + 1)
[sq2 − s

q
1] −→ 0 as s2 → s1.

For wκ < s1 < s2 ≤ wκ+1, κ = 1, . . . , l,

|(Ψv)(s2)− (Ψv)(s1)| ≤
1

Γ(q)

∫ s1

wκ

[(s2 − s)q−1 − (s1 − s)q−1]|F (s, v(s))|ds

+
1

Γ(q)

∫ s2

s1

(s2 − s)q−1|F (s, v(s))|ds

+
∣∣∣ κ∑
j=1

s2 − s1

Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds
∣∣∣

+
∣∣∣ κ∑
j=1

(s2 − s1)Jj(v(w−j ))
∣∣∣+ |Mv

2 |(s2 − s1)

≤ L1

Γ(q + 1)
[q(s2 − s1)− (s2 − s1)

q] +
L1

Γ(q + 1)
(s2 − s1)

q

+ (s2 − s1)L1

l∑
j=1

ϒ
q−1 + (s2 − s1)

l∑
j=1

L3 + |Mv
2 |(s2 − s1)

−→ 0 as s2 → s1.
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Thus ΨB̄r is equicontinuous in (wκ, wκ+1), κ = 0, 1, . . . , l.
Step 2: To show that {Ψv|v ∈ B̄r} is a uniformly bounded subset of PC(I,R).

For v ∈ B̄r and t ∈ (wκ, wκ+1), κ = 0, 1, . . . , l, we have

|Ψv(t)| ≤ 1
Γ(q)

∫ t

wκ

(t− s)q−1|F (s, v(s))|ds

+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1|F (s, v(s))|ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2|F (s, v(s))|ds+
κ∑
j=1

|Ij(v(w−j ))|

+
κ∑
j=1

(t− wκ)|Jj(v(w−j ))|+
κ−1∑
j=1

(wκ − wj)|Jj(v(w−j ))|+ |M
v
1 |+ |Mv

2 |ϒ

≤ L1ϒq

Γ(q + 1)
+

l∑
j=1

L1ϒq

Γ(q + 1)
+

l∑
j=1

L1ϒq

Γ(q)
+

l−1∑
j=1

L1ϒq

Γ(q)
+

l∑
j=1

L2

+
l∑
j=1

ϒL3 +
l−1∑
j=1

ϒL3 + |Mv
1 |+ |Mv

2 |ϒ

≤
ϒq(l+ 1)|ω|Γ(α+ q

γ + β + 1) + µ2Γ(α+ q
γ + 1)ξq

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

L1

+
(l+ 1)ϒqΓ(α+ q

γ + β + 1)(µ1 + ϒ)

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

L1 +
ϒq(2l − 1)(|ω|+ µ1 + ϒ)

|ω|Γ(q)
L1

+
l(|ω|+ µ1 + ϒ)

|ω|
L2 +

ϒ(2l − 1)(|ω|+ µ1 + ϒ)

|ω|
L3 +

|T1|ϒ2

|ω|
L4

+
ϒ|T2|
|ω|

L4 := L∗.

It follows that ‖Ψv‖
PC
≤ L∗ for all v ∈ B̄r.

Step 3: To show that Ψ is continuous on B̄r.
Using the continuity of the functions F , Iκ, Jκ, h, and Lemma 2.2, it can be shown that Ψ is

continuous on B̄r.
Therefore, the Arzelá-Ascoli theorem ensures that Ψ : B̄r → PC(I,R) is completely contin-

uous.

Further, since lim
v→0

F (t, v)

v
= 0, lim

v→0

Iκ(v)
v

= 0, lim
v→0

Jκ(v)
v

= 0 and lim
v→0

h(v)

v
= 0, for εi >

0, i = 1, 2, 3, 4, there exists a r0 > 0 such that |F (t, v)| < ε1|v|, |Iκ(v)| < ε2|v|, |Jκ(v)| < ε3|v|
and |h(v)| < ε4|v| for 0 < |v| < r0 where εi, i = 1, 2, 3, 4 are chosen such that

ϒq(l+ 1)|ω|Γ(α+ q
γ + β + 1) +

(
µ2Γ(α+ q

γ + 1)ξq

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

ε1

(l+ 1)ϒqΓ(α+ q
γ + β + 1)

)
(µ1 + ϒ)

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

ε1 +
ϒq(2l − 1)(|ω|+ µ1 + ϒ)

|ω|Γ(q)
ε1

+
l(|ω|+ µ1 + ϒ)

|ω|
ε2 +

ϒ(2l − 1)(|ω|+ µ1 + ϒ)

|ω|
ε3 +

ϒ(|T1|ϒ + |T2|)
|ω|

ε4 ≤ 1.
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Define S = Br0 . Then we have

‖Ψv‖
PC
≤
[

ϒq(l+ 1)|ω|Γ(α+ q
γ + β + 1) +

(
µ2Γ(α+ q

γ + 1)ξq

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

ε1

+
(l+ 1)ϒqΓ(α+ q

γ + β + 1)
)
(µ1 + ϒ)

|ω|Γ(q + 1)Γ(α+ q
γ + β + 1)

ε1

+
ϒq(2l − 1)(|ω|+ µ1 + ϒ)

|ω|Γ(q)
ε1 +

l(|ω|+ µ1 + ϒ)

|ω|
ε2

+
ϒ(2l − 1)(|ω|+ µ1 + ϒ)

|ω|
ε3 +

ϒ(|T1|ϒ + |T2|)
|ω|

ε4

]
‖v‖

PC
,

which gives ‖Ψv‖
PC
≤ ‖v‖

PC
, for v ∈ ∂Br0 . Therefore, by applying Theorem 2.6, it is estab-

lished that the operator Ψ has at least one fixed point on B̄r0 . 2

Theorem 3.4. Assume that there exist Li > 0, i = 1, 2, 3, 4 satisfying |F (t, v)| ≤ L1, |Iκ(v)| ≤
L2, |Jκ(v)| ≤ L3 and |h(v)| ≤ L4 for t ∈ J , v ∈ R and κ = 1, 2, . . . , l. Then the problem
defined by (1.1) and (1.2) has at least one solution.

Proof. Under the above assumptions and using the continuity of the involved functions F , Iκ,
Jκ, h, it can be shown that Ψ : PC(I,R) → PC(I,R) is well-defined and completely continu-
ous. Also, ‖v‖

PC
≤ L∗ for all v ∈ E(Ψ) and for some L∗ ∈ R (same as in theorem 3.3, Step 2).

Therefore, Theorem 2.7 assures the existence of a fixed point of Ψ on PC(I,R). 2

Theorem 3.5. Assume that
(H1) there exists a constant q1 ∈ (0, 1) with 1+q1 < q such that a function f ∈ L

1
q1 ([0,ϒ], [0,∞))

and a nondecreasing L1 function g : [0,∞)→ (0,∞) exist such that

|F (t, v)| ≤ f(t)g(|v|), for all t ∈ I, v ∈ R,

(H2) there exists a positive constant L such that

L
A
|ω| + g(L)‖f‖

L
1
q1 [0,ϒ]

B
> 1,

where

a =
q − q1

1− q1
, c =

q − 2
1− q1

,

A = (µ1 + ϒ)
(
lL2 + (2l − 1)ϒL3

)
+ (|T2|+ |T1|ϒ)ϒL4,

B =
ϒq−q1(|ω|+ µ1 + ϒ)

|ω|

(
l+ 1

Γ(q)(a+ 1)1−q1
+

2l − 1
Γ(q − 1)(c+ 1)1−q1

)

+
µ2ξ

q−q1(µ1 + ϒ)Γ(α+ q−q1
γ + 1)

|ω|(a+ 1)1−q1 Γ(α+ q−q1
γ + β + 1)

.

Then problem (1.1) with boundary conditions given by (1.2) has at least one solution.

Proof. Here the proof is accomplished with the help of Leray-Schauder’s nonlinear alternative.
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Taking S = PC(I,R), we define a nonlinear map Ψ on B̄r by

(Ψv)(t) =



1
Γ(q)

∫ t
0 (t− s)

q−1F (s, v(s))ds+Mv
1 +Mv

2 t, t ∈ [0, w1],
1

Γ(q)

∫ t
wκ

(t− s)q−1F (s, v(s))ds

+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1F (s, v(s))ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))

+Mv
1 +Mv

2 t, t ∈ (wκ, wκ+1], κ = 1, 2, . . . , l.

Under the given assumptions, it can be shown that Ψ is well-defined on B̄r and Ψv ∈ PC(I,R)
for v ∈ B̄r. Next, to show that Ψ : B̄r → PC(I,R) is completely continuous, the proof is split
into the following parts :
Step 1: To show, {Ψv|v ∈ B̄r} is a uniformly bounded subset of PC(I,R).

For v ∈ B̄r and t ∈ (wκ, wκ+1), κ = 0, 1, . . . , l, we have

|Ψv(t)| ≤ g(r)ϒ(a+1)(1−q1)

Γ(q)(a+ 1)1−q1
‖f‖

L
1
q1 [0,ϒ]

+
g(r)lϒ(a+1)(1−q1)

Γ(q)(a+ 1)1−q1
‖f‖

L
1
q1 [0,ϒ]

+
g(r)lϒ(c+1)(1−q1)+1

Γ(q − 1)(c+ 1)1−q1
‖f‖

L
1
q1 [0,ϒ]

+
g(r)(l − 1)ϒ(c+1)(1−q1)+1

Γ(q − 1)(c+ 1)1−q1
‖f‖

L
1
q1 [0,ϒ]

+ lL2 + (2l − 1)ϒL3 + |Mv
1 |+ |Mv

2 |ϒ,

that is,

‖Ψv‖
PC
≤ g(r)ϒ(q−q1)‖f‖

L
1
q1 [0,ϒ]

(
l+ 1

Γ(q)(a+ 1)1−q1
+

2l − 1
Γ(q − 1)(c+ 1)1−q1

)
+ lL2 + (2l − 1)ϒL3 + |Mv

1 |+ |Mv
2 |ϒ,

where

|M1| ≤
µ1g(r)‖f‖

L
1
q1 [0,ϒ]

|ω|

[
µ2ξ

q−q1 Γ(α+ q−q1
γ + 1)

(a+ 1)1−q1 Γ(α+ q−q1
γ + β + 1)

+ ϒ
q−q1

(
l+ 1

Γ(q)(a+ 1)1−q1
+

2l − 1
Γ(q − 1)(c+ 1)1−q1

)]

+
µ1lL2 + µ1(2l − 1)ϒL3

|ω|
+
|w2|ϒL4

|ω|
,

|M2| ≤
g(r)‖f‖

L
1
q1 [0,ϒ]

|ω|

[
µ2ξ

q−q1 Γ(α+ q−q1
γ + 1)

(a+ 1)1−q1 Γ(α+ q−q1
γ + β + 1)

+ ϒ
q−q1

(
l+ 1

Γ(q)(a+ 1)1−q1
+

2l − 1
Γ(q − 1)(c+ 1)1−q1

)]

+
lL2 + (2l − 1)ϒL3

|ω|
+
|w2|ϒL4

|ω|
,

with the positive constantsL2, L3 andL4 satisfying |Iκ(v(t))| ≤ L2, |Jκ(v(t))| ≤ L3, |h(v(t))| ≤
L4, for all t ∈ I .
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Step 2: To show that {Ψv|v ∈ B̄r} is equicontinuous in (wκ, wκ+1), κ = 0, 1, . . . , l.
Let v ∈ B̄r and 0 ≤ s1 < s2 ≤ w1, then

|(Ψv)(s2)− (Ψv)(s1)| ≤
1

Γ(q)

∫ s1

0
[(s2 − s)q−1 − (s1 − s)q−1]|F (s, v(s))|ds

+
1

Γ(q)

∫ s2

s1

(s2 − s)q−1|F (s, v(s))|ds+ |Mv
2 |(s2 − s1)

≤
g(r)‖f‖

L
1
q1 [0,ϒ]

Γ(q)(a+ 1)1−q1

[
|sa+1

2 − sa+1
1 |+ (s2 − s1)

a+1]1−q1

+
g(r)‖f‖

L
1
q1 [0,ϒ]

Γ(q)(a+ 1)1−q1
(s2 − s1)

q−q1 + |Mv
2 |(s2 − s1)

−→ 0 as s2 → s1.

For wκ < s1 < s2 ≤ wκ+1, κ = 1, . . . , l,

|(Ψv)(s2)− (Ψv)(s1)| ≤
g(r)‖f‖

L
1
q1 [0,ϒ]

Γ(q)(a+ 1)1−q1

[
(a+ 1)(s2 − s1)− (s2 − s1)

a+1]1−q1

+
g(r)‖f‖

L
1
q1 [0,ϒ]

Γ(q)(a+ 1)1−q1
(s2 − s1)

q−q1 + (s2 − s1)lL3

+
g(r)‖f‖

L
1
q1 [0,ϒ]

Γ(q − 1)(c+ 1)1−q1
lϒq−q1(s2 − s1) + |Mv

2 |(s2 − s1)

−→ 0 as s2 → s1.

Thus, Arzelá-Ascoli theorem ensures that ΨB̄r is a relatively compact subset of PC(I,R). Also,
using (H1), it follows that Ψ is continuous on B̄r. Thus, Ψ : B̄r → PC(I,R) is completely
continuous.

Now, for each t ∈ [0,ϒ] and following the similar computation procedure as earlier, we find
that

‖v‖
PC

A
|ω| + g(‖v‖

PC
)‖f‖

L
1
q1 [0,ϒ]

B
≤ 1.

In view of (H2), we have ‖v‖
PC
6= L. Set S1 = {v ∈ PC(I,R)|‖v‖PC < L}. Then, the operator

Ψ : S̄1 → PC(I,R) is completely continuous. Also, from the choice of S1, there does not exist
any v ∈ ∂S1 such that v = ΛΨv for some Λ ∈ (0, 1). Thus, Theorem 2.8 gives the existence of
a fixed point of the function Ψ on S̄1. 2

Example 3.6. Consider the following fractional impulsive differential equation:

CDq
∗v(t) =

2 sin7(v(t) + 1) + t5 + |v(t)|4

1 + t3 + |v(t)|4
, t ∈ [0, 1] \

{1
2

}
, q ∈ (1, 2),

∆v
(1

2

)
=

exp(− 1
2) + sin v( 1

2)

10 + |v( 1
2)|

, ∆v′
(1

2

)
=

exp
(
− v2

( 1
2

))
5 + sin v

( 1
2

) ,

v(0)− µ1v
′(0) =

∫ 1

0

cos v(s)
11 + |v(s)|

ds,

v(1) = µ2I
α,β
γ v(ξ), ξ ∈

(
0,

1
2

)
.

Here, l = 1, w1 = 1
2 , F (t, v(t)) = 2 sin7(v(t)+1)+t5+|v(t)|4

1+t3+|v(t)|4 , I1(v(t)) =
exp(−t)+sin v(t)

10+|v(t)| , J1(v(t)) =

exp(−v2(t))
5+sin v(t) and h(v(t)) = cos v(t)

11+|v(t)| . Thus all the assumptions of Theorem 3.4 are satisfied with
L1 = 3, L2 = 1

5 , L3 = 1
4 , L4 = 1

11 and therefore, we can conclude the existence of solution of
our problem.
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4 Further development with respect to general sub-intervals

In Section 3, the proofs were accomplished by using the right terminal condition where ξ belongs
to the initial sub-interval (0, w1). In other words, in equation (1.2), at the end point t = ϒ, we
consider the boundary condition v(ϒ) = µ2I

α,β
γ v(ξ) for ξ ∈ (0, w1).

As a step towards more generalization, instead of taking ξ ∈ (0, w1), it may be assumed
that ξ ∈ (wκ, wκ+1), κ = 1, , . . . , l. Following the same procedure as in the earlier section, this
extended problem may also be taken up by considering ξ in any arbitrary sub-interval. That is,
for ξ ∈ (wκ, wκ+1), κ = 1, , . . . , l, in view of Lemma 3.1, consider the following operator :

Ψi on PC(I,R), (i = 1, 2, 3) defined as

(Ψiv)(t) =



1
Γ(q)

∫ t
0 (t− s)

q−1F (s, v(s))ds+Mv
i1 +Mv

i2t, t ∈ [0, w1],
1

Γ(q)

∫ t
wκ

(t− s)q−1F (s, v(s))ds

+
κ∑
j=1

1
Γ(q)

∫ wj

wj−1

(wj − s)q−1F (s, v(s))ds

+
κ∑
j=1

t− wκ
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, v(s))ds

+
κ−1∑
j=1

wκ − wj
Γ(q − 1)

∫ wj

wj−1

(wj − s)q−2F (s, x(s))ds+
κ∑
j=1

Ij(v(w−j ))

+
κ∑
j=1

(t− wκ)Jj(v(w−j )) +
κ−1∑
j=1

(wκ − wj)Jj(v(w−j ))

+Mv
i1 +Mv

i2t, t ∈ (wκ, wκ+1], κ = 1, 2, . . . , l,

where, for ξ ∈ (wκ, wκ+1), κ = 1, , . . . , l − 2,

Mv
11 = −

1
ω

[
− µ1µ2I

α,β
γ IqwκF (t, v(t))(ξ)− T2

∫ ϒ

0
h(v(s))ds

+ T1µ1

κ∑
j=1

Ij(v(w−j )) + µ1

l∑
j=κ+1

Ij(v(w−j )) + µ1

κ∑
j=1

(T2 − wl)Jj(v(w−j ))

+ µ1

l∑
j=κ+1

(ϒ− wl)Jj(v(w−j )) + µ1

κ∑
j=1

(wl − T1wj)Jj(v(w−j )

+ µ1

l−1∑
j=κ+1

(wl − wj)Jj(v(w−j )) + w1µ1

κ∑
j=1

Iqwj−1
F (t, v(t))(wj)

+ µ1

l+1∑
j=κ+1

Iqwj−1
F (t, v(t))(wj) + µ1

κ∑
j=1

(T2 − wl)Iq−1
wj−1

F (t, v(t))(wj)

+ µ1

l∑
j=κ+1

(ϒ− wl)Iq−1
wj−1

F (t, v(t))(wj) + µ1

κ∑
j=1

(wl − T1wj)I
q−1
wj−1

F (t, v(t))(wj)

+ µ1

l−1∑
j=κ+1

(wl − wj)Iq−1
wj−1

F (t, v(t))(wj)
]
,
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Mv
12 = −

1
ω

[
− µ2I

α,β
γ IqwκF (t, v(t))(ξ) + T1

∫ ϒ

0
h(v(s))ds+ T1

κ∑
j=1

Ij(v(w−j ))

+
l∑

j=κ+1

Ij(v(w−j )) +
κ∑
j=1

(T2 − wl)Jj(v(w−j )) +
l∑

j=κ+1

(ϒ− wl)Jj(v(w−j ))

+
κ∑
j=1

(wl − T1wj)Jj(v(w−j ) +
l−1∑

j=κ+1

(wl − wj)Jj(v(w−j )

+ T1

κ∑
j=1

Iqwj−1
F (t, v(t))(wj) +

l+1∑
j=κ+1

Iqwj−1
F (t, v(t))(wj)

+
κ∑
j=1

(T2 − wl)Iq−1
wj−1

F (t, v(t))(wj) + µ1

l∑
j=κ+1

(ϒ− wl)Iq−1
wj−1

F (t, v(t))(wj)

+
κ∑
j=1

(wl − T1wj)I
q−1
wj−1

F (t, v(t))(wj) +
l−1∑

j=κ+1

(wl − wj)Iq−1
wj−1

F (t, v(t))(wj)
]
.

For ξ ∈ (wl−2, wl−1),

Mv
21 = −

1
ω

[
− µ1µ2I

α,β
γ Iqwl−2

F (t, v(t))(ξ)− T2

∫ ϒ

0
h(v(s))ds

+ wT1µ1

l−2∑
j=1

Ij(v(w−j )) + µ1

l∑
j=l−1

Ij(v(w−j )) + µ1

l−2∑
j=1

(T2 − T1wj)Jj(v(w−j ))

+ µ1

l∑
j=l−1

(ϒ− wj)Jj(v(w−j )) + T1µ1

l−2∑
j=1

Iqwj−1
F (t, v(t))(wj)

+ µ1

l+1∑
j=l−1

Iqwj−1
F (t, v(t))(wj) + µ1

l−2∑
j=1

(T2 − T1wj)I
q−1
wj−1

F (t, v(t))(wj)

+ µ1

l∑
j=l−1

(ϒ− wj)Iq−1
wj−1

F (t, v(t))(wj)
]
,

Mv
22 = −

1
ω

[
− µ2I

α,β
γ Iqwl−2

F (t, v(t))(ξ) + T1

∫ ϒ

0
h(v(s))ds+ T1

l−2∑
j=1

Ij(v(w−j ))

+
l∑

j=l−1

Ij(v(w−j )) +
l−2∑
j=1

(T2 − T1wj)Jj(v(w−j )) +
l∑

j=l−1

(ϒ− wj)Jj(v(w−j ))

+ T1

l−2∑
j=1

Iqwj−1
F (t, v(t))(wj) +

l+1∑
j=l−1

Iqwj−1
F (t, v(t))(wj)

+
l−2∑
j=1

(T2 − T1wj)I
q−1
wj−1

F (t, v(t))(wj) + µ1

l∑
j=l−1

(ϒ− wj)Iq−1
wj−1

F (t, v(t))(wj)
]
.
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For ξ ∈ (wl,ϒ),

Mv
31 = −

1
ω

[
− µ1µ2I

α,β
γ IqwlF (t, v(t))(ξ)− T2

∫ ϒ

0
h(v(s))ds

+ T1µ1

l∑
j=1

Ij(v(w−j )) + µ1

l∑
j=1

(T2 − T1wl)Jj(v(w−j ))

+ µ1T1

l−1∑
j=1

(wl − wj)Jj(v(w−j )) + µ1I
q
wl
F (t, v(t))(ϒ)

+ µ1T1

l∑
j=1

Iqwj−1
F (t, v(t))(wj) + µ1(T2 − T1wl)

l∑
j=1

Iq−1
wj−1

F (t, v(t))(wj)

+ µ1T1

l−1∑
j=1

(wl − wj)Iq−1
wj−1

F (t, v(t))(wj)
]
,

Mv
32 = −

1
ω

[
− µ2I

α,β
γ IqwlF (t, v(t))(ξ) + T1

∫ ϒ

0
h(v(s))ds+ T1

l∑
j=1

Ij(v(w−j ))

+
l∑
j=1

(T2 − T1wl)Jj(v(w−j )) + T1

l−1∑
j=1

(wl − wj)Jj(v(w−j )) + IqwlF (t, v(t))(ϒ)

+ T1

l∑
j=1

Iqwj−1
F (t, v(t))(wj) + (T2 − T1wl)

l∑
j=1

Iq−1
wj−1

F (t, v(t))(wj) + T1

×
l−1∑
j=1

(wl − wj)Iq−1
wj−1

F (t, v(t))(wj)
]
.

Further, we have the following:

ω = T1µ1 + T2 6= 0,

with T1 = 1− µ2Γ(α+ 1)
Γ(α+ β + 1)

, T2 = ϒ−
µ2ξΓ(α+ 1

γ + 1)

Γ(α+ 1
γ + β + 1)

.

Subsequently, under similar kind of assumptions on the functions F , Iκ, Jκ and h (as in Sec-
tion 3), different results can be obtained for the existence and uniqueness of solutions for ξ ∈
(wκ, wκ+1), κ = 1, . . . , l.

5 Conclusion

This work investigates the existence and uniqueness of the solution of a class of impulsive bound-
ary value problems governed by a fractional differential equation with multiple base points. Here
we define a nonlinear operator Ψ on the Banach space whose fixed point gives the solution of the
boundary value problem. Our results are more general in the sense that Erdélyi-Kober integrals
are known to be more general operators in fractional calculus, and they reduce to Riemann-
Liouville integrals with a power weight for α = 0, γ = 1. Furthermore, those integrals include
Hadamard integrals as a special case. For further research in this direction, it is very likely
possible to examine the existence and uniqueness of solutions of boundary value problems for
impulsive evolution equations by considering Erdélyi-Kober conditions at both ends, and also
two, three, or even multi-point boundary value problems involving Erdélyi-Kober conditions.

Remark 5.1. This work is an excerpt from the first author’s thesis titled On the existence, unique-
ness and approximate controllability of some classes of differential equations with different types
of fractional derivatives which is available at gyan.iitg.ernet.in.

http://gyan.iitg.ernet.in/
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