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Abstract In this paper, we familiarize and explore new subclasses of bi-univalent functions
defined in the open unit disk related with Gegenbauer polynomials. Furthermore, we find es-
timates for initial coefficients of functions in these classes. Also, we obtain the Fekete-Szegö
inequalities for function in these classes. Several consequences of the results are also pointed
out as corollaries.

1 Introduction

Let A represent the class of analytic functions of the form

f(z) = z +
∞∑
n=2

an z
n (1.1)

normalized by the conditions f(0) = 0 = f ′(0)− 1 defined in the open unit disk

D = {z ∈ C : |z| < 1}.

Let S be the subclass of A comprising of functions of the form (1.1) which are also univalent in
D.

The Koebe one quarter theorem [3] ensures that the image of D under every univalent function
f ∈ A contains a disk of radius 1

4 . Thus every univalent function f has an inverse f−1 satisfying

f−1(f(z)) = z, (z ∈ D) and f(f−1(w)) = w (|w| < r0(f), r0(f) ≥
1
4
).

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D. Let Σ denote
the class of bi-univalent functions defined in the unit disk D. Since f ∈ Σ has the Maclaurian
series given by (1.1), a computation shows that its inverse g = f−1 has the expansion

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 + · · · . (1.2)

We notice that the class Σ is not empty. For instance, the functions z, z
1−z , − log(1 − z) and

1
2 log 1+z

1−z are members of Σ. However, the Koebe function is not a member of Σ. Lately, Srivas-
tava et al. [21] have essentially revived the study of analytic and bi-univalent functions, it was
followed by such works as those by(see [1, 2, 4, 13, 14, 18]). Several authors have introduced
and examined subclasses of bi-univalent functions and obtained bounds for the initial coefficients
(see [1, 2, 6, 13, 21, 27, 28]), bi-close-to-convex functions[5, 11] .

An analytic function ϕ is subordinate to an analytic function ψ, written ϕ(z) ≺ ψ(z), pro-
vided there is an analytic function ω defined on D with ω(0) = 0 and |ω(z)| < 1 satisfying
ϕ(z) = ψ(ω(z)).

We recall important subclasses of S in geometric function theory such that if f ∈ A and

zf ′(z)

f(z)
≺ p(z) and 1 +

zf ′′(z)

f ′(z)
≺ p(z)
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where p(z) = 1+z
1−z , then we say that f is starlike and convex, respectively. These functions form

known classes denoted by S∗ and C, respectively.
In Geometric Function Theory, there have been many interesting and fruitful usages of a wide

variety of special functions, q− calculus and special polynomials. The Fibonacci polynomials,
Faber polynomials, the Lucas polynomials, the Pell polynomials, the Pell-Lucas polynomials,
and the Chebyshev polynomials of the second kind and Horadam polynomials are potentially
important in a variety of disciplines in the mathematical, physical, statistical, and engineering
sciences. These polynomials have been studied in several papers from a theoretical point of view
and recently in case of bi-univalent functions (see[6, 15, 22, 23] also the references cited therein).
In this article, we associate certain bi-univalent functions with Gegenbauer polynomials and then
explores some properties of the class of bi-univalent functions based on earlier work of Jahangiri
and Hamidi [8] .

We recall the Gegenbauer polynomials (for details see Kim et al., [9] and references cited
therein) are given in terms of the Jacobi polynomials P (ν,υ)

n (x) with ν = υ = λ − 1
2 ; (λ >

− 1
2 , λ 6= 0) by

Gλ
n(x) =

Γ(λ+ 1
2)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2)
P

(λ− 1
2 ,λ−

1
2 )

n (x)

=

(
n+ 2λ− 1

n

) n∑
k=0

(nk)(2λ+ n)k

(λ+ 1
2)k

(
x− 1

2

)k
(1.3)

where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) . From (1.3), we note that Gλ
n(x) is a polynomial

of degree n with real coefficients and Gλ
n(1) = (n+2λ−1

n ). The leading coefficient of Gλ
n(x) is

2n(n+λ−1
n ). By the theory of Jacobi polynomials with µ = υ = λ − 1

2 , λ > −
1
2 , and λ 6= 0, we

get

Gλ
n(−x) = (−1)nGλ

n(x).

It is not difficult to show that Gλ
n(x) is a solution of the following Gegenbauer differential

equation:
(1− x2)y′′ − (2λ+ 1)xy′ + n(n+ 2λ)y = 0.

The Rodrigues formula for the Gegenbauer polynomials is well known as the following:

(1− x2)λ−
1
2 Gλ

n(x) =
(−2)n(λ)n
n!(n+ 2λ)n

(
d

dx

)n
(1− x2)n+λ−

1
2 .

The above equation can be easily derived from the properties of Jacobi polynomials.
As is well known, the generating function of Gegenbauer polynomials is given by(see[9, 25]

2λ−
1
2

(1− 2xt+ t2)
1
2 (1− xt+

√
1− 2xt+ t2)λ−

1
2
=
∞∑
n=0

(λ− 1
2)n

(2λ)n
Gλ
n(x)t

n. (1.4)

This equation can be derived from the generating function of Jacobi polynomials.
From above equation (1.4), we note that

Φ(t, x) =
1

(1− 2xt+ t2)λ
=
∞∑
n=0

Gλ
n(x)t

n ; (|t| < 1, |x| ≤ 1). (1.5)

The proof of above is given in [25] and Kim et al., [9](also see [10]) extensively studied these
results for different perspective. We note that , for λ = 1; we get the Chebyshev Polynomials
and λ = 1

2 ; we get the Legendre Polynomials. In 1935, Robertson [20] proved an integral

representation for typically real valued TR functions,has the form f(z) = z +
∞∑
n=2

anz
n which

are holomorphic in ∆, real for z ∈ (−1; 1) and satisfy the condition

Imz > 0 z ∈ ∆ /∈ (−1; 1)
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namely f ∈ TR if and only if it has the representation

f(z) =

∫ 1

−1

z

1− 2xz + z2 d(µ) ; z ∈ ∆

whereµ is a probability measure on [−1, 1]. The notion of the class TR(λ), λ > 0, has been
extended in [26] to the class which is defined by the integral formula

f(z) =

∫ 1

−1

z

(1− 2xz + z2)λ
d(µ) ; z ∈ ∆ (1.6)

where µ is a probability measure on [−1, 1]. Of course, we have TR(1) ≡ TR and if f given
by(1.6) plays an important role in the geometric theory of holomorphic functions in the unit disk
∆ then we have

an =

∫ 1

−1
Gλ
n−1(x)d(x)

where Gλ
n(x) is the Gegenbauer polynomial of degree n.

In this paper, motivated by recent works , we introduce a subclass of bi-univalent functions
associated with Gegenbauer polynomials [16, 17] and obtain bounds on the initial Taylor coef-
ficients |a2| and |a3| for the functions f ∈ HGκ, δ, ϑ

Σ
(Φ), by subordination and consider the cel-

ebrated Fekete-Szegö problem. We also provide relevant connections of our results with those
considered in earlier investigations.

2 Class of Bi-univalent function related with Gegenbauer polynomials

To start with for our discussions unless otherwise stated we let

0 ≤ λ ≤ 1, λ >
1
2

and t ∈ (
1
2
, 1]

also

Φ(t, z) =
1

(1− 2tz + z2)λ
= Gλ

0 (t)+Gλ
1 (t)z

1 +Gλ
2 (t)z

2 +Gλ
3 (t)z

3 + ...Gλ
n(t)z

n+ · · · . (2.1)

In particular,

Gλ
0 (t) = 1

Gλ
1 (t) = 2λt (2.2)

Gλ
2 (t) = 2λ(λ+ 1)t2 − λ = 2(λ)2t

2 − λ (2.3)

3Gλ
3 (t) = 4λ(λ+ 1)(λ+ 2)t3 − 6λ(λ+ 1)t

= 4(λ)3t
3 − 6(λ)2t (2.4)

where
(λ)n = λ(λ+ 1)(λ+ 2) · · · (λ+ n− 1).

Now we define first subclass of bi-univalent functions in the open unit disk, associated with
Gegenbauer polynomials as below:

Definition 2.1. A function f ∈ Σ of the form (1.1) belongs to the class HGκ, δ, ϑ
Σ

(Φ), κ ≥ 0,
ϑ ≥ 1, δ ≥ 0, if the following conditions are satisfied:

(1− ϑ)
(
f(z)

z

)κ
+ ϑf ′(z)

(
f(z)

z

)κ−1

+ δzf ′′(z) ≺ Φ(t, z)

and

(1− ϑ)
(
g(w)

w

)κ
+ ϑg′(w)

(
g(w)

w

)κ−1

+ δwg′′(w) ≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).
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By suitably specializing the parameters κ, ϑ and δ, the classHGκ, δ, ϑ
Σ

(Φ) reduces to various
new subclasses, as illustrated in the following remark:

Remark 2.2. (i) For δ = 0, we let HGκ, 0, ϑ
Σ

(Φ) ≡ N κ, ϑ
Σ

(Φ). A function f ∈ Σ of the form
(1.1) is said to be in N κ, ϑ

Σ
(Φ), if

(1− ϑ)
(
f(z)

z

)κ
+ ϑf ′(z)

(
f(z)

z

)κ−1

≺ Φ(t, z)

and

(1− ϑ)
(
g(w)

w

)κ
+ ϑg′(w)

(
g(w)

w

)κ−1

≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(ii) For ϑ = 1 and δ = 0, we let HGκ, 0, 1
Σ

(Φ) ≡ Bκ
Σ
(Φ). A function f ∈ Σ of the form (1.1) is

said to be in Bκ
Σ
(Φ), if

f ′(z)

(
f(z)

z

)κ−1

≺ Φ(t, z) and g′(w)

(
g(w)

w

)κ−1

≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(iii) For ϑ = 1 and δ = 0 = κ, we let HG0, 0, 1
Σ

(Φ) ≡ SΣ(Φ). A function f ∈ Σ as assumed in
(1.1) is said to be in SΣ(Φ), if

zf ′(z)

f(z)
≺ Φ(t, z) and

wg′(w)

g(w)
≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(iv) For κ = 1, we let HG1, δ, ϑ
Σ

(Φ) ≡Mδ, ϑ
Σ

(Φ). A function f ∈ Σ as assumed in (1.1) is said
to be inMδ, ϑ

Σ
(Φ), if

(1− ϑ)f(z)
z

+ ϑf ′(z) + δzf ′′(z) ≺ Φ(t, z)

and

(1− ϑ)g(w)
w

+ ϑg′(w) + δwg′′(w) ≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(v) For ϑ = κ = 1, we let HG1, δ, 1
Σ

(Φ) ≡ QΣ(δ,Φ). A function f ∈ Σ as assumed in (1.1) is
said to be in QΣ(δ,Φ), if

f ′(z) + δzf ′′(z) ≺ Φ(t, z)

and

g′(w) + δwg′′(w) ≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(vi) For κ = 1 and δ = 0, we let HG1, 0, ϑ
Σ

(Φ),≡ FΣ(ϑ,Φ). A function f ∈ Σ as assumed in
(1.1) is said to be in FΣ(ϑ,Φ(t, z)), if

(1− ϑ)f(z)
z

+ ϑf ′(z) ≺ Φ(t, z)
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and

(1− ϑ)g(w)
w

+ ϑg′(w) ≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

(vii) For ϑ = 1, κ = 1 and δ = 0, we have the class HG1, 0, 1
Σ

(Φ) ≡ HΣ(Φ). A function f ∈ Σ

as assumed in (1.1) is said to be in HΣ(Φ), if

f ′(z) ≺ Φ(t, z) and g′(w) ≺ Φ(t, w)

where g(w) = f−1(w) assumed as in (1.2).

In the following section , we find the estimates for the coefficients |a2| and |a3| for functions
in the class HGκ, δ, ϑ

Σ
(Φ) and its special cases. Also, Fekete-Szegö inequality for functions in

this subclass.

3 Coefficient estimates and Fekete-Szegö inequality

In order to discuss coefficient estimates and Fekete-Szegö inequality for f ∈ HGκ, δ, ϑ
Σ

(Φ) we
define u(z) and v(w) in P as

u(z) = c1z + c2z
2 + · · · (3.1)

and
v(w) = d1w + d2w

2 + · · · (3.2)

are analytic in D with u(0) = 0 = v(0) and |u(z)| < 1, |v(w)| < 1, for all z, w ∈ D. It is
well-known that if

|u(z)| = |c1z + c2z
2 + · · · | < 1 and |v(w)| = |d1w + d2w

2 + · · · | < 1, z, w ∈ D, (3.3)

then
|cj | ≤ 1 and |dj | ≤ 1 for all j ∈ N. (3.4)

We now prove our first result asserted by Theorem 3.1 below.

Theorem 3.1. . Let f be assumed as in (1.1) and f ∈ HGκ, δ, ϑ
Σ

(Φ). Then

|a2| ≤ min{F1, F2, F3},

where

F1 =
2λ|t|

(ϑ+ κ+ 2δ)
, F2 =

√
4λt+ 2λ[2(λ+ 1)t2 − 1]
(2ϑ+ κ)(κ+ 1) + 12δ

and F3 =
2λt
√

2λt√
[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)

.

Also
|a3| ≤ min{G1, G2, G3}

where

G1 =
2λt(ϑ+ κ+ 2δ)2 + 4λ2t2 (2ϑ+ κ+ 6δ)

(2ϑ+ κ+ 6δ) (ϑ+ κ+ 2δ)2 ,

G2 =
(4λt+ 2λ[2(λ+ 1)t2 − 1]) (2ϑ+ κ+ 6δ) + 2λt [(2ϑ+ κ)(κ+ 1) + 12δ]

(2ϑ+ κ+ 6δ) [(2ϑ+ κ)(κ+ 1) + 12δ]

G3 =
8λ3t3 (2ϑ+ κ+ 6δ) + 2λt

[
[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t

2 − λ)
]

(2ϑ+ κ+ 6δ) [[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)]
.
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Proof. Since f ∈ HGκ, δ, ϑ
Σ

(Φ), from the Definition 2.1, we have

(1− ϑ)
(
f(z)

z

)κ
+ ϑf ′(z)

(
f(z)

z

)κ−1

+ δzf ′′(z)

= 1 +Gλ
1 (x)u(z) +G2(x)u

2(z) + · · · ,

= 1 + 2λtc1z + {2λtc2 +

[
(λ)2

2!
(2t)2 − λ

]
c2

1}z2 + · · · , (3.5)

and for g = f−1

(1− ϑ)
(
g(w)

w

)κ
+ ϑg′(w)

(
g(w)

w

)κ−1

+ δwg′′(w)

= 1 +Gλ
1 (x)v(w) +G2(x)v

2(w) + · · · ,

= 1− 2λtd1z + {2λtd2 +

[
(λ)2

2!
(2t)2 − λ

]
d2

1}z2 + · · · , (3.6)

where z, w ∈ D. Now by equating corresponding coefficients of z and z2 in (3.5) and (3.6), we
have

(ϑ+ κ+ 2δ) a2 = 2λtc1, (3.7)

(2ϑ+ κ)

[(
κ− 1

2

)
a2

2 +

(
1 +

6δ
2ϑ+ κ

)
a3

]
= 2λtc2 +

[
(λ)2

2!
(2t)2 − λ

]
c2

1, (3.8)

− (ϑ+ κ+ 2δ) a2 = 2λtd1, (3.9)

and

(2ϑ+κ)
[(

κ+ 3
2

+
12δ

2ϑ+ κ

)
a2

2 −
(

1 +
6δ

2ϑ+ κ

)
a3

]
= 2λtd2+

[
(λ)2

2!
(2t)2 − λ

]
d2

1. (3.10)

From (3.7) and (3.9), we obtain

c1 = −d1,

and

2 (ϑ+ κ+ 2δ)2
a2

2 = 4λ2t2(c2
1 + d2

1) (3.11)

a2
2 =

2λ2t2(c2
1 + d2

1)

(ϑ+ κ+ 2δ)2 . (3.12)

Now, by (3.4), we obtain

|a2| ≤
2λ|t|

(ϑ+ κ+ 2δ)
(3.13)

By adding (3.8) and (3.10), we have

[(2ϑ+ κ)(κ+ 1) + 12δ]a2
2 = 2λt (c2 + d2) +

[
(λ)2

2!
(2t)2 − λ

] (
c2

1 + d2
1
)
. (3.14)

Again by (3.4), we obtain,

a2 ≤

√
4λt+ 2λ[2(λ+ 1)t2 − 1]
(2ϑ+ κ)(κ+ 1) + 12δ

. (3.15)
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Now, by substituting (3.11) in (3.14), we reduce that

a2
2 =

4λ3t3(c2 + d2)

[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)
. (3.16)

Now, by (3.4), we obtain

|a2| ≤
2λt
√

2λt√
[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)

. (3.17)

By subtracting (3.10) from (3.8), we obtain

a3 =
λt(c2 − d2)

2ϑ+ κ+ 6δ
+ a2

2. (3.18)

Hence by(3.4), we have

|a3| ≤
λt(|c2|+ |d2|)
2ϑ+ κ+ 6δ

+ |a2|2 =
2λt

2ϑ+ κ+ 6δ
+ |a2|2 .

In view of (3.11), we get

|a3| ≤
2λt(ϑ+ κ+ 2δ)2 + 4λ2t2 (2ϑ+ κ+ 6δ)

(2ϑ+ κ+ 6δ) (ϑ+ κ+ 2δ)2 .

By using (3.15)

|a3| ≤
(4λt+ 2λ[2(λ+ 1)t2 − 1]) (2ϑ+ κ+ 6δ) + 2λt [(2ϑ+ κ)(κ+ 1) + 12δ]

(2ϑ+ κ+ 6δ) [(2ϑ+ κ)(κ+ 1) + 12δ]
.

Then in view of (3.16), we obtain

|a3| ≤
8λ3t3 (2ϑ+ κ+ 6δ) + 2λt

[
[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t

2 − λ)
]

(2ϑ+ κ+ 6δ) [[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)]
.

Similarly, we can prove the following theorem.

Theorem 3.2. For ν ∈ R, let f be given by (1.1) and f ∈ HGκ, δ, ϑ
Σ

(Φ),then

∣∣a3 − νa2
2

∣∣ ≤


4λt
2ϑ+ κ+ 6δ

; 0 ≤ |h(ν)| ≤ 2λt
2ϑ+ κ+ 6δ

2 |h(ν)| ; |h(ν)| ≥ 2λt
2ϑ+ κ+ 6δ

where h(ν) =
4λ3t3(1− ν)

[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)
.

Proof. From (3.18), we have

a3 − νa2
2 =

λt(c2 − d2)

2ϑ+ κ+ 6δ
+ (1− ν) a2

2. (3.19)

By substituting (3.16) in (3.19), we have

a3 − νa2
2 =

2λt (c2 − d2)

2ϑ+ κ+ 6δ
+

4λ3t3(1− ν)(c2 + d2)

[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)

=

(
h(ν) +

2λt
2ϑ+ κ+ 6δ

)
c2 +

(
h(ν)− 2λt

2ϑ+ κ+ 6δ

)
d2, (3.20)
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where

h(ν) =
4λ3t3(1− ν)

[(2ϑ+ κ)(κ+ 1) + 12δ] 2λ2t2 − (ϑ+ κ+ 2δ)2(2(λ)2t2 − λ)
. (3.21)

Thus by taking modulus of (3.20),

|a3 − νa2
2| ≤

∣∣∣∣h(ν) + 2λt
2ϑ+ κ+ 6δ

∣∣∣∣+ ∣∣∣∣h(ν)− 2λt
2ϑ+ κ+ 6δ

∣∣∣∣ ,
and h(ν) is given by (3.21).

Thus, we conclude that

∣∣a3 − νa2
2

∣∣ ≤


4λt
2ϑ+ κ+ 6δ

; 0 ≤ |h(ν)| ≤ 2λt
2ϑ+ κ+ 6δ

2 |h(ν)| ; |h(ν)| ≥ 2λt
2ϑ+ κ+ 6δ

(3.22)

where h(ν) is given by (3.21).

By taking ν = 1 in above Theorem one can easily state the following:

Remark 3.3. Let f be given by (1.1) and f ∈ HGκ, δ, ϑ
Σ

(Φ). Then∣∣a3 − a2
2

∣∣ ≤ 4λt
2ϑ+ κ+ 6δ

.

4 Subclass of Bi-univalent function Mτ
Σ(Φ)

In [19], Obradovic et.al gave some criteria for univalence expressing by <(f ′(z)) > 0, for the
linear combinations

τ

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− τ) 1

f ′(z)
> 0, (τ ≥ 1, z ∈ U).

Based on the above definitions recently, in [12], Lashin introduced and studied the new sub-
classes of bi-univalent function.

Definition 4.1. A function f(z) ∈ Σ given by (1.1) is said to be in the classMτ
Σ
(Φ) if it satisfies

the following conditions :

τ

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− τ) 1

f ′(z)
≺ Φ(t, z) (4.1)

and

τ

(
1 +

zg′′(w)

g′(w)

)
+ (1− τ) 1

g′(w)
≺ Φ(t, w) (4.2)

where τ ≥ 1, z, w ∈ D and the function g is given by (1.2).

Remark 4.2. For a function f(z) ∈ Σ given by (1.1),is said to be in the class
M1

Σ
(Φ) ≡ KΣ(Φ) if it satisfies the following conditions :(

1 +
zf ′′(z)

f ′(z)

)
≺ Φ(t, z) and

(
1 +

wg′′(w)

g′(w)

)
≺ Φ(t, w)

where z, w ∈ D and the function g is given by (1.2).

Theorem 4.3. Let f(z) be given by (1.1) be in the classMτ
Σ
(Φ), and τ ≥ 1. Then

|a2| ≤ min


λt

(2τ−1) ,
λt
√

2
(2τ−1)

2λt
√
λt√

2(1+τ)λ2t2−(2τ−1)2[2t2(λ)2−λ]

(4.3)
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and

|a3| ≤ min


2λt

3(3τ−1) +
λ2t2

(2τ−1)2 ,
2λt

3(3τ−1) +
2λ2t2

(2τ−1)2

2λt(2(1+τ)λ2t2−(2τ−1)2[2t2(λ)2−λ])+12λ3t3(3τ−1)
3(3τ−1)(2(1+τ)λ2t2−(2τ−1)2[2t2(λ)2−λ]) .

(4.4)

Proof. It follows from (4.1) and (4.2) that

τ

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− τ) 1

f ′(z)
= Φ(t, u(z)) (4.5)

and

τ

(
1 +

zg′′(w)

g′(w)

)
+ (1− τ) 1

g′(w)
= Φ(t, v(w)). (4.6)

From (4.5) and (4.6), we have

1 + 2(2τ − 1)a2z +
[
3(3τ − 1)a3 + 4(1− 2τ)a2

2
]
z2 + · · ·

= 1 + 2λtc1z + {2λtc2 +

[
(λ)2

2!
(2t)2 − λ

]
c2

1}z2 + · · · ,

and

1− 2(2τ − 1)a2w +
(
2(5τ − 1)a2

2 − 3(3τ − 1)a3
)
w2 − · · ·

= 1− 2λtd1z + {2λtd2 +

[
(λ)2

2!
(2t)2 − λ

]
d2

1}z2 + · · · , .

Now, equating the coefficients, we get

2(2τ − 1)a2 = 2λtc1, (4.7)

[
3(3τ − 1)a3 + 4(1− 2τ)a2

2
]
= 2λtc2 +

[
(λ)2

2!
(2t)2 − λ

]
c2

1, (4.8)

−2(2τ − 1)a2 = 2λtd1, (4.9)

and (
2(5τ − 1)a2

2 − 3(3τ − 1)a3
)
= 2λtd2 +

[
(λ)2

2!
(2t)2 − λ

]
d2

1. (4.10)

From (4.7) and (4.9), we get
c1 = −d1 (4.11)

and by(3.4) in (4.7) ,

|a2| ≤
λt

(2τ − 1)
. (4.12)

Also

(2τ − 1)2a2
2 = λ2t2(c2

1 + d2
1)

a2
2 =

λ2t2(c2
1 + d2

1)

(2τ − 1)2 (4.13)

Thus by(3.4), we get

|a2| ≤
λt
√

2
(2τ − 1)

. (4.14)

Now from (4.8), (4.10) and using (4.13), we obtain(
2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ]

)
a2

2 = 2λ3t3(c2 + d2). (4.15)
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Thus,by we obtain

|a2| ≤
2λt
√
λt√

2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ]
.

From (4.8) from (4.10) and using(4.11), we get

a3 =
2λt(c2 − d2)

6(3τ − 1)
+ a2

2. (4.16)

Then taking modulus and using (3.4), we get

|a3| ≤
2λt

3(3τ − 1)
+ |a2

2|. (4.17)

Using (4.12) and (4.14), we get

|a3| ≤
2λt

3(3τ − 1)
+

λ2t2

(2τ − 1)2

and

|a3| ≤
2λt

3(3τ − 1)
+

2λ2t2

(2τ − 1)2 .

Now by using(4.15) in(4.17) ,

|a3| ≤
4λt

6(3τ − 1)
+ |a2

2|

=
2λt

3(3τ − 1)
+

4λ3t3

(2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ])

=
2λt

(
2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ]

)
+ 12λ3t3(3τ − 1)

3(3τ − 1) (2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ])
.

Theorem 4.4. For ν ∈ R, let f be given by (1.1) and f ∈Mτ
Σ
(Φ),then

∣∣a3 − νa2
2

∣∣ ≤


2λt
3(3τ − 1)

; 0 ≤ |h(ν)| ≤ λt

3(3τ − 1)

2 |h(ν)| ; |h(ν)| ≥ λt

3(3τ − 1)

where h(ν) =
2λ3t3(1− ν)

2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ]
.

Proof. From (4.16), we have

a3 − νa2
2 =

λt(c2 − d2)

3(3τ − 1)
+ (1− ν) a2

2. (4.18)

By substituting (4.15) in (4.18), we have

a3 − νa2
2 =

λt(c2 − d2)

3(3τ − 1)
+

2λ3t3(1− ν)(c2 + d2)

(2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ])

=

(
h(ν) +

λt

3(3τ − 1)

)
c2 +

(
h(ν)− λt

3(3τ − 1)

)
d2, (4.19)

where

h(ν) =
2λ3t3(1− ν)

2(1 + τ)λ2t2 − (2τ − 1)2[2t2(λ)2 − λ]
. (4.20)
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Thus by taking modulus of (4.19),

|a3 − νa2
2| ≤

∣∣∣∣h(ν) + λt

3(3τ − 1)

∣∣∣∣+ ∣∣∣∣h(ν)− λt

3(3τ − 1)

∣∣∣∣ ,
where h(ν) is given by (4.20). Thus, we conclude that

∣∣a3 − νa2
2

∣∣ ≤


2λt
3(3τ − 1)

; 0 ≤ |h(ν)| ≤ λt

3(3τ − 1)

4 |h(ν)| ; |h(ν)| ≥ λt

3(3τ − 1)

(4.21)

where h(ν) is given by (4.20).

By taking ν = 1 in above Theorem one can easily state the following:

Remark 4.5. Let f be given by (1.1) and f ∈Mτ
Σ
(Φ). Then

∣∣a3 − a2
2

∣∣ ≤ 2λt
3(3τ − 1)

.

Concluding Remark: By fixing λ = 1
2 one can get the new analogues results for the sub-

classes discussed in this article based on Legendre polynomials further by taking λ = 1 we
get the results related with Chebyshev polynomials for the function classes given in Defini-
tions 2.1and 4.1. Further, suitably specificating the parameters as mentioned in Remark 2.2 and
4.2,one can easily obtain upper bounds for the coefficients |a2|, |a3| and Fekete-Szegö inequality
|a3 − νa2

2| for function classes illustrated in Remark 2.2 and 4.1.Therefore, we believe that this
research will encourage many researchers to expand the concept of meromorphic bi-univalent
functions and also to define a new class of Σ based on quantum calculus operator[24] (see docu-
mentation on this) and certain special functions
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