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Abstract In this paper, we familiarize and explore new subclasses of bi-univalent functions
defined in the open unit disk related with Gegenbauer polynomials. Furthermore, we find es-
timates for initial coefficients of functions in these classes. Also, we obtain the Fekete-Szego
inequalities for function in these classes. Several consequences of the results are also pointed
out as corollaries.

1 Introduction

Let A represent the class of analytic functions of the form
(o)
fz) =24 anz" (1.1)
n=2

normalized by the conditions f(0) =0 = f’(0) — 1 defined in the open unit disk
D={zeC:|z| <1}

Let S be the subclass of .4 comprising of functions of the form (1.1) which are also univalent in
D.

The Koebe one quarter theorem [3] ensures that the image of ID under every univalent function
f € A contains a disk of radius %. Thus every univalent function f has an inverse f~! satisfying

FH(f(2) =2 (zeD)and f(f~(w)) =w (Jw| <ro(f), ro(f) = %)~

A function f € A is said to be bi-univalent in D if both f and f~! are univalent in D. Let ¥ denote
the class of bi-univalent functions defined in the unit disk . Since f € X has the Maclaurian
series given by (1.1), a computation shows that its inverse g = f~! has the expansion

g(w) = N (w) = w — aw® + (2d3 — a3)w® + - . (1.2)

We notice that the class ¥ is not empty. For instance, the functions 2z, -2, —log(1 — z) and

s T3
% log t—z are members of X. However, the Koebe function is not a member of X. Lately, Srivas-
tava et al. [21] have essentially revived the study of analytic and bi-univalent functions, it was
followed by such works as those by(see [1, 2, 4, 13, 14, 18]). Several authors have introduced
and examined subclasses of bi-univalent functions and obtained bounds for the initial coefficients
(see [1, 2, 6, 13, 21, 27, 28]), bi-close-to-convex functions[5, 11] .

An analytic function ¢ is subordinate to an analytic function ), written ¢(2) < t(z), pro-
vided there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying
p(2) = P(w(2)).

We recall important subclasses of S in geometric function theory such that if f € A and

2f'(2) 2f"(2)
f(2) f'(2)

<p(z) and 1+

< p(2)
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1+z

where p(z) = , then we say that f is starlike and convex, respectively. These functions form
known classes denoted by &* and C, respectively.

In Geometric Function Theory, there have been many interesting and fruitful usages of a wide
variety of special functions, g— calculus and special polynomials. The Fibonacci polynomials,
Faber polynomials, the Lucas polynomials, the Pell polynomials, the Pell-Lucas polynomials,
and the Chebyshev polynomials of the second kind and Horadam polynomials are potentially
important in a variety of disciplines in the mathematical, physical, statistical, and engineering
sciences. These polynomials have been studied in several papers from a theoretical point of view
and recently in case of bi-univalent functions (see[6, 15, 22, 23] also the references cited therein).
In this article, we associate certain bi-univalent functions with Gegenbauer polynomials and then
explores some properties of the class of bi-univalent functions based on earlier work of Jahangiri
and Hamidi [8] .

We recall the Gegenbauer polynomials (for details see Kim et al., [9] and references cited
therein) are given in terms of the Jacobi polynomials P\""")(z) with v = v = X — THO

1.2 #0) by

T(A+ $H)T(n+2X) (11
FeANC(n+ A+ 1)

CEEEER Y

k=0 2

) (2)

2

where (a), = a(a+ 1)(a+2)---(a+n — 1) . From (1.3), we note that & () is a polynomial
of degree n with real coefficients and (1) = ("+2’\ "). The leading coefficient of &2 (z) is
2”("%71). By the theory of Jacobi polynomials with 1 = v = A — 1, A > —1, and A # 0, we
get

&, (~z) = (~1)"&}(a).

It is not difficult to show that &) () is a solution of the following Gegenbauer differential
equation:
(1—22)y" — A+ Day’ +n(n +2X\)y = 0.

The Rodrigues formula for the Gegenbauer polynomials is well known as the following:
_1 —2)"(\) d\" _1
1 — 22 A — ( n (& 1 — 22)ntr—%
(1-4%) e n(@) = nl(n+2X), \dz (1-2%) :

The above equation can be easily derived from the properties of Jacobi polynomials.
As is well known, the generating function of Gegenbauer polynomials is given by(see[9, 25]

> SO g s
= X . .
(1-2at+82)5(1—at + V1 -2zt + 21 = (2Nn "

This equation can be derived from the generating function of Jacobi polynomials.
From above equation (1.4), we note that

D(t,x) = Z@A st < Lfae| < 1). (1.5)

(1 —2xt+t2

The proof of above is given in [25] and Kim et al., [9](also see [10]) extensively studied these
results for different perspective. We note that , for A = 1; we get the Chebyshev Polynomials
and A = %; we get the Legendre Polynomials. In 1935, Robertson [20] proved an integral

representation for typically real valued Ty functions,has the form f(z) = z + >_ a,2™ which

n=2
are holomorphic in A, real for z € (—1; 1) and satisfy the condition

Imz>0 zeA¢ (-1;1)
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namely f € Tr if and only if it has the representation

f(z)=/_ T ) s zcA

1 —2xz + 22

wherey is a probability measure on [—1, 1]. The notion of the class Tr(A),A > 0, has been
extended in [26] to the class which is defined by the integral formula

1
z

where 1 is a probability measure on [—1, 1]. Of course, we have Tr(1) = Tx and if f given
by(1.6) plays an important role in the geometric theory of holomorphic functions in the unit disk
A then we have

1
0= [ & @)
—1
where &)\ () is the Gegenbauer polynomial of degree n.

In this paper, motivated by recent works , we introduce a subclass of bi-univalent functions

associated with Gegenbauer polynomials [16, 17] and obtain bounds on the initial Taylor coef-

ficients |a;| and |a3| for the functions f € HGy’ %7 (&), by subordination and consider the cel-

ebrated Fekete-Szeg6 problem. We also provide relevant connections of our results with those
considered in earlier investigations.
2 Class of Bi-univalent function related with Gegenbauer polynomials
To start with for our discussions unless otherwise stated we let
1 1
0§A§1,A>§ and t€(§71]
also

— 1 s A 1 A 2 A 3 A n
D(t,2) = (=2 1 2P =8(t)+67(t)z +65(1)z"+ 65 (1) 2" +..6, ()" +--- . (2.1)

In particular,

By(t) = 1
B (t) = 2Xt (2.2)
&5 (t) 22+ D2 =X =2(N\)at? — A (2.3)
363(t) = 4N+ 1A +2)2 —6AN+ 1)t
= 4(\)st® —6(\)at 24

where

N =AA+1)A+2)---(A+n—1).
Now we define first subclass of bi-univalent functions in the open unit disk, associated with
Gegenbauer polynomials as below:

Definition 2.1. A function f € X of the form (1.1) belongs to the class HGy ¥ (@), k > 0,
9 > 1,9 > 0, if the following conditions are satisfied:

(1-9) (@) +Of(2) <f(;))l +o2f"(2) < D(t, 2)

and

(1-0) (22) 4 vg'(w) (*"Sj’)) + by (w) < B(t,w)

where g(w) = f~!(w) assumed as in (1.2).
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By suitably specializing the parameters «, ¢ and 0, the class HGy"’ 59 (@) reduces to various

new subclasses, as illustrated in the following remark:

Remark 2.2. (i) For § = 0, we let HGy * 7 (®) = N5 7(P). A function f € £ of the form
(1.1) is said to be in N3 (), if

(1-9) (f(;)) +9f(2) (f(z)y_l <D, 2)

and

(1-9) (g(;)))ﬁ + ¢’ (w) (quw)>“‘1 < D(t,w)

where g(w) = f~!(w) assumed as in (1.2).

(ii) For ¥ = 1 and 6 = 0, we let HGy’ 0,1 (P) = BE(P). A function f € X of the form (1.1) is
said to be in B (P), if

£(2) (Jc('z))l L ®(t2) and g(w) (9(“’)>1 < Bt w)

z w

where g(w) = f~!(w) assumed as in (1.2).

(iii) For9 = 1 and § = 0 = k, we let HGy ' (@) = Sy(P). A function f € ¥ as assumed in
(1.1) is said to be in Sy (), if

zf'(2) wg' (w)
8 <®(t,z) and o ()

where g(w) = f~!(w) assumed as in (1.2).

< O(t,w)

(iv) Fork = 1, we let HGy ¥ (@) = M2 7 (®). A function f € ¥ as assumed in (1.1) is said
to be in MY ¥ (), if

(1— 19)@ +I9f(2) +0zf"(z) < P(t, 2)

and

(1- ﬂ)@ + 93¢’ (w) + dwg” (w) < P(t,w)

where g(w) = f~!(w) assumed as in (1.2).

(v) Ford = k = 1, we let ’Hgi’ 81 (D) = Ox(8, D). A function f € X as assumed in (1.1) is
said to be in Qy (4, ®), if

f'(2) + 021" (2) < ®(t, 2)

and

g'(w) + dwg" (w) < S(t, w)

where g(w) = f~!(w) assumed as in (1.2).

(vi) For k = 1 and § = 0, we let ’Hgi’ 0, % (@), = Fx(9,®). A function f € X as assumed in
(1.1) is said to be in Fx (9, ®(¢, 2)), if

1= L Ly < o, 2)

z
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and
(1-— ﬁ)% + 99" (w) < D(t,w)

where g(w) = f~!(w) assumed as in (1.2).

(vii) For 9 = 1, x = 1 and § = 0, we have the class HGy * ' (®) = Hg(P). A function f € X
as assumed in (1.1) is said to be in Hy (D), if

f'(z) = ®(t,z) and ¢'(w) < D(t,w)
where g(w) = f~!(w) assumed as in (1.2).

In the following section , we find the estimates for the coefficients |a,| and |a3| for functions

in the class HGy’ 59 (®) and its special cases. Also, Fekete-Szego inequality for functions in
this subclass.

3 Coefficient estimates and Fekete-Szego inequality

In order to discuss coefficient estimates and Fekete-Szegé inequality for f € HGy 59 (D) we
define u(z) and v(w) in P as
u(z) =crz+ et + - 3.1
and
v(w) = dyw + dyw? + - - - (3.2)

are analytic in D with u(0) = 0 = v(0) and |u(z)| < 1, Jv(w)| < 1, for all z,w € D. It is
well-known that if

u(z)| = lerz + 2% + -+ [ < land [p(w)| = |diw + dw? + -+ [ <L, zweD,  (33)

then
le;l <1 and |d;| <1 for all jeN. (3.4)

‘We now prove our first result asserted by Theorem 3.1 below.

Theorem 3.1.. Let f be assumed as in (1.1) and f € HGy’ %7 (®). Then

|(L2| S mz’n{Fl,Fz, F3},

where
2)|t] AN+ 2A2(A + D)2 — 1]
Fl =5, =
(9 + K+ 20) 20+ kK)(k+1)+126
2NV 2 M
and F3 = .
\/[(219 + k) (k4 1) + 128] 20282 — (0 + K + 26)2(2(N)2t2 — N)
Also
|a3| < min{Gl , Ga, G3}
where
o 20t(9 + & + 26)% + 4\2% (20 + Kk + 66)
1 pu—

(29 4+ Kk 4 66) (VY + Kk + 26)2 ’

(4ME + 202\ + D)2 — 1]) (20 + & + 65) + 2Xt [(20 + £) (5 + 1) + 120]
(204 Kk +60) [(20 + k) (k+ 1) + 126]

8N (204 k4 60) 42Xt [[(20 + k) (k4 1) + 126] 2072 — (9 + £ + 26)2(2(A)at? — N)]

Gy =

T (20 + 1 + 66) [(20 + 1) (k + 1) + 126] 2222 — (0 + & + 26)2(2(A\)2t2 — N)]
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Proof. Since f € HGy’ %7 (@), from the Definition 2.1, we have

(1-9) (f(;)> +9f(2) (ffj))ﬁ_l + 624" (2)

= 148} (@)ule) + Bala)u(2) + -

= 1+42Xc1z+ {2Xter + [(232(2@2 - )\] A2+ (3.5)

and for g = f!

~—

(1—9) <g<;”> 4 9g' (w) (‘qu)> - + dwg" (w)
= 1+ 6} (2)v(w) + Ba(z)v*(w) + - -,

= 1 —=2Xtdyz + {2)\td, + {2!(275)2 - A] i+, (3.6)

where z, w € D. Now by equating corresponding coefficients of z and 2% in (3.5) and (3.6), we
have

(9 4+ K+ 268) ap = 2Xicy, 3.7
k—1 60 A)2
(29 + k) K 5 ) a3 + (1 + 5o H) a3} =2\te, + [(23(%)2 — /\} e, (3.8)
— (04 K +20) ay = 2\td;, (3.9)
and
k+3 126 ) 66 B (A)2 im0 2
(29+k) [( 3 + me) a; — <1 + 219+n> ag] = 2\tdy + {2!(215) — Al dy. (3.10)
From (3.7) and (3.9), we obtain
1 = _dla
and
200+ K+28)7a} = ANEE+d) (3.11)
24202 2
a = w ] (3.12)
(9 + Kk +20)
Now, by (3.4), we obtain
27t
< - 13
ol < G+ 9 G-13)

By adding (3.8) and (3.10), we have

[(20 + k) (K + 1) + 128)a3 = 2)t (cr + da) + {(;?2(275)2 - /\} (cf+d7). (3.14)

Again by (3.4), we obtain,

AN+ 2A2(A + D)2 — 1]
a2 < \/ 20+ r)(k+1)+125 (3.15)
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Now, by substituting (3.11) in (3.14), we reduce that

2 4/\3t3(02 + dz) (3.16)
QT IR (Rt 1)+ 1202V — (0 + r + 20 20 = ) :

Now, by (3.4), we obtain

@l < 2AV2IN .,
S @R (r ) F 120208 — (0t R F 2022 N

By subtracting (3.10) from (3.8), we obtain

_ At(er — dp) 2
az = m +(12. (318)
Hence by(3.4), we have
)\t(|02| + ‘d2|) 2 2t 2
sl = Sy ares Tl = e el

In view of (3.11), we get

2M(9 + K+ 26)% + 4022 (29 + K + 60)
(29 + k4 66) (9 + k + 26)?

las] <

By using (3.15)

g < AEF 2RO DE = 1) (20 + 5+ 69) 20 [(20 + ) (s + 1) +123]
al= (20 + £ + 60) [(20 + 1) (k + 1) + 120]

Then in view of (3.16), we obtain

A3 (20 + K+ 66) + 27t [[(20 + 1) (5 + 1) + 126] 2022 — (9 + K + 26)2(2(N)2t2 — N)]
(20 + ki + 60) [[(20 + £) (ks + 1) + 120] 2X282 — (9 + 1 + 20)2(2(N\)at2 — V)]

las| <

Similarly, we can prove the following theorem. O

Theorem 3.2. For v € R, let f be given by (1.1) and f € HGy’ 59 (®),then

A\t 0<|h( )|< AN
e — . V e —
las —va3| < 20 +Kk+65 7 - T 20+ K460
2|h(v)| ; |h(v)] > W ri6s
ANE(1 - v)

where M) = g ) T 1)+ 128] 202 — (9 1 5 + 20220V — N

Proof. From (3.18), we have

5 )\t(CZ — d2)

_ N S’ B’ P _ 2
az — va; 219—1—/1—}—65_‘_(1 V) a3. (3.19)
By substituting (3.16) in (3.19), we have
2 2t (Cz — dz) 4)\3t3(1 — l/)(Cg + dz)

BTV T S R+ 60 [(20 4+ k) (k 4+ 1) + 120] 2022 — (9 + K + 20)?(2(X)2t> — N)

22Xt 22Xt
= (W + 219++65) et (h<”> - 219++65> a2, (3:20)
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where
33(1 _
h(v) = ANE(1 - v) . (3.21)
(20 4+ K)(k+ 1) + 126] 20282 — (0 4+ K + 26)2(2(N)2t? — N)
Thus by taking modulus of (3.20),
22Xt 22Xt
2
— < oz =
las —vay] = h(v) + 219—0—&4—66’ + ’h(y) 20+ K+ 60|’
and h(v) is given by (3.21).
Thus, we conclude that
4t 2t
e 0SS o
|a3 _ l/a%| < 29 + Kk + 60 %1)\975+H+66 (3.22)
2 ; >
R
where h(v) is given by (3.21). i

By taking v = 1 in above Theorem one can easily state the following:

Remark 3.3. Let f be given by (1.1) and f € #Gy > ” (®). Then

|a3—a%’ §$.
29 + k + 66

4  Subclass of Bi-univalent function MZ(®)

In [19], Obradovic et.al gave some criteria for univalence expressing by R(f’(z)) > 0, for the
linear combinations

(5 ) 0

Based on the above definitions recently, in [12], Lashin introduced and studied the new sub-
classes of bi-univalent function.

> 0, (r>1,2€0).

Definition 4.1. A function f(z) € X given by (1.1) is said to be in the class ME(®P) if it satisfies
the following conditions :

2f"(2) RN B
T(1+ ) )+(1 )f,(z) < ®(t, 2) 4.1

T (1 + Zg”(w)) +(1-7)

1
g'(w) g'(w)
where 7 > 1, z,w € D and the function ¢ is given by (1.2).

and

< ®(t, w) 4.2)

Remark 4.2. For a function f(z) € X given by (1.1),is said to be in the class
ML (®) = Ky (®) if it satisfies the following conditions :

<1 + Z}C/ES)) < ®(t,2) and (1 + wg,/(/ful)”)) < (1, w)

where z, w € D and the function g is given by (1.2).

Theorem 4.3. Let f(z) be given by (1.1) be in the class M (®), and T > 1. Then

At
(27\}1) ’
jaa] <min{ 32 43)
22tV

V214N — (27— 1)2[2¢2(N)2—A]
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and L
2) A
ey t+ (27512)27
o) < min {5y + 2L
2t (2(147) N — (27— 1222 (A2 —A] )+ 12278 (37— 1)
3Br—1)(2(I+7) A2 — (27— 12 22(N)2— X))

Proof. Tt follows from (4.1) and (4.2) that

zf"(2) 1
7'<1+ ) ) +(1-7) = ®(t,u(z))

and

T (1 + Zg”(w)) +(1-7)

g/<w) = q)(tvv(w))'

g'(w)
From (4.5) and (4.6), we have

1+2(27 — Dasz + [3(37 — 1)az + 4(1 — 27)a3| 2 + - -

1
=1+42Mciz+ {2)\?502 + |:>\'2(2t)2 — )\] C%}ZZ 4o

and
1-2(27 — Dayw + (2(57 — 1)a3 — 3(37 — Daz) w* — -+~
=1 —2Md 2z + {2X\tdy + {(;?z(w - A} B4
Now, equating the coefficients, we get

2(27‘ — 1)0,2 = 2)\1561,

337 — 1)az + 4(1 — 27)a3] = 2Mte, + {(;?2(215)2 - )\] c,

—2(27 — 1)ay = 2)tdy,

and
(A2

(2(57 — 1)a3 — 3(37 — 1)a3) = 2\td> + {(275)2 - A} .

2!
From (4.7) and (4.9), we get

Cl — 7d1
and by(3.4) in (4.7) ,
] < At
“I=0roy
Also
2r—1)2%} = N3+ d3)
L ReE )
: (21 — 1)2
Thus by(3.4), we get
AtV/2
< .
ol < 5

Now from (4.8), (4.10) and using (4.13), we obtain

201+ 7N — (27 = 1222 (N)2 — ) a3 = 203 (c2 + o).

4.4)

4.5)

(4.6)

4.7

(4.8)

4.9)

(4.10)

@.11)

(4.12)

(4.13)

(4.14)

(4.15)
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Thus,by we obtain

ol < AV
=20+ — 2 - )220, - A

From (4.8) from (4.10) and using(4.11), we get

2/\?5(02 — dz) 2
= ———— . 4’1
a3 63— 1) + a3 (4.16)
Then taking modulus and using (3.4), we get

< —m—— . .
|a‘3| — 3(37__1) +‘a’2| (4 17)
Using (4.12) and (4.14), we get

2\t N \2t2
(Br—1) (27 —1)2

laz| < 3

and

20t N 20242
Gr—1) " @2r-12

a3z <
|3\73

Now by using(4.15) in(4.17)

a3 € =2l 413
=6Br—1) 17
__ 2 4Nt
3G —1) T RO+ NE = 2r — 1220 < N)

22X (201 + )N = (27 = 1)2[202(N)2 — A]) + 120383 (3T — 1)
B 337 — 1) (2(1 + 7)A282 — (27 — 1)2[2t2(\)2 — )

O
Theorem 4.4. For v € R, let f be given by (1.1) and f € M (P),then
2\t At
— ;0<|h A —
> 3Gr—1) 0= W)l = 3(3r—1)
|a3 - 1/a2| < Y
: >~
203831 —v)
where hv) = 50530 — ar —1PRE0); — A
Proof. From (4.16), we have
At(cy — d
a3—1/a%:3((3j_12))+(1—y)a%. (4.18)
By substituting (4.15) in (4.18), we have
o — vad = )\t(02 — d2) 2)\3t3(1 — V)(Cz + dz)
3 2T 33r—1) 21+ 7)A22 — (27 — 1)2[2¢2(X\)2 — A))
At At
where
3301 _
h(v) = 22t (1 - v) . (4.20)

200+ 1) — (2r — 12122(\)2 — N
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Thus by taking modulus of (4.19),

At At
2
_ < _
o —vay| < h@%%x%1J+M@) 337 1)
where h(v) is given by (4.20). Thus, we conclude that
2\t At
-y (OShW< sm—
|a371/a§| < 33r—1) )\St(3771) 421
. > —
where h(v) is given by (4.20). i

By taking v = 1 in above Theorem one can easily state the following:
Remark 4.5. Let f be given by (1.1) and f € MZ(®). Then

’ 2 ’ < 2Mt
GBTRl=3E 0y

Concluding Remark: By fixing A = % one can get the new analogues results for the sub-
classes discussed in this article based on Legendre polynomials further by taking A = 1 we
get the results related with Chebyshev polynomials for the function classes given in Defini-
tions 2.1and 4.1. Further, suitably specificating the parameters as mentioned in Remark 2.2 and
4.2,0ne can easily obtain upper bounds for the coefficients |az|, |a3| and Fekete-Szego inequality
laz — va3| for function classes illustrated in Remark 2.2 and 4.1.Therefore, we believe that this
research will encourage many researchers to expand the concept of meromorphic bi-univalent
functions and also to define a new class of X based on quantum calculus operator[24] (see docu-
mentation on this) and certain special functions
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