ON WEAVING *PG***-FRAMES**

S.K. Sharma, Shashank Goel and S.K. Kaushik

Communicated by Ayman Badawi

MSC 2010 Classifications: 42C30, 42C15, 42C40, 92C55.

Keywords and phrases: Frames, generalized frames, weaving frames, weaving p- frames, weaving g- frames, distributed signal processing.

The authors are thankful to the referee(s) for their helpful comments, suggestions and constructive remarks towards the improvement of the paper.

Abstract Recently, a new application of frame theory in Hilbert spaces has been emerged related to distributed signal processing. Bemrose et al. [4] have developed a theory of weaving frames to handle such types of problems. In this article, we introduce and study woven pg-frames for Banach spaces. It has been shown that a family of pg-Bessel sequences is always woven Bessel family. The image of woven pg-frame under a bounded invertible operator is a woven pg-frame has been proved. Also, a necessary and sufficient condition for the image of woven pg-frame under a bounded operator to be a woven pg-frame has been given. Further, some characterizations of woven pg-frames and characterization of woven pg-Bessel sequences are given. Furthermore, woven qg-Riesz bases are defined and prove that these are particular cases of woven pg-frames. Finally, some equivalent conditions for woven qg-Riesz basis are given.

1 Introduction

Duffin and Schaeffer [12] introduced the concept of frames in Hilbert spaces while studying the problems of non-harmonic Fourier series. They gave the following definition of frames in Hilbert spaces:

Definition 1.1. A family of vectors $\{x_n\}_{n \in \mathbb{N}}$ in a Hilbert space \mathcal{H} is said to be a frame for \mathcal{H} , if there exist two constants $0 < A \leq B < \infty$ such that

$$A\|x\|^2 \le \sum_{n \in \mathbb{N}} |\langle x, x_n \rangle|^2 \le B\|x\|^2, \ \forall \ x \in \mathcal{H}.$$

Later, in 1986, Daubechies et al. [10] reintroduced frames and observed that frames can be used to approximate functions in $L^2(\mathbb{R})$. These days theory of frames become an integral and important tool to study the problems of applied mathematics and engineering. For nice introduction of frames, one may refer [8].

The concept of frames was extended to Banach spaces by Feichtinger and Gröchenig [13]. They introduced the notion of atomic decomposition for Banach spaces. Later, Gröchenig [14] introduced a more general concept for Banach spaces called Banach frames. He gave the following definition:

Definition 1.2. Let \mathcal{X} be a Banach space and \mathcal{X}_d an associated Banach space of scalar-valued sequences indexed by \mathbb{N} . Let $\{f_n\} \subset \mathcal{X}^*$ and $S : \mathcal{X}_d \to \mathcal{X}$ be given. Then, the pair $(\{f_n\}, S)$ is called a Banach frame for \mathcal{X} with respect to \mathcal{X}_d , if

- (i) $\{f_n(x)\} \in \mathcal{X}_d$, for each $x \in \mathcal{X}$.
- (ii) there exist constants A and B with $0 < A \le B < \infty$ such that

$$A\|x\|_{\mathcal{X}} \le \|\{f_n(x)\}\|_{\mathcal{X}_d} \le B\|x\|_{\mathcal{X}}, \ x \in \mathcal{X}.$$

(iii) S is a bounded linear operator such that $S({f_n(x)}) = x, x \in \mathcal{X}$.

In the last decade, various generalization of frames for Hilbert spaces have been introduced and studied. Sun [15] generalized the concept of frames and introduced g-frames for Hilbert spaces which includes ordinary frames as well as many recent generalization of frames. Recently, Bhandari and Mukherjee [5] gave the notion of atomic subspaces with respect to a bounded linear operator on a separable Hilbert space which leads to the concept of K-fusion frames, a generalization of fusion frames.

2 Preliminaries

Throughout this paper, $\mathbb{N}_M = \{1, 2, \dots, M\}$, $M \in \mathbb{N}$, \mathcal{X} is a Banach space with dual \mathcal{X}^* and also $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ is a sequence of Banach spaces. For each $n \in \mathbb{N}$, $B(\mathcal{X}, \mathcal{Y}_n)$ is the space of bounded linear operators from \mathcal{X} into \mathcal{Y}_n .

In order to make this paper complete, we review some concepts related to pg-frames and weaving frames.

2.1 pg-frames and qg- Riesz basis in Banach spaces

In 2001, Aldroubi et al. [2] introduced p-frames in Banach spaces and observed that p-frames can be used to obtain series expansions in shift invariant subspaces of $L^p(\mathbb{R})$. In [9], O. Christensen and D. Stoeva studied p-frames in separable Banach spaces and proved that a p-frame allows every $g \in \mathcal{X}^*$ to be represented as an unconditionally convergent series $g = \sum d_i g_i$ for coefficients $\{d_i\} \in \ell^q$, where 1/p + 1/q = 1. Abdollahpour et al. [1] generalized the concepts of p-frames for Banach Spaces and defined pg-Banach frames in Banach spaces. They also observed that a pg-frame allows every $g \in \mathcal{X}^*$ to be represented as an unconditionally convergent series $g = \sum_{n \in \mathbb{N}} g_n \mathfrak{T}_n(x)$, where $\{\mathfrak{T}_n\}_{n \in \mathbb{N}}$ is a pg-frame and $\{g_n\}_{n \in \mathbb{N}} \in (\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*)_{\ell_q}$, where $\frac{1}{p} + \frac{1}{q} = 1$. They gave the following definition:

Definition 2.1. Let $\{\mathfrak{T}_n\}_{n\in\mathbb{N}} \subset B(\mathcal{X},\mathcal{Y}_n)$ be a sequence of operators. Then $\{\mathfrak{T}_n\}_{n\in\mathbb{N}}$ is said to be pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$, if there exist two constants $0 < c_1 \leq c_2 < \infty$ such that

$$c_1 \|x\|_{\mathcal{X}} \le \left(\sum_{n \in \mathbb{N}} \|\mathfrak{T}_n(x)\|^p\right)^{1/p} \le c_2 \|x\|_{\mathcal{X}}, \ x \in \mathcal{X}.$$
(2.1)

A sequence $\{\mathfrak{T}_n\}_{n\in\mathbb{N}} \subset B(\mathcal{X},\mathcal{Y}_n)$ is said to be pg-Bessel sequence for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$, if it satisfies the right hand side upper inequality in (2.1).

Towards the existence of pg-frames, we give the following example:

Example 2.2. Let $\mathcal{X} = \ell^p$ and $\mathcal{Y}_n = \ell^p$, for all $n \in \mathbb{N}$ and 1 . $For each <math>n \in \mathbb{N}$, we define $\mathfrak{T}_n : \mathcal{X} \to \mathcal{Y}_n$ as

$$\mathfrak{T}_n(x) = \delta_n^{x_n}, \ x = \{x_n\} \in \mathcal{X}$$

where $\delta_n^x = \{0, \dots, 0 \underbrace{x}_{n^{th} \text{place}}, 0, \dots\}$ for all $n \in \mathbb{N}$ and $x \in \mathcal{X}$. Then $\{\mathfrak{T}_n\}_{n \in \mathbb{N}}$ is a pg-frame for \mathcal{X} with bound 1.

Definition 2.3. Let $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$ be a sequence of Banach spaces. Then

$$\left(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n\right)_{\ell_p} = \left\{ \{x_n\}_{n\in\mathbb{N}} : x_n\in\mathcal{Y}_n, n\in\mathbb{N} \text{ and } \left(\sum_{n\in\mathbb{N}}\|x_n\|^p\right)^{1/p} < \infty \right\}$$

is a Banach space with the norm given by

$$\|\{x_n\}_{n\in\mathbb{N}}\|_{\ell_p} = \left(\sum_{n\in\mathbb{N}} \|x_n\|^p\right)^{1/p}$$

Let $1 < p, q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. If $g^* = \{g_n^*\}_{n \in \mathbb{N}} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q}$ then $\langle g, g^* \rangle = \sum_{n \in \mathbb{N}} \langle g_n, g_n^* \rangle, \ g = \{g_n\}_{n \in \mathbb{N}} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_q}$

defines a continuous functional on $(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n)_{\ell_p}$, whose norm is equal to $||g^*||_q$ and its dual can be characterized with the following lemma:

Lemma 2.4. [3] Let $1 < p, q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\left(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n\right)_{\ell_p}^* = \left(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n^*\right)_{\ell_q},$$

where the equality holds under the duality

$$\langle g, g^* \rangle = \sum_{n \in \mathbb{N}} \langle g_n, g_n^* \rangle.$$

Further, if $\{\mathfrak{T}_n\}_{n\in\mathbb{N}}\subset B(\mathcal{X},\mathcal{Y}_n)$ be a pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$. Then, the operators

$$U: \mathcal{X} \to \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_p} \text{ as } U(x) = \{\mathfrak{T}_n(x)\}_{n \in \mathbb{N}}, x \in \mathcal{X}$$

and $T: \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q} \to \mathcal{X}^* \text{ as } T(\{g_n\}_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} g_n \mathfrak{T}_n, \{g_n\} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q}$

are called analysis operator and synthesis operator of pg-frames $\{\mathfrak{T}_n\}_{n\in\mathbb{N}}$, respectively.

Abdollahpour et al. [1] also generalized the concept of q-Riesz bases and defined qg-Riesz basis for dual Banach space \mathcal{X}^* . They observed that every qg-Riesz basis for \mathcal{X}^* is a pg-frame for \mathcal{X} and that qg-Riesz basis bounds coincides with bounds of pg-frames. They gave the following definition of qg-Riesz basis for \mathcal{X}^* :

Definition 2.5. Let $1 < q < \infty$. A sequence $\{\mathfrak{T}_n\}_{n \in \mathbb{N}} \subset B(\mathcal{X}, \mathcal{Y}_n)$ is said to be qg-Riesz basis for \mathcal{X}^* , if

- (i) $\{\mathfrak{T}_n\}_{n\in\mathbb{N}}$ is *g*-complete in \mathcal{X} .
- (ii) there are positive constants $0 < c_1 \le c_2 < \infty$ such that, for any finite subset $J \subseteq \mathbb{N}$ and $g_n \in \mathcal{Y}_n^*, n \in J$,

$$c_1\left(\sum_{n\in J} \|g_n\|^q\right)^{1/q} \le \left\|\sum_{n\in J} g_n\mathfrak{T}_n\right\| \le c_2\left(\sum_{n\in J} \|g_n\|^q\right)^{1/q}$$

In view of Definition 2.5, one may observe that $\sum_{n \in \mathbb{N}} g_n \mathfrak{T}_n$ converges unconditionally, for all

$$\{g_n\}_{n\in\mathbb{N}}\in\left(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n^*
ight)_{\ell_q}$$
 and
 $c_1\left(\sum_{n\in\mathbb{N}}\|g_n\|^q
ight)^{1/q}\leq\left\|\sum_{n\in\mathbb{N}}g_n\mathfrak{T}_n\right\|\leq c_2\left(\sum_{n\in\mathbb{N}}\|g_n\|^q
ight)^{1/q}.$

Therefore $\{\mathfrak{T}_n\}_{n\in\mathbb{N}}$ is qg-Riesz basis for \mathcal{X}^* if and only if the synthesis operator T is an invertible operator from $(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n^*)_{\ell_q}$ onto \mathcal{X}^* . For the existence of qg-Riesz basis, one may refer [15].

2.2 Weaving frames in Hilbert spaces

Recently, a new problem in frame theory related to distributed signal processing has been emerged. Two frames $\{\phi_i\}_{i\in I}$ and $\{\psi_i\}_{i\in I}$, where each set of frames is labelled by a sensor or a node $i \in I$. Then, at each sensor $i \in I$, a signal x is measured with either ϕ_i or ψ_i , so that the collected information is the set of numbers $\{\langle x, \phi_i \rangle\}_{i\in\sigma} \cup \{\langle x, \psi_i \rangle\}_{i\in\sigma^c}$ for some subset $\sigma \subseteq I$. Now, a natural question arises: "Can x still be recovered robustly from these measurements, regardless of the kind of measurement considered at each node?" In other words: "Is the set $\{\phi_i\}_{i\in\sigma} \cup \{\psi_i\}_{i\in\sigma^c}$ a frame for all subsets $\sigma \subseteq I$?" In this direction, a theory of weaving frames was developed by Bemrose et al. [4]. They gave the following definition:

Definition 2.6. A family of frames $\{\psi_{ij}\}_{i \in I}$ for $j \in \mathbb{N}_M$ for a Hilbert space \mathcal{H} is said to be *woven* if there are universal constants c_1 and c_2 so that for every partition $\{\sigma_j\}_{j \in \mathbb{N}_M}$ of I, the family $\{\psi_{ij}\}_{i \in \sigma_j, j \in \mathbb{N}_M}$ is a frame for \mathcal{H} with lower and upper frame bounds c_1 and c_2 , respectively. Each family $\{\psi_{ij}\}_{i \in \sigma_j, j \in \mathbb{N}_M}$ is called a *weaving*, where $\mathbb{N}_M = \{1, 2, \dots, M\}$ and $\mathbb{N}_M^c = \mathbb{N} \setminus \mathbb{N}_M$ for every $M \in \mathbb{N}$.

Casazza et al. [7] generalized the notion of weaving fames in Hilbert spaces to Banach spaces and defined weaving approximate scahuder frames for Banach spaces. They gave the following definition:

Definition 2.7. [7] Let $(x_j^0, f_j^0)_{j=1}^\infty$ and $(x_j^1, f_j^1)_{j=1}^\infty$ be two approximate Schauder frames for a Banach space \mathcal{X} . A sequence $(x_j^{\sigma(j)}, f_j^{\sigma(j)})_{j=1}^\infty$ with $\sigma \in \{0, 1\}^\mathbb{N}$ is called a *weaving* of $(x_j^0, f_j^0)_{j=1}^\infty$ and $(x_j^1, f_j^1)_{j=1}^\infty$. For given $C \ge 1$, then $(x_j^0, f_j^0)_{j=1}^\infty$ and $(x_j^1, f_j^1)_{j=1}^\infty$ are *C*-woven if every weaving is a *C*-approximate Schauder frame.

They also showed that it is a true generalization of woven frames for Hilbert spaces as two frames $\{x_j^0\}_{j=1}^{\infty}$ and $\{x_j^1\}_{j=1}^{\infty}$ for a Hilbert space \mathcal{H} are woven if and only if the approximate Schauder frames $(x_j^0, f_j^0)_{j=1}^{\infty}$ and $(x_j^1, f_j^1)_{j=1}^{\infty}$ are woven.

Weaving frames have many useful applications in sensor networks. Likewise, weaving K-frames [11] have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. On this development, Bhandari, Borah and Mukherjee [6] studied weaving K-frames and gave characterization of weaving K-frames in different spaces.

3 Woven *pg*–Frames

We begin this section with the following definition of woven pg-frames:

Definition 3.1. Let $1 and <math>\mathfrak{F} = \{\{\mathfrak{T}_{ni} : \mathcal{X} \to \mathcal{Y}_n\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a family of pg-frames for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$. Then \mathfrak{F} is said to be a *woven* pg-frame, if there exist universal constants $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$ such that for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} , the family $\{\mathfrak{T}_{ni}\}_{n \in \sigma_i, i \in \mathbb{N}_M}$ is a pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \sigma_i, i \in \mathbb{N}_M}$ with lower and upper pg-frame bounds $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$, respectively.

In this case, the family \mathfrak{F} is called a *weaving* pg-*frame* for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$ and the bounds $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$ are called the *woven* pg-*frame bounds*. If every weaving is a pg-Bessel sequence, then it is called a *woven* pg-Bessel sequence for \mathcal{X} .

For the existence of woven pg-frames, we give the following example:

Example 3.2. Let $\mathcal{X} = \ell^p$ and $\mathcal{Y}_n = \ell^p$, for all $n \in \mathbb{N}$ and 1 . $For each <math>n \in \mathbb{N}$, we define $\mathfrak{T}_{n1} : \mathcal{X} \to \mathcal{Y}_n$ as

$$\mathfrak{T}_{n1}(x) = \delta_n^{x_n} - \delta_{n+1}^{x_n}, \ x = \{x_n\} \in \mathcal{X},$$

where $\delta_n^x = \{0, \dots, 0 \underbrace{x}_{n^{th} \text{place}}, 0, \dots\}$ for all $n \in \mathbb{N}$ and $x \in \mathcal{X}$.

Then $\{\mathfrak{T}_{n1}\}_{n\in\mathbb{N}}$ is a pg-frame for \mathcal{X} . Again, for each $n \in \mathbb{N}$, we define $\mathfrak{T}_{n2} : \mathcal{X} \to \mathcal{Y}_n$ as

$$\mathfrak{T}_{n2}(x) = \begin{cases} \delta_2^{x_1} - \delta_1^{x_1}, \ n = 1\\ \delta_n^{x_n} - \delta_{n+1}^{x_n}, \ n \ge 2, \ n \in \mathbb{N}, \ x = \{x_n\} \in \mathcal{X}, \end{cases}$$

where $\delta_n^x = \{0, \dots, 0 \underbrace{x}_{n^{th} \text{ place}}, 0, \dots\}$ for all $n \in \mathbb{N}$ and $x \in \mathcal{X}$.

Then $\{\mathfrak{T}_{n2}\}_{n\in\mathbb{N}}$ is also a pg-frame for \mathcal{X} .

Now, we let $\sigma = \{1, 2\} \subseteq \mathbb{N}$ be any partition, then for every $x \in \mathcal{X}$, we have

$$\sum_{n \in \sigma} \|\mathfrak{T}_{n1}(x)\|^p + \sum_{n \in \sigma^c} \|\mathfrak{T}_{n2}(x)\|^p = 2\|x\|^p.$$

Therefore $\{\mathfrak{T}_{n1}\}_{n\in\sigma}\cup\{\mathfrak{T}_{n2}\}_{n\in\sigma^c}$ is a weaving pg-frame with bounds $2^{1/p}$.

The following proposition shows that the family of pg-Bessel sequences is always woven.

Proposition 3.3. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a family of pg-Bessel sequences for X with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ with Bessel bounds B_i , $i \in \mathbb{N}_M$. Then \mathfrak{F} is a woven pg-Bessel sequence with pg-Bessel bound $(\sum_{i \in \mathbb{N}_M} B_i^p)^{1/p}$.

Proof. Let $\{\sigma_i\}_{i\in\mathbb{N}_M}$ be any partition of \mathbb{N} . Then, for each $x\in\mathcal{X}$, we have

$$\sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} \|\mathfrak{T}_{ni}(x)\|^p \le \sum_{i \in \mathbb{N}_M} \sum_{n \in \mathbb{N}} \|\mathfrak{T}_{ni}(x)\|^p \le \sum_{i \in \mathbb{N}_M} B_i^p \|x\|^p.$$

Thus \mathfrak{F} is a woven pg-Bessel sequence with pg-Bessel bound $\left(\sum_{i \in \mathbb{N}_M} B_i^p\right)^{1/p}$.

Next, we show that the image of woven pg-frame under a bounded and invertible operator is also a woven pg-frame.

Theorem 3.4. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n\in\mathbb{N}} : i\in\mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$ with universal frame bounds $A_{\mathfrak{F}}$, $B_{\mathfrak{F}}$ and \mathfrak{U} be a bounded invertible operator on \mathcal{X} . Then, the family $\mathfrak{U}\mathfrak{F} = \{\{\mathfrak{T}_{ni}\mathfrak{U}\}_{n\in\mathbb{N}} : i\in\mathbb{N}_M\}$ is a woven pg-frame for \mathcal{X} with universal frame bounds $A_{\mathfrak{F}} \|\mathfrak{U}^-\|^{-1}$ and $B_{\mathfrak{F}} \|\mathfrak{U}\|$.

Proof. Let $\{\sigma_i\}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N} . Then, we have

$$A^{p}_{\mathfrak{F}} \|\mathfrak{U}x\|^{p} \leq \sum_{i \in \mathbb{N}_{M}} \sum_{n \in \sigma_{i}} \|\mathfrak{T}_{ni}(\mathfrak{U}x)\|^{p} \leq B^{p}_{\mathfrak{F}} \|\mathfrak{U}x\|^{p}, \ x \in \mathcal{X}.$$

Therefore,

$$A^p_{\mathfrak{F}} \|\mathfrak{U}^{-1}\|^{-p} \|x\|^p \leq \sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} \|(\mathfrak{T}_{ni}\mathfrak{U})(x)\|^p \leq B^p_{\mathfrak{F}} \|\mathfrak{U}\|^p \|x\|^p, \ x \in \mathcal{X}.$$

Thus $\mathfrak{U}\mathfrak{F}$ is a woven pg-frame for \mathcal{X} with universal pg-frame bounds $A_{\mathfrak{F}} \| \mathfrak{U}^{-1} \|^{-1}$ and $B_{\mathfrak{F}} \| \mathfrak{U} \|$.

Corollary 3.5. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ and \mathfrak{U} be an isometry on \mathcal{X} . Then, the family $\mathfrak{U}\mathfrak{F} = \{\{\mathfrak{T}_{ni}\mathfrak{U}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ is a woven pg-frame for \mathcal{X} .

Theorem 3.6. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ with universal frame bounds $A_{\mathfrak{F}}$, $B_{\mathfrak{F}}$ and \mathfrak{U} be a bounded operator on \mathcal{X} . Then, the family $\mathfrak{U}\mathfrak{F} = \{\{\mathfrak{T}_{ni}\mathfrak{U}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ is a woven pg-frame for \mathcal{X} if and only if \mathfrak{U} is bounded below.

Proof. Let $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N} . Let $A_{\mathfrak{U}\mathfrak{F}}$ and $B_{\mathfrak{U}\mathfrak{F}}$ be an universal pg-frame bounds for $\mathfrak{U}\mathfrak{F}$. Then, we have

$$A^{p}_{\mathfrak{U}\mathfrak{F}}\|x\|^{p} \leq \sum_{i \in \mathbb{N}_{M}} \sum_{n \in \sigma_{i}} \|(\mathfrak{T}_{ni}\mathfrak{U})(x)\|^{p} \leq B^{p}_{\mathfrak{U}\mathfrak{F}}\|x\|^{p}, \ x \in \mathcal{X}.$$
(3.1)

Also,

$$A^{p}_{\mathfrak{F}} \|\mathfrak{U}x\|^{p} \leq \sum_{i \in \mathbb{N}_{M}} \sum_{n \in \sigma_{i}} \|\mathfrak{T}_{ni}(\mathfrak{U}x)\|^{p} \leq B^{p}_{\mathfrak{F}} \|\mathfrak{U}x\|^{p}, \ x \in \mathcal{X}.$$
(3.2)

Therefore, by using (3.1) and (3.2), we get

$$A^p_{\mathfrak{U}\mathfrak{F}} \|x\|^p \le B^p_{\mathfrak{F}} \|\mathfrak{U}x\|^p, \ x \in \mathcal{X}.$$

Thus $\|\mathfrak{U}x\| \ge M\|x\|, x \in \mathcal{X}$, where $M = \frac{A_{\mathfrak{U}\mathfrak{F}}}{B_{\mathfrak{F}}} > 0$. Conversely, let \mathfrak{U} be bounded below. Then there exists a $\delta > 0$ such that $\|\mathfrak{U}x\| \ge \delta \|x\|, \forall x \in \mathcal{X}$. So,

$$A^{p}_{\mathfrak{F}}\delta^{p}\|x\|^{p} \leq A^{p}_{\mathfrak{F}}\|\mathfrak{U}x\|^{p} \leq \sum_{i\in\mathbb{N}_{M}}\sum_{n\in\sigma_{i}}\|\mathfrak{T}_{ni}(\mathfrak{U}x)\|^{p} \leq B^{p}_{\mathfrak{F}}\|\mathfrak{U}x\|^{p} \leq B^{p}_{\mathfrak{F}}\|\mathfrak{U}\|^{p}\|x\|^{p}, \ x\in\mathcal{X}.$$

Since $\{\sigma_i\}_{i \in \mathbb{N}_M}$ is any arbitrary partition of \mathbb{N} , therefore $\mathfrak{U}\mathfrak{F}$ is a woven pg-frame for \mathcal{X} with universal pg-frame bounds $A_{\mathfrak{F}}\delta$ and $B_{\mathfrak{F}}||\mathfrak{U}||$.

Next, we provide the example which validate the characterization of Theorem 3.6.

Example 3.7. Let $\mathcal{X} = \ell^p$, $1 and <math>\{e_n\}_{n \in \mathbb{N}}$ be the standard basis of the canonical unit vectors in ℓ_p . Let $\mathcal{Y}_n = [e_n]$ and define $\mathfrak{T}_{ni} : X \to \mathcal{Y}_n$ as

$$\mathfrak{T}_{ni}(x) = \alpha_n e_n, \ x = \sum_{n \in \mathbb{N}} \alpha_n e_n \in \mathcal{X},$$
(3.3)

where $\{\alpha_n\}_{n\in\mathbb{N}}$ is a sequence of scalars. Let $\{\sigma_i\}$ be any partition of \mathbb{N} , where

$$\begin{cases} \sigma_i = i, \ i = 1, 2, \dots, M - 1, \\ \sigma_M = \{M, M + 1, M + 2, \dots\}, \ M \in \mathbb{N}. \end{cases}$$

Then

$$\sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} \|\mathfrak{T}_{ni}(x)\|^p = \|x\|^p$$

Therefore $\{\{\mathfrak{T}_{ni}\}_{n\in\mathbb{N}}: i\in\mathbb{N}_M\}$ is a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n\in\mathbb{N}}$. Now, we define an operator $\mathfrak{U}: \mathcal{X} \to \mathcal{X}$ as

$$\mathfrak{U}(x) = (0, \alpha_1, \alpha_2, \dots, \alpha_n, \dots)$$

where, the vector x is as defined in equation (3.3). Then \mathfrak{U} is bounded operator on \mathcal{X} such that $\{\{\mathfrak{T}_{ni}\mathfrak{U}\}_{n\in\mathbb{N}}: i\in\mathbb{N}_M\}$ is a woven pg-frame for \mathcal{X} if and only if \mathfrak{U} is bounded below.

Now, we give the definition of the analysis and synthesis operators of woven pg-frame.

Definition 3.8. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N}_M . Then, the operators

$$U_{\sigma}: X \to \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_p} \text{ as } U_{\sigma}(x) = \{\mathfrak{T}_{ni}(x)\}_{n \in \sigma_i}, \ x \in \mathcal{X}, \ i \in \mathbb{N}_M$$

and

$$T_{\sigma}: \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_{n}^{*}\right)_{\ell_{q}} \to X^{*} \text{ as } T_{\sigma}(\{g_{n}\}_{n \in \mathbb{N}}) = \sum_{i \in \mathbb{N}_{M}} \sum_{n \in \sigma_{i}} g_{n}\mathfrak{T}_{ni}, \ \{g_{n}\}_{n \in \mathbb{N}} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_{n}^{*}\right)_{\ell_{q}}$$

are called the analysis and synthesis operators, respectively, of woven pg-frame \mathfrak{F} with respect to σ .

Next, we give the characterization of woven pg-Bessel sequences.

Theorem 3.9. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni} : \mathcal{X} \to \mathcal{Y}_n\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a family of operators and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N} . Then \mathfrak{F} is a woven pg-Bessel sequences for \mathcal{X} with universal bound $B_{\mathfrak{F}}$ if and only if for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} , the synthesis operator T_{σ} is well-defined and bounded.

Proof. Let \mathfrak{F} be a family of woven pg-Bessel sequences for \mathcal{X} with universal bound $B_{\mathfrak{F}}$ and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} . Then, for $J_2 \subsetneq J_1 \subset \mathbb{N}_M$, we have

$$\begin{split} \left\| \sum_{i \in J_1} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni} - \sum_{i \in J_2} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni} \right\| &= \left\| \sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni} \right\| \\ &= \sup_{\|x\|=1} \left\| \sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni}(x) \right\| \\ &\leq \sup_{\|x\|=1} \sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} \|g_n\| \| \mathfrak{T}_{ni}(x) \| \\ &\leq \left(\sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} \|g_n\|^q \right)^{1/q} \sup_{\|x\|=1} \left(\sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} \|\mathfrak{T}_{ni}(x)\|^p \right)^{1/p} \\ &\leq B_{\mathfrak{F}} \left(\sum_{i \in J_1 \setminus J_2} \sum_{n \in \sigma_i} \|g_n\|^q \right)^{1/q}, \ \{g_n\}_{n \in \mathbb{N}} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^* \right)_{\ell_q}. \end{split}$$

Therefore $\sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni}$ is unconditionally convergent and

$$||T_{\sigma}(\{g_n\}_{n\in\mathbb{N}})|| \le B_{\mathfrak{F}}||\{g_n\}_{n\in\mathbb{N}}||_q.$$

Thus T_{σ} is well-defined and bounded with $||T_{\sigma}|| \leq B_{\mathfrak{F}}$. Conversely, let T_{σ} be well-defined and bounded. Then, for each partition $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ of \mathbb{N} , define $\tilde{T}_x : (\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*)_{\ell_{\sigma}} \to \mathbb{C}$ as

$$\tilde{T}_x(\{g_n\}_{n\in\mathbb{N}}) = (T_\sigma(\{g_n\}_{n\in\mathbb{N}}))(x) = \sum_{i\in\mathbb{N}_M} \sum_{n\in\sigma_i} g_n \mathfrak{T}_{ni}(x), \ x\in\mathcal{X}.$$

Then $\tilde{T}_x \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q}^*$ and $\|\tilde{T}_x(\{g_n\}_{n \in \mathbb{N}})\| \leq \|T_\sigma\| \|\{g_n\}_{n \in \mathbb{N}}\| \|x\|$. Therefore, there exists $\{g_n\}_{n \in \mathbb{N}} \in \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q}$ with $\|\{g_n\}_{n \in \mathbb{N}}\|_q \leq 1$ such that

$$\left\|\left\{\mathfrak{T}_{ni}(x)\right\}\right\|_{p} = \left|\sum_{i \in \mathbb{N}_{M}} \sum_{n \in \sigma_{i}} g_{n}\mathfrak{T}_{ni}(x)\right|, \ x \in \mathcal{X}$$

So, for each $x \in \mathcal{X}$, we have

$$\left(\sum_{i\in\mathbb{N}_M}\sum_{n\in\sigma_i}\|\mathfrak{T}_{ni}(x)\|^p\right)^{1/p} = \|\{\mathfrak{T}_{ni}(x)\}\|_p$$
$$\leq \sup_{\|\{g_n\}_{n\in\mathbb{N}}\|_q=1}\left|\sum_{i\in J}\sum_{n\in\sigma_i}g_n\mathfrak{T}_{ni}(x)\right| = \|\tilde{T}_x\| \leq \|T_\sigma\|\|x\|.$$

Therefore $\{\{\mathfrak{T}_{ni}\}_{n\in\mathbb{N}}: i\in\mathbb{N}_M\}$ is a woven pg-Bessel sequence for \mathcal{X} with Bessel bound $||T_{\sigma}||$.

Theorem 3.10. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} . Then, the analysis operator U_{σ} of \mathfrak{F} has a closed range.

Proof. Let $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$ be universal pg-frame bounds for woven pg-frame \mathfrak{F} and $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} . Then,

$$A_{\mathfrak{F}}\|x\| \le \|U_{\sigma}(x)\|_p \le B_{\mathfrak{F}}\|x\|, \ x \in \mathcal{X}$$

$$(3.4)$$

Let $U_{\sigma}(x) = 0$, then by (3.4), x = 0. Therefore U_{σ} is injective and so $\mathcal{X} \simeq \mathcal{R}_{U_{\sigma}}$.

Corollary 3.11. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$, where $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ is a sequence of reflexive Banach spaces. Then \mathcal{X} is reflexive.

Theorem 3.12. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-Bessel sequence for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} . Then

- (i) $U^*_{\sigma} = T_{\sigma}$
- (ii) $U_{\sigma} = T_{\sigma}^*$, if \mathfrak{F} has universal lower pg-frame bound and $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ is a sequence of reflexive Banach spaces.

Proof. (i). Let $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} . Then, for any $x \in \mathcal{X}$ and $\{g_n\}_{n \in \mathbb{N}} \in (\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*)_{\ell_n}$, we have

$$\langle U_{\sigma}(x), \{g_n\}_{n \in \sigma_i} \rangle = \langle \{\mathfrak{T}_{ni}(x)\}_{n \in \sigma_i}, \{g_n\}_{n \in \sigma_i} \rangle$$

$$= \sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} \langle \mathfrak{T}_{ni}(x), g_n \rangle$$

$$= \sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni}(x), \ x \in \mathcal{X}$$

$$(3.5)$$

and

$$\langle x, T_{\sigma}(\{g_n\}_{n\in\mathbb{N}})\rangle = \left\langle x, \sum_{i\in\mathbb{N}_M} \sum_{n\in\sigma_i} g_n\mathfrak{T}_{ni} \right\rangle = \sum_{i\in\mathbb{N}_M} \sum_{n\in\sigma_i} g_n\mathfrak{T}_{ni}(x).$$
 (3.6)

Therefore from (3.5) and (3.6), we have $U_{\sigma}^* = T_{\sigma}$. (ii). By Theorem 3.10, $\mathcal{R}_{U_{\sigma}}$ is a closed subspace of $\left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_p}$ and so is reflexive. Then $U_{\sigma} = T_{\sigma}^*$.

The next theorem provides the characterization of woven pg-frame in terms of synthesis operator.

Theorem 3.13. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni} : \mathcal{X} \to \mathcal{Y}_n\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a family of operators and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$. Then \mathfrak{F} is a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ if and only if T_{σ} is bounded and onto.

Proof. Let \mathfrak{F} be a woven pg-frame for \mathcal{X} and $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N} . Then, by Theorem 3.9, T_{σ} is well-defined and bounded. Also, by Theorem 3.10, U_{σ} is injective. Then, $U_{\sigma}^* = T_{\sigma}$ is onto. Conversely, let $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ be any partition of \mathbb{N} and T_{σ} is bounded and onto. Then, by Theorem 3.9, \mathfrak{F} is a pg-Bessel sequence for \mathcal{X} . Since $T_{\sigma} = U_{\sigma}^*$ is onto. So U_{σ} has bounded inverse. Therefore, there exists a constant A > 0 such that

$$||U_{\sigma}(x)||_{p} \ge A||x||, \ x \in \mathcal{X}.$$

This gives

$$\left(\sum_{i\in\mathbb{N}_M}\sum_{n\in\sigma_i}\|\mathfrak{T}_{ni}(x)\|^p\right)^{1/p}\geq A\|x\|,\ x\in\mathcal{X}.$$

Hence \mathfrak{F} is a woven pg-frame for \mathcal{X} .

Corollary 3.14. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ and $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$. Then, for any $g \in \mathcal{X}^*$, there exists a sequence $\{g_n\}_{n \in \mathbb{N}} \in (\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*)_{\ell_n}$ such that

$$g = \sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni}.$$

4 Woven qg-Riesz Bases

We begin this section with the following definition of woven qg-Riesz basis for \mathcal{X}^* .

Definition 4.1. Let $1 < q < \infty$ and $\mathfrak{F} = \{\{\mathfrak{T}_{ni} : \mathcal{X} \to \mathcal{Y}_n\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a family of qg-Riesz basis for \mathcal{X}^* with respect to $\{\mathcal{Y}_n^*\}_{n \in \mathbb{N}}$. Then \mathfrak{F} is said to be a *woven* qg-Riesz basis, if there exist universal constants $0 < A_{\mathfrak{F}} \leq B_{\mathfrak{F}} < \infty$ such that for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} , the family \mathfrak{F}_{σ_i} is a qg-Riesz basis for \mathcal{X}^* with respect to $\{\mathcal{Y}_n^*\}_{n \in \mathbb{N}}$.

In this case, the family \mathfrak{F} is called a *weaving* qg-*Riesz basis* for \mathcal{X}^* and the bounds $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$ are called the *woven* qg-*Riesz basis bounds*.

Next, we prove that the woven qg-Riesz basis for \mathcal{X}^* is a particular case of woven pg-frame for \mathcal{X} .

Theorem 4.2. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven qg-Riesz basis for \mathcal{X}^* with respect to $\{\mathcal{Y}_n^*\}_{n \in \mathbb{N}}$ and with universal qg-Riesz bounds $A_{\mathfrak{F}}$ and $B_{\mathfrak{F}}$. Then \mathfrak{F} is a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$.

Proof. Let $\sigma = {\sigma_i}_{i \in \mathbb{N}_M}$ be a partition of \mathbb{N} and $\{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven qg-Riesz basis for \mathcal{X}^* . Then, for all $\{g_n\}_{n \in \mathbb{N}} \in (\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*)_{\ell_q}$, the series $\sum_{i \in \mathbb{N}_M} \sum_{n \in \sigma_i} g_n \mathfrak{T}_{ni}$ is unconditionally convergent and satisfies

$$A_{\mathfrak{F}}\left(\sum_{n\in\mathbb{N}}\|g_n\|^q\right)^{1/q} \le \left\|\sum_{i\in\mathbb{N}_M}\sum_{n\in\sigma_i}g_n\mathfrak{T}_{ni}\right\| \le B_{\mathfrak{F}}\left(\sum_{n\in\mathbb{N}}\|g_n\|^q\right)^{1/q}.$$

Therefore T_{σ} is bounded and invertible from $\left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^*\right)_{\ell_q}$ to \mathcal{X}^* . Thus \mathfrak{F} is a woven pg-frame for \mathcal{X} .

Theorem 4.3. Let $\mathfrak{F} = \{\{\mathfrak{T}_{ni}\}_{n \in \mathbb{N}} : i \in \mathbb{N}_M\}$ be a woven pg-frame for \mathcal{X} with respect to $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$, where $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ is a sequence of reflexive Banach spaces. Then, for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} , the following conditions are equivalent:

- (i) \mathfrak{F} is a qg-Riesz basis for \mathcal{X}^* .
- (ii) If $\{g_n\}_{n\in\mathbb{N}}\in \left(\sum_{n\in\mathbb{N}}\oplus\mathcal{Y}_n^*\right)_{\ell_n}$ and $\sum_{i\in\mathbb{N}_M}\sum_{n\in\sigma_i}g_n\mathfrak{T}_{ni}=0$, then $g_n=0, n\in\mathbb{N}$.
- (*iii*) $\mathcal{R}_{U_{\sigma}} = \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_n}$

Proof. Clearly, $(1) \implies (2)$.

(2) \implies (1). Since \mathfrak{F} is a woven pg-frame for \mathcal{X} , then by the Theorem 3.13, T_{σ} is bounded and onto, for each partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} .

Also, by the hypothesis, T_{σ} is injective. Therefore, T_{σ} is invertible for each partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} . Then \mathfrak{F} is a qg-Riesz basis for \mathcal{X}^* .

(1) \implies (3). Let \mathfrak{F} is a qg-Riesz basis for \mathcal{X}^* . Then T_{σ} has a bounded inverse on $\mathcal{R}_{T_{\sigma}}$. So, the adjoint $T_{\sigma}^* : \mathcal{X}^{**} \rightarrow \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_p}$ of T_{σ} is surjective on $\mathcal{R}_{T_{\sigma}}$. Since \mathfrak{F} is a woven pg-frame for \mathcal{X} , then by Corollary 3.11, \mathcal{X} is reflexive. Thus $\mathcal{R}_{U_{\sigma}} = \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n\right)_{\ell_p}$, for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} .

(3) \Longrightarrow (1). As $T_{\sigma} = U_{\sigma}^* : \left(\sum_{n \in \mathbb{N}} \oplus \mathcal{Y}_n^* \right)_{\ell_q} \to \mathcal{X}^*$ is invertible, for every partition $\sigma = \{\sigma_i\}_{i \in \mathbb{N}_M}$ of \mathbb{N} . Therefore \mathfrak{F} is a qg-Riesz basis for \mathcal{X}^* .

References

- [1] M.R. Abdollahpour, M.H. Faroughi and A. Rahimi, *PG*–Frames in Banach Spaces, *Methods of Functional Analysis and Topology*, **13**(3), 201–210, (2007).
- [2] A. Aldroubi, Q. Sun and W. Tang, p-frames and shift invariant subspaces of L^p, J. Fourier Anal. Appl., 7(1), 1–22, (2001).
- [3] C. D. Aliprantis and K. C. Border, *Infinite Dimensional Analysis: A Hitchhikers Guide*, Springer-Verlag, New York–Berlin, (1999).

- [4] T. Bemrose, P. G. Casazza, K. Gróchenig, M. C. Lammers, and R. G. Lynch, Weaving frames, Oper. Matrices, 10(4), 1093-1116, (2016).
- [5] A. Bhandari and S. Mukherjee, Atomic Subspaces for Operators, *Indian Journal of Pure and Applied Mathematics*, 51(3), 1039-1052, (2020).
- [6] A. Bhandari, D. Borah and S. Mukherjee, Characterizations of Weaving K-Frames, Proc. Japan Acad. Ser. A Math. Sci, 96(5), 39-43, (2020).
- [7] P.G. Casazza, D. Freeman and R.G. Lynch, Weaving Schauder Frames, *Journal of Approximation Theory*, 211, 42-60, (2016).
- [8] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser (2002).
- [9] O. Christensen and D. Stoeva, p-frames in separable Banach spaces, Adv. Comput. Math. 18(2-4), 117-126, (2003).
- [10] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27, 1271–1283, (1986).
- [11] Deepshikha and L.K. Vashisht, Weaving K-Frames in Hilbert Spaces, *Results in Mathematics*, 73(81), (2018).
- [12] R.J. Duffin and A.C. Schaeffer, A class of non-harmonic Fourier series, *Trans. Amer. Math. Soc.*, 72, 341–366, (1952).
- [13] H. G. Feichtinger and K. H. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Function spaces and Applications, Lecture Notes in Mathematics, 1302, 52-73, (1988).
- [14] K.H. Gröchenig, Describing functions, Atomic decompositions versus frames, *Monatsh. fur Mathematik*, 112, 1-41, (1991).
- [15] W. Sun, G-frame and g-Riesz base, J. Math. Anal. Appl., **322**(1), 437–452, (2006).

Author information

S.K. Sharma, Department of Mathematics, Kirori Mal College, University of Delhi, Delhi-110007, India. E-mail: sumitkumarsharma@gmail.com

Shashank Goel, Department of Mathematics, Jaypee Institue of Information Technology, Noida, Uttar Pradesh-201309, India.

E-mail: goel.shashank25@gmail.com; shashank.goel@jiit.ac.in

S.K. Kaushik, Department of Mathematics, Kirori Mal College, University of Delhi, Delhi-110007, India. E-mail: shikk2003@yahoo.co.in

Received: 2022-01-05 Accepted: 2023-08-02