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Abstract Recently, a new application of frame theory in Hilbert spaces has been emerged
related to distributed signal processing. Bemrose et al. [4] have developed a theory of weav-
ing frames to handle such types of problems. In this article, we introduce and study woven
pg−frames for Banach spaces. It has been shown that a family of pg−Bessel sequences is al-
ways woven Bessel family. The image of woven pg−frame under a bounded invertible operator
is a woven pg−frame has been proved. Also, a necessary and sufficient condition for the im-
age of woven pg−frame under a bounded operator to be a woven pg−frame has been given.
Further, some characterizations of woven pg− frames and characterization of woven pg−Bessel
sequences are given. Furthermore, woven qg−Riesz bases are defined and prove that these are
particular cases of woven pg−frames. Finally, some equivalent conditions for woven qg−Riesz
basis are given.

1 Introduction

Duffin and Schaeffer [12] introduced the concept of frames in Hilbert spaces while studying
the problems of non-harmonic Fourier series. They gave the following definition of frames in
Hilbert spaces:

Definition 1.1. A family of vectors {xn}n∈N in a Hilbert space H is said to be a frame for H, if
there exist two constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑
n∈N
|〈x, xn〉|2 ≤ B‖x‖2, ∀ x ∈ H.

Later, in 1986, Daubechies et al. [10] reintroduced frames and observed that frames can
be used to approximate functions in L2(R). These days theory of frames become an integral
and important tool to study the problems of applied mathematics and engineering. For nice
introduction of frames, one may refer [8].

The concept of frames was extended to Banach spaces by Feichtinger and Gröchenig [13].
They introduced the notion of atomic decomposition for Banach spaces. Later, Gröchenig [14]
introduced a more general concept for Banach spaces called Banach frames. He gave the follow-
ing definition:

Definition 1.2. Let X be a Banach space and Xd an associated Banach space of scalar-valued
sequences indexed by N. Let {fn} ⊂ X ∗ and S : Xd → X be given. Then, the pair ({fn}, S) is
called a Banach frame for X with respect to Xd, if

(i) {fn(x)} ∈ Xd, for each x ∈ X .

(ii) there exist constants A and B with 0 < A ≤ B <∞ such that

A‖x‖X ≤ ‖{fn(x)}‖Xd ≤ B‖x‖X , x ∈ X .

(iii) S is a bounded linear operator such that S({fn(x)}) = x, x ∈ X .
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In the last decade, various generalization of frames for Hilbert spaces have been introduced
and studied. Sun [15] generalized the concept of frames and introduced g−frames for Hilbert
spaces which includes ordinary frames as well as many recent generalization of frames. Re-
cently, Bhandari and Mukherjee [5] gave the notion of atomic subspaces with respect to a
bounded linear operator on a separable Hilbert space which leads to the concept of K-fusion
frames, a generalization of fusion frames.

2 Preliminaries

Throughout this paper, NM = {1, 2, . . .M}, M ∈ N, X is a Banach space with dual X ∗ and also
{Yn}n∈N is a sequence of Banach spaces. For each n ∈ N, B(X ,Yn) is the space of bounded
linear operators from X into Yn.

In order to make this paper complete, we review some concepts related to pg−frames and
weaving frames.

2.1 pg−frames and qg− Riesz basis in Banach spaces

In 2001, Aldroubi et al. [2] introduced p−frames in Banach spaces and observed that p−frames
can be used to obtain series expansions in shift invariant subspaces of Lp(R). In [9], O. Chris-
tensen and D. Stoeva studied p−frames in separable Banach spaces and proved that a p-frame
allows every g ∈ X ∗ to be represented as an unconditionally convergent series g =

∑
digi for

coefficients {di} ∈ `q, where 1/p + 1/q = 1. Abdollahpour et al. [1] generalized the concepts
of p−frames for Banach Spaces and defined pg−Banach frames in Banach spaces. They also
observed that a pg−frame allows every g ∈ X ∗ to be represented as an unconditionally conver-
gent series g =

∑
n∈N gnTn(x), where {Tn}n∈N is a pg−frame and {gn}n∈N ∈

(∑
n∈N⊕Y∗n

)
`q

,

where
1
p
+

1
q
= 1. They gave the following definition:

Definition 2.1. Let {Tn}n∈N ⊂ B(X ,Yn) be a sequence of operators. Then {Tn}n∈N is said to
be pg−frame for X with respect to {Yn}n∈N, if there exist two constants 0 < c1 ≤ c2 <∞ such
that

c1‖x‖X ≤

(∑
n∈N
‖Tn(x)‖p

)1/p

≤ c2‖x‖X , x ∈ X . (2.1)

A sequence {Tn}n∈N ⊂ B(X ,Yn) is said to be pg−Bessel sequence for X with respect to
{Yn}n∈N, if it satisfies the right hand side upper inequality in (2.1).

Towards the existence of pg−frames, we give the following example:

Example 2.2. Let X = `p and Yn = `p, for all n ∈ N and 1 < p <∞.
For each n ∈ N, we define Tn : X → Yn as

Tn(x) = δxnn , x = {xn} ∈ X ,

where δxn = {0, . . . , 0 x︸︷︷︸
nthplace

, 0, . . .} for all n ∈ N and x ∈ X .

Then {Tn}n∈N is a pg−frame for X with bound 1.

Definition 2.3. Let {Yn}n∈N be a sequence of Banach spaces. Then(∑
n∈N
⊕Yn

)
`p

=

{xn}n∈N : xn ∈ Yn, n ∈ N and

(∑
n∈N
‖xn‖p

)1/p

<∞


is a Banach space with the norm given by

‖{xn}n∈N‖`p =

(∑
n∈N
‖xn‖p

)1/p

.
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Let 1 < p, q <∞ be such that
1
p
+

1
q
= 1. If g∗ = {g∗n}n∈N ∈

(∑
n∈N⊕Y∗n

)
`q

then

〈g, g∗〉 =
∑
n∈N
〈gn, g∗n〉, g = {gn}n∈N ∈

(∑
n∈N
⊕Yn

)
`p

defines a continuous functional on
(∑

n∈N⊕Yn
)
`p

, whose norm is equal to ‖g∗‖q and its dual
can be characterized with the following lemma:

Lemma 2.4. [3] Let 1 < p, q <∞ be such that
1
p
+

1
q
= 1. Then

(∑
n∈N
⊕Yn

)∗
`p

=

(∑
n∈N
⊕Y∗n

)
`q

,

where the equality holds under the duality

〈g, g∗〉 =
∑
n∈N
〈gn, g∗n〉.

Further, if {Tn}n∈N ⊂ B(X ,Yn) be a pg−frame for X with respect to {Yn}n∈N. Then, the
operators

U : X →

(∑
n∈N
⊕Yn

)
`p

as U(x) = {Tn(x)}n∈N, x ∈ X

and T :

(∑
n∈N
⊕Y∗n

)
`q

→ X ∗ as T ({gn}n∈N) =
∑
n∈N

gnTn, {gn} ∈

(∑
n∈N
⊕Y∗n

)
`q

are called analysis operator and synthesis operator of pg−frames {Tn}n∈N, respectively.

Abdollahpour et al. [1] also generalized the concept of q−Riesz bases and defined qg−Riesz
basis for dual Banach space X ∗. They observed that every qg−Riesz basis for X ∗ is a pg−frame
for X and that qg−Riesz basis bounds coincides with bounds of pg−frames. They gave the
following definition of qg−Riesz basis for X ∗:

Definition 2.5. Let 1 < q <∞. A sequence {Tn}n∈N ⊂ B(X ,Yn) is said to be qg−Riesz basis
for X ∗, if

(i) {Tn}n∈N is g−complete in X .

(ii) there are positive constants 0 < c1 ≤ c2 < ∞ such that, for any finite subset J ⊆ N and
gn ∈ Y∗n, n ∈ J ,

c1

(∑
n∈J
‖gn‖q

)1/q

≤

∥∥∥∥∥∑
n∈J

gnTn

∥∥∥∥∥ ≤ c2

(∑
n∈J
‖gn‖q

)1/q

.

In view of Definition 2.5, one may observe that
∑
n∈N

gnTn converges unconditionally, for all

{gn}n∈N ∈
(∑
n∈N
⊕Y∗n

)
`q

and

c1

(∑
n∈N
‖gn‖q

)1/q

≤

∥∥∥∥∥∑
n∈N

gnTn

∥∥∥∥∥ ≤ c2

(∑
n∈N
‖gn‖q

)1/q

.

Therefore {Tn}n∈N is qg−Riesz basis for X ∗ if and only if the synthesis operator T is an invert-
ible operator from

(∑
n∈N⊕Y∗n

)
`q

onto X ∗. For the existence of qg−Riesz basis, one may refer
[15].
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2.2 Weaving frames in Hilbert spaces

Recently, a new problem in frame theory related to distributed signal processing has been emerged.
Two frames {φi}i∈I and {ψi}i∈I , where each set of frames is labelled by a sensor or a node i ∈ I .
Then, at each sensor i ∈ I , a signal x is measured with either φi or ψi, so that the collected infor-
mation is the set of numbers {〈x, φi〉}i∈σ ∪ {〈x, ψi〉}i∈σc for some subset σ ⊆ I . Now, a natural
question arises: “Can x still be recovered robustly from these measurements, regardless of the
kind of measurement considered at each node?" In other words: “Is the set {φi}i∈σ ∪ {ψi}i∈σc
a frame for all subsets σ ⊆ I?" In this direction, a theory of weaving frames was developed by
Bemrose et al. [4]. They gave the following definition:

Definition 2.6. A family of frames {ψij}i∈I for j ∈ NM for a Hilbert spaceH is said to be woven
if there are universal constants c1 and c2 so that for every partition {σj}j∈NM of I , the family
{ψij}i∈σj , j∈NM is a frame for H with lower and upper frame bounds c1 and c2, respectively.
Each family {ψij}i∈σj , j∈NM is called a weaving, where NM = {1, 2, . . .M} and NcM = N\NM
for every M ∈ N.

Casazza et al. [7] generalized the notion of weaving fames in Hilbert spaces to Banach spaces
and defined weaving approximate scahuder frames for Banach spaces. They gave the following
definition:

Definition 2.7. [7] Let (x0
j , f

0
j )
∞
j=1 and (x1

j , f
1
j )
∞
j=1 be two approximate Schauder frames for a Ba-

nach space X . A sequence (x
σ(j)
j , f

σ(j)
j )∞j=1 with σ ∈ {0, 1}N is called a weaving of (x0

j , f
0
j )
∞
j=1

and (x1
j , f

1
j )
∞
j=1. For given C ≥ 1, then (x0

j , f
0
j )
∞
j=1 and (x1

j , f
1
j )
∞
j=1 are C−woven if every weav-

ing is a C-approximate Schauder frame.

They also showed that it is a true generalization of woven frames for Hilbert spaces as two
frames {x0

j}∞j=1 and {x1
j}∞j=1 for a Hilbert space H are woven if and only if the approximate

Schauder frames (x0
j , f

0
j )
∞
j=1 and (x1

j , f
1
j )
∞
j=1 are woven.

Weaving frames have many useful applications in sensor networks. Likewise, weaving K-
frames [11] have been proved to be useful during signal reconstructions from the range of a
bounded linear operator K. On this development, Bhandari, Borah and Mukherjee [6] studied
weaving K-frames and gave characterization of weaving K-frames in different spaces.

3 Woven pg−Frames

We begin this section with the following definition of woven pg−frames:

Definition 3.1. Let 1 < p < ∞ and F = {{Tni : X → Yn}n∈N : i ∈ NM} be a family of
pg−frames for X with respect to {Yn}n∈N. Then F is said to be a woven pg−frame, if there
exist universal constants AF and BF such that for every partition σ = {σi}i∈NM of N, the fam-
ily {Tni}n∈σi,i∈NM is a pg−frame for X with respect to {Yn}n∈σi,i∈NM with lower and upper
pg−frame bounds AF and BF, respectively.

In this case, the family F is called a weaving pg−frame for X with respect to {Yn}n∈N and
the bounds AF and BF are called the woven pg−frame bounds. If every weaving is a pg−Bessel
sequence, then it is called a woven pg−Bessel sequence for X .

For the existence of woven pg−frames, we give the following example:

Example 3.2. Let X = `p and Yn = `p, for all n ∈ N and 1 < p <∞.
For each n ∈ N, we define Tn1 : X → Yn as

Tn1(x) = δxnn − δ
xn
n+1, x = {xn} ∈ X ,

where δxn = {0, . . . , 0 x︸︷︷︸
nthplace

, 0, . . .} for all n ∈ N and x ∈ X .

Then {Tn1}n∈N is a pg−frame for X .
Again, for each n ∈ N, we define Tn2 : X → Yn as

Tn2(x) =

{
δx1

2 − δ
x1
1 , n = 1

δxnn − δ
xn
n+1, n ≥ 2, n ∈ N, x = {xn} ∈ X ,
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where δxn = {0, . . . , 0 x︸︷︷︸
nthplace

, 0, . . .} for all n ∈ N and x ∈ X .

Then {Tn2}n∈N is also a pg−frame for X .
Now, we let σ = {1, 2} ⊆ N be any partition, then for every x ∈ X , we have∑

n∈σ
‖Tn1(x)‖p +

∑
n∈σc

‖Tn2(x)‖p = 2‖x‖p.

Therefore {Tn1}n∈σ ∪ {Tn2}n∈σc is a weaving pg−frame with bounds 21/p.

The following proposition shows that the family of pg−Bessel sequences is always woven.

Proposition 3.3. Let F = {{Tni}n∈N : i ∈ NM} be a family of pg−Bessel sequences for X with
respect to {Yn}n∈N with Bessel bounds Bi, i ∈ NM . Then F is a woven pg−Bessel sequence
with pg− Bessel bound

(∑
i∈NM Bpi

)1/p.

Proof. Let {σi}i∈NM be any partition of N. Then, for each x ∈ X , we have∑
i∈NM

∑
n∈σi

‖Tni(x)‖p ≤
∑
i∈NM

∑
n∈N
‖Tni(x)‖p ≤

∑
i∈NM

Bpi ‖x‖
p.

Thus F is a woven pg−Bessel sequence with pg− Bessel bound
(∑

i∈NM Bpi
)1/p.

Next, we show that the image of woven pg-frame under a bounded and invertible operator is
also a woven pg-frame.

Theorem 3.4. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N with universal frame bounds AF, BF and U be a bounded invertible operator on X .
Then, the family UF = {{TniU}n∈N : i ∈ NM} is a woven pg−frame for X with universal frame
bounds AF‖U−1‖−1 and BF‖U‖.

Proof. Let {σi}i∈NM be any partition of N. Then, we have

ApF‖Ux‖
p ≤

∑
i∈NM

∑
n∈σi

‖Tni(Ux)‖p ≤ BpF‖Ux‖
p, x ∈ X .

Therefore,

ApF‖U
−1‖−p‖x‖p ≤

∑
i∈NM

∑
n∈σi

‖(TniU)(x)‖p ≤ BpF‖U‖
p‖x‖p, x ∈ X .

Thus UF is a woven pg−frame for X with universal pg−frame bounds AF‖U−1‖−1 and BF‖U‖.

Corollary 3.5. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N and U be an isometry on X . Then, the family UF = {{TniU}n∈N : i ∈ NM} is a
woven pg−frame for X .

Theorem 3.6. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N with universal frame bounds AF, BF and U be a bounded operator on X . Then,
the family UF = {{TniU}n∈N : i ∈ NM} is a woven pg−frame for X if and only if U is bounded
below.

Proof. Let σ = {σi}i∈NM be any partition of N. Let AUF and BUF be an universal pg−frame
bounds for UF. Then, we have

ApUF‖x‖
p ≤

∑
i∈NM

∑
n∈σi

‖(TniU)(x)‖p ≤ BpUF‖x‖
p, x ∈ X . (3.1)

Also,

ApF‖Ux‖
p ≤

∑
i∈NM

∑
n∈σi

‖Tni(Ux)‖p ≤ BpF‖Ux‖
p, x ∈ X . (3.2)
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Therefore, by using (3.1) and (3.2), we get

ApUF‖x‖
p ≤ BpF‖Ux‖

p, x ∈ X .

Thus ‖Ux‖ ≥ M‖x‖, x ∈ X , where M =
AUF

BF
> 0. Conversely, let U be bounded below. Then

there exists a δ > 0 such that ‖Ux‖ ≥ δ‖x‖, ∀ x ∈ X . So,

ApFδ
p‖x‖p ≤ ApF‖Ux‖

p ≤
∑
i∈NM

∑
n∈σi

‖Tni(Ux)‖p ≤ BpF‖Ux‖
p ≤ BpF‖U‖

p‖x‖p, x ∈ X .

Since {σi}i∈NM is any arbitrary partition of N, therefore UF is a woven pg−frame for X with
universal pg−frame bounds AFδ and BF‖U‖.

Next, we provide the example which validate the characterization of Theorem 3.6.

Example 3.7. Let X = `p, 1 < p < ∞ and {en}n∈N be the standard basis of the canonical unit
vectors in `p. Let Yn = [en] and define Tni : X → Yn as

Tni(x) = αnen, x =
∑
n∈N

αnen ∈ X , (3.3)

where {αn}n∈N is a sequence of scalars.
Let {σi} be any partition of N, where{

σi = i, i = 1, 2, . . . ,M − 1,
σM = {M,M + 1,M + 2, . . .}, M ∈ N.

Then ∑
i∈NM

∑
n∈σi

‖Tni(x)‖p = ‖x‖p.

Therefore {{Tni}n∈N : i ∈ NM} is a woven pg−frame for X with respect to {Yn}n∈N. Now, we
define an operator U : X → X as

U(x) = (0, α1, α2, . . . , αn, . . .),

where, the vector x is as defined in equation (3.3).
Then U is bounded operator on X such that {{TniU}n∈N : i ∈ NM} is a woven pg−frame for X
if and only if U is bounded below.

Now, we give the definition of the analysis and synthesis operators of woven pg−frame.

Definition 3.8. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N and σ = {σi}i∈NM be any partition of NM . Then, the operators

Uσ : X →

(∑
n∈N
⊕Yn

)
`p

as Uσ(x) = {Tni(x)}n∈σi , x ∈ X , i ∈ NM

and

Tσ :

(∑
n∈N
⊕Y∗n

)
`q

→ X∗ as Tσ({gn}n∈N) =
∑
i∈NM

∑
n∈σi

gnTni, {gn}n∈N ∈

(∑
n∈N
⊕Y∗n

)
`q

are called the analysis and synthesis operators, respectively, of woven pg−frame F with respect
to σ.

Next, we give the characterization of woven pg−Bessel sequences.



176 S.K. Sharma, Shashank Goel and S.K. Kaushik

Theorem 3.9. Let F = {{Tni : X → Yn}n∈N : i ∈ NM} be a family of operators and σ =
{σi}i∈NM be any partition of N. Then F is a woven pg−Bessel sequences for X with univer-
sal bound BF if and only if for every partition σ = {σi}i∈NM of N, the synthesis operator Tσ is
well-defined and bounded.

Proof. Let F be a family of woven pg−Bessel sequences for X with universal bound BF and
σ = {σi}i∈NM be a partition of N.
Then, for J2 $ J1 ⊂ NM , we have∥∥∥∥∥∑
i∈J1

∑
n∈σi

gnTni −
∑
i∈J2

∑
n∈σi

gnTni

∥∥∥∥∥ =
∥∥∥∥∥∥
∑

i∈J1\J2

∑
n∈σi

gnTni

∥∥∥∥∥∥
= sup
‖x‖=1

∥∥∥∥∥∥
∑

i∈J1\J2

∑
n∈σi

gnTni(x)

∥∥∥∥∥∥
≤ sup
‖x‖=1

∑
i∈J1\J2

∑
n∈σi

‖gn‖‖Tni(x)‖

≤

 ∑
i∈J1\J2

∑
n∈σi

‖gn‖q
1/q

sup
‖x‖=1

 ∑
i∈J1\J2

∑
n∈σi

‖Tni(x)‖p
1/p

≤ BF

 ∑
i∈J1\J2

∑
n∈σi

‖gn‖q
1/q

, {gn}n∈N ∈

(∑
n∈N
⊕Y∗n

)
`q

.

Therefore
∑
i∈NM

∑
n∈σi gnTni is unconditionally convergent and

‖Tσ({gn}n∈N)‖ ≤ BF‖{gn}n∈N‖q.

Thus Tσ is well-defined and bounded with ‖Tσ‖ ≤ BF.
Conversely, let Tσ be well-defined and bounded. Then, for each partition σ = {σi}i∈NM of N,
define T̃x :

(∑
n∈N⊕Y∗n

)
`q
→ C as

T̃x({gn}n∈N) = (Tσ({gn}n∈N)) (x) =
∑
i∈NM

∑
n∈σi

gnTni(x), x ∈ X .

Then T̃x ∈
(∑

n∈N⊕Y∗n
)∗
`q

and ‖T̃x({gn}n∈N)‖ ≤ ‖Tσ‖‖{gn}n∈N‖‖x‖. Therefore, there exists
{gn}n∈N ∈

(∑
n∈N⊕Y∗n

)
`q

with ‖{gn}n∈N‖q ≤ 1 such that

‖{Tni(x)}‖p =

∣∣∣∣∣∣
∑
i∈NM

∑
n∈σi

gnTni(x)

∣∣∣∣∣∣ , x ∈ X .
So, for each x ∈ X , we have∑

i∈NM

∑
n∈σi

‖Tni(x)‖p
1/p

= ‖{Tni(x)}‖p

≤ sup
‖{gn}n∈N‖q=1

∣∣∣∣∣∑
i∈J

∑
n∈σi

gnTni(x)

∣∣∣∣∣ = ‖T̃x‖ ≤ ‖Tσ‖‖x‖.
Therefore {{Tni}n∈N : i ∈ NM} is a woven pg−Bessel sequence for X with Bessel bound
‖Tσ‖.

Theorem 3.10. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N and σ = {σi}i∈NM be a partition of N. Then, the analysis operator Uσ of F has a
closed range.
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Proof. LetAF andBF be universal pg−frame bounds for woven pg−frame F and σ = {σi}i∈NM
be a partition of N. Then,

AF‖x‖ ≤ ‖Uσ(x)‖p ≤ BF‖x‖, x ∈ X (3.4)

Let Uσ(x) = 0, then by (3.4), x = 0. Therefore Uσ is injective and so X ' RUσ .

Corollary 3.11. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N, where {Yn}n∈N is a sequence of reflexive Banach spaces. Then X is reflexive.

Theorem 3.12. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−Bessel sequence for X with
respect to {Yn}n∈N and σ = {σi}i∈NM be a partition of N. Then

(i) U∗σ = Tσ

(ii) Uσ = T ∗σ , if F has universal lower pg−frame bound and {Yn}n∈N is a sequence of reflexive
Banach spaces.

Proof. (i). Let σ = {σi}i∈NM be a partition of N. Then, for any x ∈ X and {gn}n∈N ∈(∑
n∈N⊕Y∗n

)
`q

, we have

〈Uσ(x), {gn}n∈σi〉 = 〈{Tni(x)}n∈σi , {gn}n∈σi〉

=
∑
i∈NM

∑
n∈σi

〈Tni(x), gn〉

=
∑
i∈NM

∑
n∈σi

gnTni(x), x ∈ X (3.5)

and

〈x, Tσ({gn}n∈N)〉 =

〈
x,
∑
i∈NM

∑
n∈σi

gnTni

〉
=
∑
i∈NM

∑
n∈σi

gnTni(x). (3.6)

Therefore from (3.5) and (3.6), we have U∗σ = Tσ.
(ii). By Theorem 3.10, RUσ is a closed subspace of

(∑
n∈N⊕Yn

)
`p

and so is reflexive. Then
Uσ = T ∗σ .

The next theorem provides the characterization of woven pg−frame in terms of synthesis
operator.

Theorem 3.13. Let F = {{Tni : X → Yn}n∈N : i ∈ NM} be a family of operators and σ =
{σi}i∈NM . Then F is a woven pg−frame for X with respect to {Yn}n∈N if and only if Tσ is
bounded and onto.

Proof. Let F be a woven pg−frame for X and σ = {σi}i∈NM be any partition of N. Then, by
Theorem 3.9, Tσ is well-defined and bounded. Also, by Theorem 3.10, Uσ is injective. Then,
U∗σ = Tσ is onto. Conversely, let σ = {σi}i∈NM be any partition of N and Tσ is bounded and
onto. Then, by Theorem 3.9, F is a pg−Bessel sequence for X . Since Tσ = U∗σ is onto. So Uσ
has bounded inverse. Therefore, there exists a constant A > 0 such that

‖Uσ(x)‖p ≥ A‖x‖, x ∈ X .

This gives ∑
i∈NM

∑
n∈σi

‖Tni(x)‖p
1/p

≥ A‖x‖, x ∈ X .

Hence F is a woven pg−frame for X .

Corollary 3.14. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N and σ = {σi}i∈NM . Then, for any g ∈ X ∗, there exists a sequence {gn}n∈N ∈(∑

n∈N⊕Y∗n
)
`q

such that

g =
∑
i∈NM

∑
n∈σi

gnTni.
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4 Woven qg−Riesz Bases

We begin this section with the following definition of woven qg−Riesz basis for X ∗.

Definition 4.1. Let 1 < q < ∞ and F = {{Tni : X → Yn}n∈N : i ∈ NM} be a family of
qg−Riesz basis for X ∗ with respect to {Y∗n}n∈N. Then F is said to be a woven qg-Riesz basis, if
there exist universal constants 0 < AF ≤ BF < ∞ such that for every partition σ = {σi}i∈NM
of N, the family Fσi is a qg−Riesz basis for X ∗ with respect to {Y∗n}n∈N.

In this case, the family F is called a weaving qg−Riesz basis for X ∗ and the bounds AF and
BF are called the woven qg−Riesz basis bounds.

Next, we prove that the woven qg−Riesz basis for X ∗ is a particular case of woven pg−frame
for X .

Theorem 4.2. Let F = {{Tni}n∈N : i ∈ NM} be a woven qg−Riesz basis for X ∗ with respect to
{Y∗n}n∈N and with universal qg−Riesz bounds AF and BF. Then F is a woven pg−frame for X
with respect to {Yn}n∈N.

Proof. Let σ = {σi}i∈NM be a partition of N and {{Tni}n∈N : i ∈ NM} be a woven qg−Riesz
basis for X ∗. Then, for all {gn}n∈N ∈

(∑
n∈N⊕Y∗n

)
`q

, the series
∑
i∈NM

∑
n∈σi gnTni is un-

conditionally convergent and satisfies

AF

(∑
n∈N
‖gn‖q

)1/q

≤

∥∥∥∥∥∥
∑
i∈NM

∑
n∈σi

gnTni

∥∥∥∥∥∥ ≤ BF

(∑
n∈N
‖gn‖q

)1/q

.

Therefore Tσ is bounded and invertible from
(∑

n∈N⊕Y∗n
)
`q

toX ∗. Thus F is a woven pg−frame
for X .

Theorem 4.3. Let F = {{Tni}n∈N : i ∈ NM} be a woven pg−frame for X with respect to
{Yn}n∈N, where {Yn}n∈N is a sequence of reflexive Banach spaces. Then, for every partition
σ = {σi}i∈NM of N, the following conditions are equivalent:

(i) F is a qg−Riesz basis for X ∗.

(ii) If {gn}n∈N ∈
(∑

n∈N⊕Y∗n
)
`q

and
∑
i∈NM

∑
n∈σi gnTni = 0, then gn = 0, n ∈ N.

(iii) RUσ =
(∑

n∈N⊕Yn
)
`p

.

Proof. Clearly, (1) =⇒ (2).
(2) =⇒ (1). Since F is a woven pg−frame for X , then by the Theorem 3.13, Tσ is bounded and
onto, for each partition σ = {σi}i∈NM of N.
Also, by the hypothesis, Tσ is injective. Therefore, Tσ is invertible for each partition σ =
{σi}i∈NM of N. Then F is a qg−Riesz basis for X ∗.
(1) =⇒ (3). Let F is a qg−Riesz basis for X ∗. Then Tσ has a bounded inverse on RTσ . So, the
adjoint T ∗σ : X ∗∗ →

(∑
n∈N⊕Yn

)
`p

of Tσ is surjective on RTσ . Since F is a woven pg−frame
for X , then by Corollary 3.11, X is reflexive. Thus RUσ =

(∑
n∈N⊕Yn

)
`p

, for every partition
σ = {σi}i∈NM of N.
(3) =⇒ (1). As Tσ = U∗σ :

(∑
n∈N⊕Y∗n

)
`q
→ X ∗ is invertible, for every partition σ =

{σi}i∈NM of N. Therefore F is a qg−Riesz basis for X ∗.
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