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Abstract In this paper, we discuss the properties of functions and t-closed subsets of an
order induced c-space. Here we prove that the order induced c-spaces corresponding to the order
isomorphic linearly ordered sets are c-isomorphic. We also give a characterization of dense
linearly ordered set in terms of t-closed subsets.

1 Introduction

In 1983, R. Börger [1] started a systematic study of connectivity class or c-structure and further
carried out by J. Serra, H. J. A. M. Heijmans, C. Ronse, S. Dugowson etc.[10, 3, 8, 2, 5, 12, 7,
9, 11]

Precisely, a c-structure [5, page 2] in X is a collection C of subsets of X such that the
following conditions hold:

(i) ∅ ∈ C and {x} ∈ C for every x ∈ X ,

(ii) If {Ci : i ∈ I} be a nonempty collection of subsets in C with
⋂

i∈I Ci 6= ∅, then
⋃

i∈I Ci ∈
C.

The set X together with a c-structure C, that is (X,C) is called a c-space and elements of C
are called connected sets in X with respect to C. For any non empty set X , the collection D =
{∅} ∪ {{x} : x ∈ X} is a c-structure on X , called the discrete c-structure and (X,D) is called
discrete c-space.

Let (X,≤) be a linearly ordered set, then the collection of all intervals of X is a c-structure
on X and is denoted by C≤. Then the c-space (X,C≤) is called the order induced c-space
corresponding to the linearly ordered set (X,≤). In this paper, we point out the features of the
c-space (X,C≤), induced by the ordering of elements of X . In digital topology, the topological
approach to digital images in studying digital processing is mainly concerned with connected
sets. The c-structure obtained from the usual ordering of Z coincides with the set of all connected
sets of the digital line topology disclose the relevance of our study.

Throughout this paper, N, Z, Q and R denote the set of all natural numbers, set of all integers,
set of all rationals, and the set of all real numbers respectively. The basic set-theoretic notions
used in this paper are adopted from [4, 6]. A partially ordered set (X,≤) is said to be complete
if every nonempty subset of X which is bounded above has a supremum. A subset A ⊆ X is
said to be dense in X if for every x, y ∈ X with x < y, there exists a ∈ A such that x < a < y.
Let (X,≤) and (Y,≤′) be two partially ordered sets. A function f : X → Y is said to be order
preserving if for every x, y ∈ X , x ≤ y ⇒ f(x) ≤′ f(y). Now, f is said to be order reversing if
for every x, y ∈ X , x ≤ y ⇒ f(y) ≤′ f(x). The partially ordered sets X and Y are said to order
isomorphic if there exists a bijection f : X → Y such that both f and f−1 are order preserving.
The partial order ≤ is said to be linear order if for all x, y ∈ X either x ≤ y or y ≤ x. A subset
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A of X is said to be an interval if x, y ∈ A and z ∈ X be such that x ≤ z ≤ y, then z ∈ A. For
a, b ∈ X , [a, b] = {x ∈ X : a ≤ x ≤ b}.

Let (X,C) be a c-space and Y ⊆ X , we define CY = {C ∈ C : C ⊆ Y }. Then (Y,CY ) is a
c-space, called sub c-space [5, page 5] on Y . Let X be a set and B ⊆ P(X), then the smallest
c-structure on X containing B is called the c-structure generated by B and is denoted by < B >.

Proposition 1.1. [5, page 6] The non-trivial connected sets of a c-structure generated by B are
characterized by the condition that any two points of such a connected set C can be joined by
a finite chain of basic connected sets (ie, elements of B) in C. That is, for all x, y ∈ C, we can
find elements Bi, i = 0 to n in B such that Bi ⊆ C, Bi ∩ Bi+1 6= ∅ for i = 0 to n − 1 and
x ∈ B0, y ∈ Bn.

2 Functions of Order Induced c-spaces

Here we discuss the properties of functions of an order induced c-space, mainly the relation
between order preserving and order reversing functions of a linearly ordered set and c-continuous
functions of the corresponding order induced c-space.

Definition 2.1. [5, page 4] Let (X,C) and (Y,C′) be two c-spaces. A function f : X → Y is
called c-continuous if C ∈ C ⇒ f(C) ∈ C′. Then f is said to be a c-isomorphism if f is a
bijection and both f and f−1 are c-continuous. The c-spaces are said to be c-isomorphic if there
exists a c-isomorphism between them.

Theorem 2.2. Let (X,C≤) be an order induced c-space and f be a c-continuous function on X .
If a, b ∈ X and y ∈ X satisfies f(a) < y < f(b), then there exists x ∈ X between a and b such
that f(x) = y.

Proof. Consider the c-continuous function f on (X,C≤). Let a, b ∈ X and y ∈ X be such that
f(a) < y < f(b). Now let C = [a, b] if a < b, otherwise take C = [b, a]. Then C ∈ C≤ implies
f(C) ∈ C≤. Hence f(a), f(b) ∈ f(C) and f(a) < y < f(b) implies y ∈ f(C). That is, there
exists x ∈ C ⊆ X such that f(x) = y.

There are order preserving functions and order reversing functions that are not c-continuous.

Example 2.3. Consider the linearly ordered set (Z,≤), where ≤ is the usual ordering of integers
and the functions f, g on (Z,≤) defined by f(x) = 2x and g(x) = −2x. Then f is order
preserving and g is order reversing. Here A = {1, 2} ∈ C≤, the order induced c-structure on
(Z,≤). But f(A) = {2, 4} /∈ C≤ and g(A) = {−2,−4} /∈ C≤. Therefore f and g are not
c-continuous on the order induced c-space (Z,C≤).

Theorem 2.4. If a bijection f : (X,≤) → (Y,≤′) is order preserving or order reversing, then
f : (X,C≤)→ (Y,C≤′) is c-continuous.

Proof. Suppose the bijection f : X → Y is order preserving and let C ∈ C≤. To prove f(C) ∈
C≤′ , let f(a), f(b) ∈ f(C) and z ∈ Y such that f(a) ≤′ z ≤′ f(b). Then a, b ∈ C and also
a ≤ b. If not, b < a implies f(b) <′ f(a), which is not true. Since f is surjective, there exists
w ∈ X such that f(w) = z. If w < a, then z = f(w) <′ f(a), a contradiction. Similar will
happen if b < w. Therefore a ≤ w ≤ b. Hence it follows that w ∈ C and z = f(w) ∈ f(C).
Thus f is c-continuous.

Now suppose the bijection f : X → Y is order reversing. Consider the dual (Y,≥′) of the
linearly ordered set (Y,≤′). If we consider f as a function from (X,≤) to (Y,≥′), it is order
preserving. Then we have f : (X,C≤) → (Y,C≥′) is c-continuous. Since C≤′ = C≥′ , we get
that f : (X,C≤)→ (Y,C≤′) is a c-continuous function.

Now the converse of Theorem 2.4 is not true. That is, there are c-continuous functions that
are neither order preserving nor order reversing.

Example 2.5. Consider the linearly ordered set (X,≤), where X = {1, 2, 3, 4} and ≤ is the
usual ordering of numbers. Then the order induced c-structure on X is given by C≤ = D ∪
{{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}. Let f be the function on X given by f(1) =
f(4) = 2, f(2) = f(3) = 1. Then f(C) ∈ C≤, for every C ∈ C≤ implies f is c-continuous. But
f is neither order preserving nor order reversing.
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Theorem 2.6. If f : (X,C≤) → (Y,C≤′) is a c-continuous one-one function then f : (X,≤) →
(Y,≤′) is either order preserving or order reversing.

Proof. Consider a c-continuous one-one function f : (X,C≤) → (Y,C≤′) which is not order
preserving. Then there exist a, b ∈ X such that a < b and f(b) <′ f(a). Assume that f is not
order reversing. Then there exist x, y ∈ X with x < y such that f(x) <′ f(y). Then we have the
following cases.
Case(i) : x < a
Since x /∈ [a, b], we have f(x) /∈ [f(b), f(a)]. Otherwise f(b) ≤′ f(x) ≤′ f(a) and f(a), f(b) ∈
f([a, b]) ∈ C≤′ implies f(x) ∈ f([a, b]). Since f is one-one, we get x ∈ [a, b], which is not true.
Therefore either f(x) <′ f(b) or f(a) <′ f(x).

If f(x) <′ f(b), then f(x), f(a) ∈ f([x, a]) ∈ C≤′ and f(x) <′ f(b) <′ f(a) implies
f(b) ∈ f([x, a]). This implies b ∈ [x, a], a contradiction.

Now let f(a) <′ f(x). If y < a, then f(a) <′ f(x) <′ f(y) and f(a), f(y) ∈ f([y, a]) ∈ C≤′

implies f(x) ∈ f([y, a]). This implies x ∈ [y, a], a contradiction. Similarly, if a ≤ y then we get
the contradiction x ∈ [a, y].
Case(ii) : b < y
As in case(i), y /∈ [a, b] implies f(y) /∈ [f(b), f(a)]. Therefore either f(y) <′ f(b) or f(a) <′

f(y). If f(a) <′ f(y), then f(b) <′ f(a) <′ f(y) and f(b), f(y) ∈ f([b, y]) ∈ C≤′ implies
f(a) ∈ f([b, y]). Hence a ∈ [b, y], a contradiction.

Now let f(y) <′ f(b). If x ≤ b, then f(x) <′ f(y) <′ f(b) and f(x), f(b) ∈ f([x, b]) ∈ C≤′

implies f(y) ∈ f([x, b]). Hence y ∈ [x, b], a contradiction. Similarly, if b < x then we get the
contradiction y ∈ [b, x].
Case(iii) : a ≤ x < y ≤ b
Since x ∈ [a, b], we have f(x) ∈ [f(b), f(a)]. Otherwise, either f(x) <′ f(b) or f(a) <′

f(x). If f(x) <′ f(b), then f(x), f(a) ∈ f([a, x]) ∈ C≤′ and f(x) <′ f(b) <′ f(a) im-
plies f(b) ∈ f([a, x]). This implies b ∈ [a, x], which is not true. If f(a) <′ f(x), then
f(b), f(x) ∈ f([x, b]) ∈ C≤′ implies f(a) ∈ f([x, b]). This implies a ∈ [x, b], which is not
true. Similarly we have f(y) ∈ [f(b), f(a)]. Therefore f(b) ≤′ f(x) <′ f(y) ≤′ f(a). Then
f(x) <′ f(y) ≤′ f(a) and f(x), f(a) ∈ f([a, x]) ∈ C≤′ implies f(y) ∈ f([a, x]). Therefore
y ∈ [a, x], a contradiction.

Since we get contradictions in all cases, our assumption that f(x) <′ f(y) is wrong. There-
fore f(y) ≤′ f(x) whenever x ≤ y. Thus f is order reversing.

Now using Theorem 2.6, we can easily deduce that the only c-continuous bijections on a
finite order induced c-space (X,C≤), where X = {x1, x2, . . . , xn} are the identity function and
the function f(xr) = xn+1−r, for r = 1, 2, . . . , n.

Remark 2.7. Theorem 2.6 is not true for c-continuous onto function. Consider the order induced
c-spaces (X,C≤) and (Y,C≤′), where X = {1, 2, 3, 4}, Y = {1, 2}, ≤ and ≤′ are the usual
ordering of integers on X and Y respectively. The c-continuous onto function f : X → Y given
by f(1) = f(4) = 1, f(2) = f(3) = 2 is neither order preserving nor order reversing.

Theorem 2.8. If (X,≤) and (Y,≤′) are order isomorphic, then (X,C≤) and (Y,C≤′) are c-
isomorphic. Conversely, if (X,C≤) and (Y,C≤′) are c-isomorphic, then either (X,≤) is order
isomorphic to (Y,≤′) or (X,≤) is order isomorphic to the dual of (Y,≤′).

Proof. Suppose the linearly ordered sets (X,≤) and (Y,≤′) are order isomorphic. Then there
exists a bijection f : X → Y such that both f and f−1 are order preserving. By Theorem
2.4, f and f−1 are c-continuous. Hence the order induced c-spaces (X,C≤) and (Y,C≤′) are
c-isomorphic.

Conversely, suppose the order induced c-spaces (X,C≤) and (Y,C≤′) are c-isomorphic. Then
there exists a c-isomorphism f : (X,C≤) → (Y,C≤′). By Theorem 2.6, f is either order pre-
serving or order reversing. Suppose f : X → Y is order preserving. To prove f−1 : Y → X is
order preserving, let y1, y2 ∈ Y with y1 <′ y2. Then there exists x1, x2 ∈ X with x1 6= x2 such
that x1 = f−1(y1) and x2 = f−1(y2). We have either x1 < x2 or x2 < x1. If x2 < x1, then
f(x2) <′ f(x1), that is y2 <′ y1, which is not true. Therefore x1 < x2, that is f−1(y1) < f−1(y2).
Thus f−1 is order preserving and hence f : (X,≤) → (Y,≤′) is an order isomorphism. Now
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let f is order reversing. Then we can easily prove that, for every y1, y2 ∈ Y , y1 ≤′ y2 implies
f−1(y2) ≤ f−1(y1). Thus f−1 is order reversing. That is, f : (X,≤) → (Y,≤′) is a bijection
such that f and f−1 are order reversing. Therefore (X,≤) and the dual of (Y,≤′) are order
isomorphic.

3 t-closed sets in an order induced c-space

Here we discuss t-closed subsets of an order induced c-space (X,C≤).

Definition 3.1. [5, page 3] Let (X,C) be a c-space and A ⊆ X . A point x ∈ X is said to touch
the set A if there is a nonempty C ⊆ A such that {x} ∪C ∈ C. The set of all points touching the
set A is denoted by t(A). Then A is said to be t-closed if t(A) = A. For example, ∅ and X are
t-closed in (X,C).

If |X| is finite then t(A) 6= A, for every proper nontrivial subset A of X . That is, ∅ and X
are the only t-closed subsets of (X,C≤). If |X| is infinite then there may or may not exist proper
nontrivial t-closed subsets. Let us go through the following example.

Example 3.2. Consider the order induced c-space (N,C≤′), where the ordering ≤′ is given by

1 ≤′ 3 ≤′ 5 ≤′ . . . . . . 6 ≤′ 4 ≤′ 2.

Let A = {1, 3, 5, . . .}, then t(A) = A. That is, (N,C≤′) has a proper nontrivial t-closed subset.
But ∅ and Z are the only t-closed sets of the order induced c-space (Z,C≤), where ≤ is the usual
ordering of integers.

Theorem 3.3. Let (X,C≤) be an order induced c-space. If (X,C≤) is 2-generated, then no
proper nontrivial subset of X is t-closed.

Proof. Consider the 2-generated order induced c-space (X,C≤). If |X| ≤ 2, then there is nothing
to prove. Now let |X| > 2 and A be a proper nontrivial subset of X . Choose x ∈ A and y ∈ Ac,
which always exists and let x ≤ y. Then by Proposition 1.1, there exist finite number of elements
b1, b2, . . . , bn ∈ X such that x = b1 < b2 < . . . < bn = y and bi+1 is the immediate successor
of bi, for i = 1, 2, . . . , n − 1. Clearly bn ∈ Ac. Let k be the smallest integer such that bk ∈ Ac.
Then {bk−1, bk} ∈ C≤ and bk−1 ∈ A implies bk ∈ t(A). Therefore, t(A) 6= A, hence A is not
t-closed. Similar will happen if y < x. Hence there does not exist any proper nontrivial t-closed
sets in (X,C≤).

Remark 3.4. Converse of the Theorem 3.3 is not true. Consider the order induced c-space
(X,C≤′), where X = {0, 1, 2, 3, . . .} and the ordering ≤′ is given by

1 ≤′ 2 ≤′ 3 ≤′ . . . ≤′ 0.

Here ∅ and X are the only t-closed sets of (X,C≤′), but it is not a 2-generated c-space.

Remark 3.5. Theorem 3.3 is not true for 2-generated c-spaces. Consider the 2-generated c-space
(X,C), where X = {1, 2, 3, 4} and C = D∪ {{1, 2}}. Let A = {1, 2}, then t(A) = A implies A
is t-closed in (X,C). Thus a 2-generated c-space may have a proper nontrivial t-closed subset.

For an order induced c-space, the closed and bounded interval [a, b] need not be t-closed.
Consider the following example.

Example 3.6. Consider the order induced c-space (Z,C≤), where ≤ is the usual ordering of
integers. Here [2, 4] = {2, 3, 4}, but t([2, 4]) = {1, 2, 3, 4, 5}. Since t([2, 4]) 6= [2, 4], the closed
and bounded interval [2, 4] is not t-closed.

In the next theorem, we give a necessary and sufficient condition for which every closed and
bounded interval is t-closed in (X,C≤).

Theorem 3.7. For an (X,C≤) be the order induced c-space corresponding to the linearly or-
dered set (X,≤), the following are equivalent.
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(i) (X,≤) is dense.

(ii) For every a, b ∈ X with a ≤ b, [a, b] is t-closed in (X,C≤).

(iii) For every x ∈ X , {x} is t-closed in (X,C≤).

Proof. (i) ⇒ (ii): Suppose (X,≤) is a dense linearly ordered set. Assume [a, b] is not t-closed
for some a, b ∈ X , where a ≤ b. Then t([a, b]) 6= [a, b], hence there exists x ∈ [a, b]c such that
x ∈ t([a, b]). Then there exists a nonempty subset C ⊆ [a, b] such that {x} ∪ C ∈ C≤. Choose
an element co ∈ C, then clearly a ≤ co ≤ b. Since x ∈ [a, b]c, either x < a or b < x. Now let
x < a. Since (X,≤) is dense, there exists z ∈ X such that x < z < a. Then x < z < a ≤ c0
and x, co ∈ {x} ∪ C implies z ∈ {x} ∪ C. Since z 6= x, we have z ∈ C. Hence z ∈ [a, b],
a contradiction since z < a. We get similar contradiction if b < x. Thus [a, b] is t-closed in
(X,C≤), for every a, b ∈ X with a ≤ b.

(ii) ⇒ (iii): Suppose [a, b] is t-closed, for every a, b ∈ X with a ≤ b. Take a = b = x, then
we get {x} is t-closed.

(iii) ⇒ (i): Suppose t({x}) = {x}, for every x ∈ X . Assume that (X,≤) is not a dense
linearly ordered set. Then there exists a, b ∈ X with a < b such that there does not exist any
element in X between a and b. This implies {a, b} ∈ C≤. Then b ∈ t({a}), a contradiction.
Therefore, for every a, b ∈ X with a < b, there exists z ∈ X such that a < z < b. That is, (X,≤)
is dense.

Remark 3.8. If (X,≤) is a dense linearly ordered set, then the order induced c-space (X,C≤)
has proper nontrivial t-closed subsets.

Remark 3.9. The property of being dense in Theorem 3.8 cannot be replaced by completeness
property. The order induced c-space (Z,C≤) corresponding to the complete linearly ordered set
(Z,≤) has no proper nontrivial t-closed subsets, where ≤ is the usual ordering of integers.

Theorem 3.10. Let (X,≤) be a dense linearly ordered set and (X,C≤) be the corresponding
order induced c-space. For A ⊆ X , if t(A) = X then A is dense in (X,≤).

Proof. Suppose A ⊆ X be such that t(A) = X . To prove A is dense in (X,≤), let x, y ∈ X be
such that x < y. We need to show that there exists a ∈ A such that x < a < y. Since X is dense
itself, there exists z ∈ X such that x < z < y. If z ∈ A, then there is nothing to prove. Now let
z ∈ Ac. Since z ∈ t(A), there exists a nonempty subset C ⊆ A such that {z} ∪C ∈ C≤. Choose
an element a0 ∈ C ⊆ A. If x < a0 < y, then the proof is complete. Now suppose a0 ≤ x.
Since X is dense itself, there exists p ∈ X be such that x < p < z. Then a0 ≤ x < p < z and
a0, z ∈ {z} ∪ C implies p ∈ {z} ∪ C. Hence p ∈ C ⊆ A, since p 6= z. Similar will happen
if y ≤ a0. That is, there always exists p ∈ A such that x < p < y. Therefore A is dense in
(X,≤).

Remark 3.11. Converse of the Theorem 3.10 is not true. Consider the order induced c-space
(R,C≤) corresponding to the dense linearly ordered set (R,≤), where ≤ is the usual ordering of
numbers. Here Q is dense in (R,≤), but t(Q) 6= R in (R,C≤).
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