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Abstract In this paper, we aim to provide new and simple proof for the determinant char-
acterization of moment sequences with discrete measures by investing in generalized Fibonacci
sequences.

1 Introduction

Let s = (sn)n≥0 be an infinite sequence of real numbers. s is positive semidefinite, if for all
ξ0, ξ1, . . . , ξn ∈ N and n ∈ N, we have

n∑
k,l=0

sk+lξkξl ≥ 0,

or equivalently Ls(P 2) ≥ 0 for all P ∈ R[x], where Ls denotes the Riesz functional on R[x]
defined by

Ls(x
n) = sn, n ∈ N.

We recall the Hankel matrix Hn(s) and the Hankel determinant Dn(s) respectively by

Hn =


s0 · · · sn
...

...
...

sn · · · s2n

 and Dn(s) = detHn(s).

The Hamburger moment problem associated with the sequence s concerns if there exists a posi-
tive Radon measure µ on R such that for all n ∈ N the integral

∫ +∞
−∞ xndµ converges and satisfies

sn =

∫ +∞

−∞
xndµ.

In the affirmative case, we say that s is a Hamburger moment sequence and that µ is a represent-
ing measure for s.

Assume that s = (sn)n∈N is the moment sequence of a positive measure µ on R. Then, for
any polynomial p(x) =

∑n
k=0 akx

k ∈ R[x] we obtain

Ls(p
2) =

∫
(

n∑
k,l=0

akalx
k+l)dµ =

n∑
k,l=0

akalsk+l ≥ 0.

So, the fact that the Hankel matrix Hn(s) is positive semidefinite for each n ∈ N, is a necessary
condition for a sequence to be a moment sequence. Hamburger’s Theorem(see [1] or [2]) states
that this condition is also sufficient for the existence of a positive measure.

It is well known that a Hankel matrix Hn is positive definite if and only if all upper left
submatrices have positive determinants [5, Theorem 7.2]. However, the condition that all the
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upper left submatrices have nonnegative determinant does not imply the positive semidefinite-
ness of Hn. It yields that the positive semidefiniteness is more difficult to check than the positive
definiteness. The following example illustrates this fact.

Example 1.1. Let s = (1, 2, 4, 8, 0, 0, 0, . . .) be an infinite sequence of real numbers. We have

D0 = 1, D1 =

∣∣∣∣∣1 2
2 4

∣∣∣∣∣ = 0, D2 =

∣∣∣∣∣∣∣
1 2 4
2 4 8
4 8 0

∣∣∣∣∣∣∣ = 0, D3 =

∣∣∣∣∣∣∣∣∣
1 2 4 8
2 4 8 0
4 8 0 0
8 0 0 0

∣∣∣∣∣∣∣∣∣ = 4096

and

D4 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 4 8 0
2 4 8 0 0
4 8 0 0 0
8 0 0 0 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Hence, Dk = 0 for all k ≥ 0. However, s is not positive semidefinite.

If s = (sn)n≥0 is a sequence of the moment, it is easy to see that if one of the finite Hankel
matrices is singular, then all the following ones are also singular. Conversely, C. Berg and R.
Szwarc [3, Theorem 1.1] proved that for a given infinite sequence of numbers (sn)n≥0, if the
corresponding sequence of Hankel determinants Dn = det(Hn) satisfies

Dn > 0 for n < n0, and Dn = 0 for n ≥ n0, (1.1)

then all Hankel matrices are positive semidefinite and in particular, (sn)n≥0 is the sequence of
moments of a discrete measure concentrated in n0 points of the real line.

In this paper, we aim to prove that if a sequence s = (sn)n≥0 verifies (1.1), then s is a
generalized Fibonacci sequence, and this will allow us to provide a new and simple proof for the
Theorem 1.1 in [3].

We recall that an r-generalized sequence (sn)n≥0, is defined by the initial conditions (s0, s1, . . . , sr−1)
and the following linear recurrence relation of order r,

sn+1 = a0sn + a1sn−1 + . . .+ ar−1sn−r+1 for n ≥ r − 1

where a0, a1, . . . , ar−1 and r ∈ N with r ≥ 2 and ar−1 6= 0.
The remainder of this paper is divided as follows. The next section provides some prelimi-

naries that will be needed in this work. The third section is devoted to stating our main findings.

2 Preliminaries

In this section, we gather some results that will be used in the remainder of this paper.
Let s = (sj)

j=2n
j=0 be a truncated sequence of 2n + 1 real numbers, called a (2n)-sequence,

(n ∈ N).
For all k ≤ n the Hankel matrix Hk(s), is the matrix defined by

Hk(s) = (si+j)
k
i,j=0,

and D0, D1, . . . , Dn are the major minors of Hn(s).

Definition 2.1. s is said to be positive definite if and only if:

∀(a0, . . . , an) ∈ Rn+1, (a0, . . . , a1) 6= (0, 0, . . .)⇒
n∑

i,j=0

aiajsi+j > 0. (2.1)
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In terms of the Riesz functional Ls on R2n[x] the condition (2.1) is equivalent to the requirement
Ls(P 2) > 0 for all p ∈ Rn[x], P 6= 0.
Further, by Theorem 7.2 in [5] the condition (2.1) is equivalent to the condition

∀k ∈ {0, 1, . . . , n}, Dk > 0

It is proved that if s = (sj)
2n+1
j=o is a real sequence such that the sequence (sj)2n

j=o is positive
definite, then by Lemma 9.1 in [4], s can be extended to a sequence s̃ = (sj)

2n+2
j=0 positive

definite.
The map <,>s̃ defined by < P,Q >s̃= Ls̃(P,Q) is a inner product over Rn+1[x]. Bilinearity
and symmetry are immediate and the positive definiteness follows from the fact that s is positive
definite.
From the canonical basis (1, x, . . . , xn+1) and using the Gram-Schmidt method, we construct an
orthogonal basis formed of unit polynomials (P0, P1, . . . , Pn+1). This family, does not depend
on s2n+2 (unless we want to normalize Pn+1).
The polynomials (Pi)0≤i≤n+1 are given by the formulas

P0 = 1 and Pk =
1

Dk−1

∣∣∣∣∣∣∣∣∣∣
s0 · · · sk
...

...
...

sk−1 · · · s2k−1

1 · · · xk

∣∣∣∣∣∣∣∣∣∣
, 1 ≤ k ≤ n+ 1.

In the sequel, if s = (sj)
2n+1
j=0 is a real sequence such that (sj)2n

j=0 is positive definite then the
family of unitary orthogonal polynomials (P0, . . . , Pn+1) associated with the inner product <
P,Q >s̃= Lss̃(PQ), where s̃ = (sj)

2n+2
j=0 is a positive definite extension of s.

For simplicity, the polynomial Pn+1 will be denoted by P .
In this work, we will use the following lemma, which follows from Theorems 9.4 and 9.6 in [4].

Lemma 2.2. Let s = (sj)
j=2n+1
j=0 be a real sequence such that (sj)2n

j=o is positive definite, then s
is a truncated moment sequence of the (n+ 1)-atomic measure:

µP =
n+1∑
j=1

mjδλj ,

where mj = Ls(πj(x)), πj(x) =
P (x)

P ′(λj)(x−λj) for all 1 ≤ j ≤ n+ 1, (λj)1≤j≤n+1 are the roots
of the polynomial P and δ

λj
is the Dirac measure.

Proof. Let f ∈ R2n+1[x], there exists pf , qf ∈ Rn[x)], such that f = qfP + pf .
By orthogonality, we have:

Ls(f) = Ls(qfP + pf ) = Ls(pf ),

and since degree of pf is lower or equal to n, then pf coincides with its interpolating Lagrange
polynomial at the points ((λi, pf (λi))1≤i≤n+1,

pf =
n+1∑
j=1

πj(x)pf (λj).

Hence,

Ls(f) =
n+1∑
j=1

pf (λj)Ls (πj(x))

=
n+1∑
j=1

f (λj)mj

=

∫
R
f(x)dµP (x).

In particular, for all 0 ≤ j ≤ 2n+ 1, sj =
∫
R x

jdµP (x).
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The following example illustrates this lemma.

Example 2.3. Let s = (sj)
j=5
j=0 = (1, 1, 2, 6, 24, 104) be a 5-real sequence.

The sub-sequence (sj)
j=4
j=0 = (1, 1, 2, 6, 24) is positive definite. We have

D0 = D1 = 1, D2 = 4,

P0 = 1, P1 = x− 1, P2 = x2 − 4x+ 2, P = P3 = x3 − 5x2 + 2x+ 2,

λ1 = 1, λ2 = 2−
√

6, λ3 = 2 +
√

6,

and m1 =
4
5
, m2 =

6 +
√

6
60

, m3 =
6−
√

6
60

.

Thus the measure which represents s = (sj)
j=5
j=0 is µ =

∑j=3
j=1 mjδλj , so that

sj =

∫
R
xjdµP (x), 0 ≤ j ≤ 5.

3 Main results

In this section, we present our main findings.

Theorem 3.1. Consider an infinite sequence of numbers s = (sn)n≥0. If the corresponding
sequence of Hankel determinants Dn = det(Hn) satisfies Dn > 0 for n ≤ r and Dn = 0 for
n > r, then s is an (r + 1)-generalized Fibonacci sequence.

To prove this theorem, we construct a finite measure µ, concentrated on r + 1 points which
represents the truncated sequence (s0, s1, . . . , s2r+1) and we prove later, that the sequence s is
represented by µ. For this, the following lemma will be useful.

Lemma 3.2. Let (sj)
j=2r+1
j=0 be a (2r+ 1)-real sequence such that the sequence (sj)

j=2r
j=0 is posi-

tive definite. If we denote the columns ofHr(s) by v0, v1, . . . , vr and if vr+1 = (sr+1, sr+2, . . . , s2r+1)t,
the following assertions

(i) P = xr+1 − a0 − a1x− . . .− arxr.

(ii) vr+1 =
i=r∑
i=0

aivi.

are equivalent for all a0, . . . , ar ∈ R.

Proof. Let j ∈ {0, 1, . . . , r}, by orthogonality we have: Ls(xjP ) = 0.
Hence,

∀j ∈ {0, 1, . . . , r}, sr+j+1 − a0sj − a1sj+1 − . . .− arsj+r = 0.

Thus, vr+1 =
i=r∑
i=0

aivi.

Conversely, let λ be a root of the polynomial P , we have

P (λ) =
1
Dr

∣∣∣∣∣∣∣∣∣∣
s0 · · · sr sr+1
...

...
...

...
sr · · · s2r s2r+1

1 · · · λr λr+1

∣∣∣∣∣∣∣∣∣∣
.

Expanding according to the last row, we obtain

P (λ) =
1
Dr

[λr+1Dr +
r∑
k=0

(−1)k+1λr−kDr,k],
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with

Dr,k =

∣∣∣∣∣∣∣∣
s0 · · · sr−k−1 sr−k+1 · · · sr+1
...

...
...

...
...

...
sr · · · s2r−k−1 s2r−k+1 · · · s2r+1

∣∣∣∣∣∣∣∣ .
On the other hand,

vr+1 =
i=r∑
i=0

aivi ⇒ vr+1 −
i=r∑

i=0,i6=j

aivi = ajvj .

Thus, replacing the last column vr+1 by vr+1 −
i=r∑

i=0,i6=r−k
aivi , we obtain

Dr,k =

∣∣∣∣∣∣∣∣
s0 · · · sr−k−1 sr−k+1 · · · ar−ksr−k
...

...
...

...
...

...
sr · · · s2r−k−1 s2r−k+1 · · · ar−ks2r−k

∣∣∣∣∣∣∣∣ = (−1)kDrar−k.

Hence,

P (λ) = 0⇔ 1
Dr

[
λr+1Dr +

r∑
k=0

(−1)k+1λr−k(−1)kar−kDr

]
= 0

⇔ λr+1 +
r∑
k=0

(−1)2k+1λr−kar−k = 0

⇔ λr+1 =
r∑
k=0

λr−kar−k

⇔ λr+1 =
r∑
i=0

λiai.

We deduce that λ is a root of P if and only if λ is a root of the polynomial Q = xr+1 −
i=r∑
i=0

aix
i.

The polynomialsQ and P have the same degree and roots and are both unitary. Therefore P = Q
and the proof is ended.

Now, we are in a position to provide proof of Theorem 3.1.

Proof. The sequence (sj)
j=2r
j=0 is positive definite. Let us put:

P = Pr+1 = xr+1 −
i=r∑
i=0

aix
i.

Then, using the previous Lemma 3.2, we have: vr+1 =
r∑
k=0

akvk. Hence,

∀k ∈ {r + 1, r + 2, . . . , 2r + 1}, sk =
r∑
i=0

aisk+i−r−1. (3.1)

Let us show by induction that (3.1) is verified for all k ≥ 2r + 1.
For k = 2r + 1, the proof is already done. Let k > 2r + 1 and assume that (3.1) holds for all
k

′ ∈ {r + 1, . . . , k} and let us show that,

sk+1 =
r∑
i=0

aisk+i−r.
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For all k ≥ 2r + 1, we have k − r ≥ r + 1, then Dk−r = 0, where

Dk−r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 · · · sr sr+1 sr+2 · · · sk−r
...

...
...

...
...

...
...

sr · · · s2r s2r+1 s2r+2 · · · sk

sr+1 · · · s2r+1 s2r+2 s2r+3 · · · sk+1
...

...
...

...
...

...
...

sk−r−1 · · · sk−1 sk sk+1 · · · s2k−2r−1

sk−r · · · sk sk+1 sk+2 · · · s2k−2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For l ∈ {r + 1, . . . , k − r}, let us replace the column vl, by vl −
r∑
i=0

aivl+i−r−1 and we use the

induction hypothesis. So we get

Dk−r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 · · · sr 0 0 · · · 0
...

...
...

...
...

...
...

sr · · · s2r 0 0 · · · 0
sr+1 · · · s2r+1 0 0 · · · α1

...
...

...
...

...
... α2

sk−r−1 · · · sk−1 0 α1 · · · · · ·
sk−r · · · sk α1 α2 · · · αk−2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with αj = sk+j −
i=r∑
i=0

aisk+j+i−r−1 for all j ∈ {1, . . . , k − 2r}.

This determinant takes the form

Dk−r =

∣∣∣∣∣Hr(s) 0
C A

∣∣∣∣∣ ,
with

A =



0 0 · · · 0 α1

0 0 · · · α1 α2
...

...
...

...
...

0 α1
... · · · αk−2r−1

α1 α2 · · · αk−2r−1 αk−2r


.

Thus, by performing a block calculation of the determinant Dk−r, we obtain

Dk−r = |A| × |Hr(s)| = (−1)k−2rαk−2r
1 Dr.

Whence,

Dk−r = 0⇒ α1 = 0⇒ sk+1 =
r∑
i=0

aisk+i−r.

Consequently, the sequence s is determined by the data of its r+ 1 first terms, s0, . . . , sr and by
the following linear recurrence relation of order r + 1:

sk = a0sk−r−1 + a1sk−r + . . .+ arsk−1,∀k ≥ r + 1.

This ends the proof of the theorem.

The following corollary gives a new and simple proof of the Theorem 1.1 in [3].

Corollary 3.3. If s = (sn)n≥0 satisfies the conditions of Theorem 3.1, then s is a sequence of
moment of a discrete measure µ concentrated in r + 1 points of the real line.
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Proof. The sequence (sj)2r
j=0 is definite positive. So, the sequence (sj)2r+1

j=0 is a moment sequence

of the measure (r + 1)-atomic µP =
r+1∑
i=1

miδλi , where (λj)1≤j≤r+1 are the roots of P = Pr+1,

and mj = Ls

(
P (x)

P ′ (λj)(x−λj)

)
.

So, we have

∀k ∈ {0, . . . , 2r + 1}, sk =
∫
R
xkdµP (x). (3.2)

To complete the proof, we will show, by induction on k, that

∀k ≥ 2r + 2, sk =
∫
R
xkdµP (x).

For k = 2r + 2, we have

∫
R
x2r+2dµp(x) =

r+1∑
i=1

miλ
2r+2
i

=
r+1∑
i=1

miλ
r+1
i λr+1

i

=
r+1∑
i=1

miλ
r+1
i

[
r∑
k=0

akλ
k
i

]

= a0

r+1∑
i=1

miλ
r+1
i + . . .+ ar

r+1∑
i=1

miλ
2r+1
i

= a0

∫
R

xr+1dµP (x) + . . .+ ar

∫
R

x2r+1dµP (x)

= a0sr+1 + . . .+ ars2r+1

= s2r+2.

The last equality is obtained by the use of Theorem 3.1.
Let k ≥ 2r + 2, suppose that (3.2) holds for all k′ ≤ 2r + 2. We have

∫
R

xk+1dµP (x) =
r+1∑
i=1

miλ
k+1
i

=
r+1∑
i=1

miλ
r+1
i λk−ri

=
r+1∑
i=1

miλ
k−r
i

 r∑
j=0

ajλ
j
i


=

r∑
j=0

aj

r+1∑
i=1

miλ
k−r+j
i

=
r∑
j=0

aj

∫
R
xk−r+jdµP (x)

=
r∑
i=0

aisk−r+i = sk+1.

.

This achieves the proof.
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