On Lie ideals with generalized derivations and power values on prime rings

Abu Zaid Ansari, Nadeem ur Rehman and Faiza Shujat
Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 16W25, 16N60; Secondary 16D90, 16U80.
Keywords and phrases: Generalized derivation, Lie ideal, prime ring, Utumi quotients ring and extended centroid.

Abstract

Let R be a non-commutative prime ring of characteristic different from 2, U, C, L and H denote, the Utumi quotients ring, the extended centroid, a non-central Lie ideal, a nonzero generalized derivation of R respectively. If $[H(u), u]^{n}=[H(u), u]^{m}$ for all $u \in L$, with $1<n \neq m \geq 1$, then one of the following holds: (i) R satisfies the standard identity s_{4}, in four non-commutating variables and there exist $a \in U$ and $\alpha \in C$ such that $H(r)=a r+r a+\alpha r$ for all $r \in R$; (ii) there exists $\lambda \in C$ such that $H(r)=\lambda r$ for all $r \in R$.

1 Introduction

In this article, R refers to a non-commutative prime ring with center $Z(R), U$ to its Utumi quotient ring, and $C=Z(U)$ to its center. For the definitions and associated attributes of these objects, we direct the reader to [2]. An additive mapping $d: R \rightarrow R$ is termed as a derivation if $d(r s)=d(r) s+r d(s)$ for all $r, s \in R$. If $H(r s)=H(r) s+r d(s)$ holds for all $r, s \in R$ and d is a derivation of R, then the additive mapping H is known as a generalized derivation on R. It goes without saying that every derivation is a generalized derivation. A map of the type $r \mapsto a_{1} r+r a_{2}$ is an example of a generalized derivation, where a_{1}, a_{2} are fixed elements in R. These type of mappings are known as generalized inner derivations. Due to Lanski [11], if d is a derivation such that $d(r)^{n}=0$ for all $r \in L$, then d is zero, where n is a positive integer. Lee in [13] demonstrated an analogy result for generalized derivations. More specifically, Lee demonstrated that if H is a generalized derivation of R and L is a non-central Lie ideal of R, then R is commutative if $H(r)^{n}=0$ for every $r \in L$. Carini and De Filippis [3] investigated a non-zero derivation d of R such that $[d(r), r]^{n}=0$ for every $r \in L$ of R, where n is a positive integer, and they came to the conclusion that R is commutative if $\operatorname{char}(R) \neq 2$.

Further, De Filippis extended this result in [5] by substituting a generalized derivation H for d, and concluded that there exist $\lambda \in C$ such that $H(r)=\lambda r$ for all $r \in R$, unless when R satisfies s_{4} and there exists an element $a \in U$ such that $H(r)=a r+r a$ for all $r \in R$. Let R be a non-commutative prime ring with characteristic different from 2 , as demonstrated by the author in article [16], H a non-zero generalized derivation of R. If $[H(u), u]^{n}=[H(u), u]$, for all $u \in L$, then either R satisfies the standard identity s_{4} and there exist $a \in U$ and $\alpha \in C$ such that $H(r)=a r+r a+\alpha r$ or there exists $\lambda \in C$ such that $H(r)=\lambda r$ for all $r \in R$. In this paper, authors obtain same conclusion by considering the generalized identity $[H(u), u]^{n}=[H(u), u]^{m}$ for suitable condition on R. We revise a few widely accepted facts before moving on to the proof of our conclusion.

Lemma 1.1 ([13]). Since each generalized derivation can be specifically extended to a generalized derivation of U, it is implicitly assumed that all generalized derivations of R are defined on the entire U.

Lemma 1.2 ([12]). The differential identity is fulfilled by R, I, and U if I is a two-sided ideal of R.

Lemma 1.3 ([4]). The generalized polynomial identity with coefficients in U is satisfied by R, I and U if I is a two-sided ideal of R.

Lemma 1.4 ($[8,6])$. There exists a nonzero two-sided ideal I of R such that $0 \neq[I, R] \subseteq L$ if we assume that either R does not satisfy s_{4} or char $(R) \neq 2$. Particularly, it follows that $[R, R] \subseteq L$ if R is a simple ring.

2 Inner Generalized Derivations Case

In order to simplify this section, we will assume that H is an inner generalized derivation, with $H(r)=a_{1} r+r a_{2}$ for every $r \in R$, where a_{1}, a_{2} are constant components of U. As a result, we may rely on the assumption that R fulfills the following generalized identity:

$$
P\left(r_{1}, r_{2}\right)=\left[a_{1}\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] a_{2},\left[r_{1}, r_{2}\right]\right]^{n}-\left[a_{1}\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] a_{2},\left[r_{1}, r_{2}\right]\right]^{m}
$$

for each $r_{1}, r_{2} \in R$. In order to prove the result in this section, we also need the following:
Lemma 2.1. By the main assumption of the paper we have that

$$
\left[a_{1}\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] a_{2},\left[r_{1}, r_{2}\right]\right]^{n}-\left[a_{1}\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] a_{2},\left[r_{1}, r_{2}\right]\right]^{m}=0
$$

for all $r_{1}, r_{2} \in R$. Furthermore, for any inner automorphism ϕ of R one get that

$$
\left[\phi(a)\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] \phi(b),\left[r_{1}, r_{2}\right]\right]^{n}-\left[\phi(a)\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] \phi(b),\left[r_{1}, r_{2}\right]\right]^{m}=0
$$

for all $r_{1}, r_{2} \in R$. Trivially, $a_{1}, a_{2}, a_{1}+a_{2}, a_{1}-a_{2}$ are central in R iff $\phi\left(a_{1}\right), \phi\left(a_{2}\right), \phi\left(a_{1}+\right.$ $\left.a_{2}\right), \phi\left(a_{1}-a_{2}\right)$ are central in R. Hence, we can replace a_{1}, a_{2} respectively with $\phi\left(a_{1}\right), \phi\left(a_{2}\right)$.

Proposition 2.2. Suppose that R is any non-commutative prime ring with char $(R) \neq 2, a_{1}, a_{2} \in$ R such that $\left[a_{1} u+u a_{2}, u\right]^{n}=\left[a_{1} u+u a_{2}, u\right]^{m}$ for all $u \in[R, R]$, then either $a_{1}, a_{2} \in C$ or R satisfies s_{4} and $a_{2}-a_{1} \in C$, where $1<n \neq m \geq 1$.

Proof. The following generalized polynomial identities are satisfied by R :

$$
P\left(r_{1}, r_{2}\right)=\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]^{n}-\left[a\left[r_{1}, r_{2}\right]+\left[r_{1}, r_{2}\right] b,\left[r_{1}, r_{2}\right]\right]^{m}
$$

Then, in accord with Beidar's [1, Theorem 2], U also satisfies this extended polynomial identity. If C is not finite, then $P\left(s_{1}, s_{2}\right)=0$ for all $s_{1}, s_{2} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. As U and $U \otimes_{C} \bar{C}$ are centrally closed ([7], see Theorem 2.5, 3.5), replace R by U or $U \otimes_{C} \bar{C}$, depending on whether C is finite or infinite. Therefore, we assume that R is centrally closed over C which is either algebraic closed or finite. If $a_{1}, a_{2} \in C$, then our job is done, so we consider that either $a_{1} \notin C$ or $a_{2} \notin C$. Using [4], $P\left(r_{1}, r_{2}\right)$ is non trivial generalized polynomial identity for R. Hence, by Martindale's theorem [14], R is primitive ring with non-zero socle S with C as associated division ring, then Jacobson theorem [9] says that a dense ring of linear transformations of a certain vector space V over C and R are isomorphic.

If $\operatorname{dim}_{C}(V)=2$, then $R \simeq M_{2}(C)$, the ring of 2×2 matrices over C. Say $a_{2}-a_{1}=\sum c_{i j} e_{i j}$ where $c_{i j} \in C$ and $e_{i j}$ are usual unit matrices. Let $\left[r_{1}, r_{2}\right]=\left[e_{i i}, e_{i j}\right]=e_{i j}$ for $i \neq j$. Now, using this in our assumption, we get

$$
X=\left[a e_{i j}+e_{i j} a_{2}, e_{i j}\right]^{n}-\left[a_{1} e_{i j}+e_{i j} a_{2}, e_{i j}\right]^{m}=0
$$

Hence, (i, j)-entry of X is zero. Using calculations, we get $c_{i j}=0$ for all $i \neq j$. Therefore, $a_{2}-a_{1}$ is a diagonal matrix. Let $\phi(r)=\left(1+e_{i j}\right) r\left(1-e_{i j}\right)$ be an inner automorphisms, where
$i \neq j$, then by Lemma 2.1, $\phi\left(a_{2}-a_{1}\right)$ is a diagonal matrix. So, (i, j)-entry of $\phi\left(a_{2}-a_{1}\right)$ is zero.

$$
\begin{aligned}
0=\left[\phi\left(a_{2}-a_{1}\right)\right]_{i j} & =\sum_{i j} c_{i j} e_{i j} \\
& =c_{j j}-c_{i i}
\end{aligned}
$$

Hence, $a_{2}-a_{1} \in C$.
Assume $\operatorname{dim}_{c}(V) \geq 3$, since $[R, R]$ satisfies

$$
\begin{gathered}
{[H(u), u]^{n}-[H(u), u]^{m}=0 \text { for all } u \in[R, R]} \\
{\left[a_{1} u+u a_{2}, u\right]^{n}-\left[a_{1} u+u a_{2}, u\right]^{m}=0 \text { for all } u \in[R, R] \text { and for some } a_{1}, a_{2} \in U .}
\end{gathered}
$$

This implies that

$$
\begin{equation*}
\left[a_{1} u^{2}+u c u-u^{2} a_{2}\right]^{n}-\left[a_{1} u^{2}+u c u-u^{2} a_{2}\right]^{m}=0 \text { for all } u \in[R, R], \tag{2.1}
\end{equation*}
$$

and for some $a_{1}, a_{2} \in U$. Suppose that for some $v \in V,\{v, b v\}$ is linearly C-independent and then there exists $w \in V$ such that $\left\{v, a_{2} v, w\right\}$ is linearly C-independent. Then, Jacobson's Theorem says that there exists $u_{1}, u_{2} \in R$ such that

$$
\begin{gathered}
u_{1} v=0, u_{2} v=v, u_{1} a_{2} v=w \\
u_{2} a_{2} v=b v, u_{1} w=-2 v, u_{2} w=0 .
\end{gathered}
$$

Therefore, $u v=0, u a_{2} v=w, u w=2 v$. Multiply from right side by v to (2.1) to obtain $m=n$, which contradicts. Hence, for all $v \in V$, we have $\{v, b v\}$ is linearly C-dependent and for all $v \in V$, we get $a_{2} v=\alpha_{v} v$ for some $\alpha_{v} \in C$. Clearly, α_{v} is independent of the choice of v. Therefore, we can assume that $a_{2} v=\alpha v$. Now, $\left[a_{2}, v\right] v=a_{2}(u v)-u\left(a_{2} v\right)=\alpha(u v)-u(\alpha v)=0$, since $\alpha \in C$. Which implies that $\left[a_{2}, u\right] v=0$ for all $v \in V$, that is, $\left[a_{2}, u\right] V=(0)$. Since $\left[a_{2}, u\right]$ is acting faithfully as a linear transformation of vector space $V,\left[a_{2}, u\right]=0$ for all $u \in R$. Then, $a_{2} \in Z(R)$. Therefore, (2.1) becomes

$$
\begin{equation*}
\left[-c u^{2}+u c u\right]^{n}-\left[-c u^{2}+u c u\right]^{m}=0 \text { for all } u \in[R, R] \text { and for some } a_{1}, a_{2} \in U . \tag{2.2}
\end{equation*}
$$

Again, for some $v \in V,\{v, c v\}$ is linearly C-independent and then there exists $w \in V$ such that $\{v, c v, w\}$ is linearly C-independent, then from Jacobson's Theorem, there exist $u_{1}, u_{2} \in R$ such that

$$
\begin{aligned}
& u_{1} v=0, u_{2} v=v, u_{1} c v=-2 v \\
& u_{2} c v=0, u_{1} w=-v, u_{2} w=v
\end{aligned}
$$

Hence, $u v=0, u c v=2 v, u w=v$. Further, multiply right side by w in (2.2) to get $m=n$, that is a contradiction again. Therefore, for every $v \in V,\{v, c v\}$ is linearly C-dependent and using the same argument as we discussed the above, we find $c \in C$. Hence, we obtain the desired outcome.

3 The General Case

We assume that H is a nonzero generalized derivation throughout this section. We can suppose that there exists $a \in U$ and d, a derivation on R such that $H(r)=a r+d(r)$ (see [13]) in order to demonstrate our core argument.

Theorem 3.1. Suppose that R is a non-commutative prime ring with char $R \neq 2$ and H a nonzero generalized derivation of R, U stands for the Utumi quotient ring of R, C as the extended centroid of R. If $[H(u), u]^{n}=[H(u), u]^{m}$ for all $u \in L$, a non-central Lie ideal of R with $1<n \neq m \geq 1$, then anyone of the following is true:
(i) there exist $a \in U$ and $\alpha \in C$ such that $H(r)=a r+r a+\alpha r$ for all $r \in R$ and R satisfies the standard identity s_{4};
(ii) there exists $\lambda \in C$ such that $H(r)=\lambda r$ for all $r \in R$.

Proof. Using Lemma 1.1, we can extend generalized derivation to Utumi quotient ring U. Furthermore, by Lemma 1.4, there exists a nonzero two sided ideal I of R such that $0 \neq[I, R] \subseteq L$. Next, using Lemma 2.1, I and U satisfy the same differential identity, therefore for all $r_{1}, r_{2} \in U$,

$$
\left[a\left[r_{1}, r_{2}\right]+d\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]^{n}=\left[a\left[r_{1}, r_{2}\right]+d\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]^{m}
$$

Considering Khachenko's theory ([10]), we reach the following two instances:
(i) d as an inner derivation: One can consider that $d(r)=[c, r]$ and $H(r)=(a+c) r-r c$, so that U satisfies

$$
\left[(a+c)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] c,\left[r_{1}, r_{2}\right]\right]^{n}=\left[(a+c)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] c,\left[r_{1}, r_{2}\right]\right]^{m}
$$

Using Proposition 2.2, we arrived at desired conclusion.
(ii) d as an outer derivation: This case yields that for all $r_{1}, r_{2} \in U$

$$
\left[a\left[r_{1}, r_{2}\right]+d\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]^{n}=\left[a\left[r_{1}, r_{2}\right]+d\left(\left[r_{1}, r_{2}\right]\right),\left[r_{1}, r_{2}\right]\right]^{m}
$$

Using Kharchenko's theory, U satisfies the generalized polynomial identity:

$$
\left[a\left[r_{1}, r_{2}\right]+\left[s_{1}, r_{2}\right]+\left[r_{1}, s_{2}\right],\left[r_{1}, r_{2}\right]\right]^{n}=\left[a\left[r_{1}, r_{2}\right]+\left[s_{1}, r_{2}\right]+\left[r_{1}, s_{2}\right],\left[r_{1}, r_{2}\right]\right]^{m}
$$

Particularly, $s_{1}=s_{2}=0$ then from Proposition 2.2, we find $a \in C$. Therefore, we obtain the following

$$
\begin{equation*}
\left[\left[s_{1}, r_{2}\right]+\left[r_{1}, s_{2}\right],\left[r_{1}, r_{2}\right]\right]^{n}=\left[\left[s_{1}, r_{2}\right]+\left[r_{1}, s_{2}\right],\left[r_{1}, r_{2}\right]\right]^{m} \tag{3.1}
\end{equation*}
$$

Then, a well known result due to Posner [15], $U \simeq M_{p}(K)$, the ring of $p \times p$ matrices over field K. Trivially, for $m \geq 2 R$ is non-commutative. So, we assume (3.1) with

$$
r_{1}=e_{i i}, r_{2}=e_{j i}, s_{1}=0, s_{2}=2 e_{i j}
$$

then we obtain

$$
\left(2^{n-m}-1\right)\left(e_{j j}-e_{i i}\right)=0
$$

Which leads to a contradiction. Therefore, we obtain the required conclusion.

4 Acknowledgement

The authors of the paper extend their sincere gratitude to the Deanship of Scientific Research at Islamic University of Madinah for the support provided to the Post- Publishing Program 2.

References

[1] K. I. Beidar, Rings with generalized identities, Moscow Univ. Math. Bull., 33, 53-58, (1978).
[2] K. I. Beidar, W.S. Martindale and A.V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York, (1996).
[3] L. Carini and V. De Filippis, Commutators with power central values on a Lie ideal, Pacific J. Math., 193(2), 269-278, (2000).
[4] C.L. Chuang, GPIs' having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3), 723-728, (1988).
[5] V. De Filippis, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci., 22 (2), 167-175, (2006).
[6] O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. UMI 7 3-A, 77-85, (1989).
[7] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60, 49-63, (1975).
[8] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, (1969).
[9] N. Jacobson, Structure of rings, Amer. Math. Soc., Providence, RI, (1964).
[10] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17, 155-168, (1978).
[11] C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108(1), 31-37,(1990).
[12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Acad. Sinica, 20(1), 27-38, (1992).
[13] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8), 4057-4073, (1999).
[14] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576-584, (1969).
[15] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093-1100, (1957).
[16] G., Scudo and A. Z., Ansari, Generalized derivations on lie ideals and power values on prime rings, Mathematica Slovaca, 65(5), 975-980, (2015).

Author information

Abu Zaid Ansari, Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, KSA.
E-mail: ansari.abuzaid@gmail.com, ansari.abuzaid@iu.edu.sa
Nadeem ur Rehman, Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India.
E-mail: rehman100@gmail.com
Faiza Shujat, Department of Mathematics, Faculty of Science, Taibah University, Madinah, KSA.
E-mail: faiza.shujat@gmail.com, fullahkhan@taibahu.edu.sa
Received:
Accepted: 2023-02-11

