ON PROJECTIVE RELATION OF GENERALIZED METRIC WITH CERTAIN (α, β) METRICS

AjayKumar AR and Pradeep Kumar
Communicated by Ziyad Sharawi

MSC 2010 Classifications: Primary 53B40; Secondary 53C60.
Keywords and phrases: Finsler spaces, Projective change, Douglas metric, Generalized (α, β)-metric, Randers metric, Kropina metric.

Abstract In this article, we have shown that two important pairs of (α, β)-metrics, namely, generalized (α, β)-metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$, (where μ_{1}, μ_{2} and μ_{3} are constants) with Kropina metric and generalized (α, β)-metric with Randers metric, have same Douglas tensors if and only if both are Douglas metrics. Furthermore, we study the projective relation between two important (α, β)-metrics with dimension $n \geq 0$, where β and $\bar{\beta}$ are one-forms, while α and $\bar{\alpha}$ denote Riemannian metrics.

1 Introduction

The projective change of Finsler metric is a fascinating concept to investigate in Finsler geometry. On a manifold M, two Finsler metrics F and \bar{F} are called projectively related if every geodesic of the first metric is also a geodesic of the second metric and vice-versa. Many authors $[2,3,9,10,11,12,13]$, have investigated the projective relation between two Finsler metrics.

The paper [13] by Rapsack provides us with a very important and necessary result related to the projective change, dealing with necessary and sufficient conditions for projective relation. In the recent year many authors [5,6, 7, 14], discussed the projective changes between special (α, β)-metric with Kropina metric in detail. In [8], Pradeep Kumar et al. have introduced a generalized (α, β)-metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ (where μ_{1}, μ_{2} and μ_{3} are constants) and discussed projective change.

The (α, β) metric is a substantial and significant class of Finsler metrics. It can be expressed as $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$. where α denotes Riemannian metric, β is 1 -form and ϕ represents the positive C^{∞} function. L. Berwald was the first author to introduce the Kropina metric $F=\frac{\alpha^{2}}{\beta}$ and was studied by V. K. Kropina [4]. However, the Kropina metric is a non-regular Finsler metric, but the Randers metric $F=\alpha+\beta$ is a regular Finsler metric. Kropina metric is regarded as a significant and elementary Finsler metric with a plethora of interesting and useful applications in physics, irreversible thermodynamics, dissipative mechanics, and electron optics in the presence of a magnetic field. They also have interesting applications in relativistic field theory, evolution, and developmental biology given in [1].

The aim of this article is to continue the investigation on the generalized (α, β)-metric $F=$ $\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ and to study the projective relation between two (α, β)-metrics. The results have been proved in two cases in section 3. In the first part, we have proved that both generalized metric F and Kropina metric $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$ are Douglas metrics and also, we have proved F is projectively related to Kropina metric \bar{F}. Furthermore, we proved that the generalized metric F and Randers metric $\bar{F}=\bar{\alpha}+\bar{\beta}$ are Douglas metrics and are projectively related.

2 Preliminaries

Let $F^{n}=(M, F)$ be a Finsler space with a fundamental function $F(x, y)$ on a differential manifold M [1]. We have

$$
\begin{aligned}
& * g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}, \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}, \\
& * C_{i j k}=\frac{1}{2} \dot{\partial}_{i} g_{i j}, \\
& * h_{i j}=g_{i j}-l_{i} l_{j}, \\
& * \gamma_{j k}^{i}=\frac{1}{2} g^{i r}\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k},\right. \\
& * G^{i}=\frac{1}{2} \gamma_{j k}^{i} y^{i} y^{k}, G_{j}^{i}=\dot{\partial}_{i} G^{i}, G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i}, G_{j k l}^{i}=\dot{\partial}_{l} G_{j k}^{i} .
\end{aligned}
$$

The theory of (α, β)-metric $F^{n}=(M, F(\alpha, \beta))$ is originated by M. Matsumoto in 1972 and analyzed by several authors $[3,5,7]$. Two Finsler metrics F and \bar{F} on a manifold M are called projectively related if and only if [3]

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P(y) y^{i}, \tag{2.1}
\end{equation*}
$$

here, $P(y)$ denotes a scalar-function on $T M \backslash\{0\}$ and homogeneous of degree one in y. The geodesic of F must satisfy the following ODE by certain Finsler metric $F:=F(x, y)$

$$
2 G^{i}\left(x, \frac{d x}{d t}\right)=-\frac{d^{2} x^{i}}{d t^{2}}
$$

here $G^{i}=G^{i}(x, y)$ is a geodesic coefficient, G^{i} is provided by

$$
G^{i}=\frac{\left\{\left[F^{2}\right]_{x^{m}} y^{l} y^{m}-\left[F^{2}\right]_{x^{l}}\right\}}{4} g^{i l} .
$$

The following relation is satisfied by the positive C^{∞} function $\phi=\phi(s),|s|<b_{0}$

$$
\begin{equation*}
\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)+\phi(s)-s \phi^{\prime}(s)>0, \quad\left(|s| \leq b<b_{0}\right) . \tag{2.2}
\end{equation*}
$$

The $F=\alpha \phi(x), s=\frac{\beta}{\alpha}$, is a regular (α, β)-metric, if $\left\|\beta_{x}\right\|_{\alpha}<b_{0}, \forall x \in M$ is satisfied by the Riemannian metric $\alpha^{2}=a_{i j} y^{i} y^{j}$ and 1-form $\beta=b_{i} y^{i}$. Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ be covariant derivative of β with respect to α. Denote $r_{i j}=\frac{1}{2}\left(b_{j \mid i}+b_{i \mid j}\right)$ and $s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right)$, where $b_{i \mid j}$ is known as coefficient of the covariant derivative of β in reference to α. Taking note of the fact that $s_{i j}=0$ if and only if β is closed [5]. Let $s_{j}=b^{i} s^{i j}, s_{j}^{i}=a^{i l} s_{l j}, s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}$ and $r_{00}=r_{i j} y^{i} y^{j}$.
The spray coefficient G^{i}, geodesic coefficient G_{α}^{i} of F and α are connected by [10].

$$
\begin{equation*}
G^{i}=\left\{-2 \alpha Q s_{0}+r_{00}\right\}\left\{\Psi b^{i}+\Theta \alpha^{-1} y^{i}\right\}+\alpha Q s_{0}^{i}+G_{\alpha}^{i}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\Psi & =\frac{1}{2} \frac{\phi^{\prime \prime}}{\left(b^{2}-s^{2}\right) \phi^{\prime \prime}+\left(\phi-s \phi^{\prime}\right)}, \\
\Theta & =\frac{\phi \phi^{\prime}-s\left(\phi^{\prime} \phi^{\prime}+\phi \phi^{\prime \prime}\right)}{2 \phi\left(\left(b^{2}-s^{2}\right) \phi^{\prime \prime}+\left(\phi-s \phi^{\prime}\right)\right)} .
\end{aligned}
$$

For the Kropina metric $F=\frac{\alpha^{2}}{\beta}$, it is very easy to see that it is not a regular (α, β)-metric but the relation $\phi(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)-s \phi^{\prime}(s)>0$ is still true for $|s|>0$.

Definition 2.1. [3] Let $D:=D_{j k l}^{i} \dot{\partial}_{i} \otimes d x^{i} \otimes d x^{k} \otimes d x^{l}$ is Douglas tensor.

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}+G^{i}\right) \tag{2.4}
\end{equation*}
$$

here G^{i} is the spray coefficient of F. A Finsler metric is called Douglas metric if $D_{j k l}^{i}=0$ [6].
Let

$$
\begin{equation*}
\bar{G}^{i}=\Psi\left\{-2 \alpha Q s_{0}+r_{00}\right\} b^{i}+\alpha Q s_{0}^{i}+G_{\alpha}^{i} \tag{2.5}
\end{equation*}
$$

Then (2.3) reduces to

$$
G^{i}=\bar{G}^{i}+\Theta\left\{r_{00}-2 \alpha Q s_{0}\right\} \frac{y^{i}}{\alpha}
$$

According to (2.1), G^{i} and \bar{G}^{i} are projective equivalents and they are having similar Douglas tensors. Let

$$
\begin{equation*}
T^{i}=\Psi\left\{r_{00}-2 \alpha Q s_{0}\right\} b^{i}+\alpha Q s_{0}^{i} \tag{2.6}
\end{equation*}
$$

Then $\bar{G}=G_{\alpha}^{i}+T^{i}$, thus

$$
\begin{aligned}
D_{j k l}^{i} & =\bar{D}_{j k l}^{i} \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{(n+1)} \frac{\partial T^{m}}{\partial y^{m}} y^{i}+G^{i}-\frac{1}{(n+1)} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i}\right)
\end{aligned}
$$

The Douglas tensor of an (α, β)-metric is given by

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \tag{2.7}
\end{equation*}
$$

We use $\alpha_{y^{k}}=\alpha^{-1} ; s_{y^{k}}=\alpha^{-2}\left(b_{k} \alpha-s y_{k}\right)$ to simplify (2.7), where $y_{i}=a_{i l} y^{l}$ and $\alpha_{y^{k}}$ means $\frac{\partial \alpha}{\partial y^{k}}$. Then

$$
\left[\alpha Q S_{0}^{m}\right]_{y^{m}}=\alpha^{-2} Q^{\prime}\left[b_{m} \alpha^{2}-\beta y_{m}\right] s_{0}^{m}+\alpha^{-1} y_{m} Q s_{0}^{m}=Q^{\prime} s_{0}
$$

and

$$
\left[\Psi\left(r_{00}-2 Q \alpha s_{0}\right) b^{m}\right]_{y}^{m}=-\alpha^{-1} \Psi^{\prime}\left[r_{00}-2 Q \alpha s_{0}\right]\left(s^{2}-b^{2}\right)+2 \Psi\left[r_{0}+Q^{\prime}\left(s^{2}-b^{2}\right) s_{0}-Q s s_{0}\right]
$$

where $r_{0}=r_{i} y^{i}$ and $r_{j}=b^{i} r_{i j}$. Thus using (2.6), we have

$$
\begin{equation*}
T_{y^{m}}^{m}=2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right]+Q^{\prime} s_{0}-\Psi^{\prime} \alpha^{-1}\left(s^{2}-b^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \tag{2.8}
\end{equation*}
$$

Now, assume that the Douglas tensor is the same for F and \bar{F}. Hence, $D_{j k l}^{i}=\bar{D}_{j k l}^{i}$. From (2.4) and (2.7), we can write

$$
\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i}\right)=0
$$

Then there exist a class of a scalar function $H_{j k}^{i}=H_{j k}^{i}(x)$, such that

$$
\begin{equation*}
H_{00}^{i}=T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i} \tag{2.9}
\end{equation*}
$$

where $H_{00}^{i}=H_{j k}^{i} y^{i} y^{k}, T^{i}$ and $T_{y^{m}}^{m}$ are given by (2.6) and (2.8).

3 Projective relation between two classes of (α, β)-metric

For a Finsler space $F^{n}=(M, F)$, the metric $F=F(x, y)$ is a Finsler metric provided $\|\beta\|<b_{0}$ and the geodesic coefficients of Finsler metric are obtained by Eq. (2.3).
(a). Generalized (α, β)-metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$.

For the generalized metric F, equation (2.2) can be used to demonstrate that F is a usual Finsler metric, given $\left\|\beta_{x}\right\|_{\alpha}<1$, for any $x \in M$.

The geodesic coefficients are provided by (2.3) as follows

$$
\begin{align*}
Q & =\frac{\mu_{2}+2 \mu_{3} s}{\mu_{1}-\mu_{3} s^{2}} \\
\Psi & =\frac{\mu_{3}}{\left(\mu_{1}+2 \mu_{3} b^{2}-3 \mu_{3} s^{2}\right)} \tag{3.1}\\
\Theta & =\frac{\mu_{1} \mu_{2}-3 \mu_{2} \mu_{3} s^{2}-\mu_{3}^{2} s^{3}}{2\left(\mu_{1}+\mu_{2} s+\mu_{3} s^{2}\right)\left(\mu_{1}+2 \mu_{3} b^{2}-3 \mu_{3} s^{2}\right)}
\end{align*}
$$

(b). Kropina metric $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$.

For the Kropina metric \bar{F}, the geodesic coefficients are provided by (2.3) that yields

$$
\begin{align*}
& \bar{\Theta}=-\frac{s}{\bar{b}^{2}}, \\
& \bar{Q}=-\frac{1}{2 s}, \tag{3.2}\\
& \bar{\Psi}=\frac{1}{2 \bar{b}^{2}} .
\end{align*}
$$

(c). Randers metric $\bar{F}=\bar{\alpha}+\bar{\beta}$.

For the Randers metric \bar{F}, the geodesic coefficients are provided by (2.3) that yields

$$
\begin{align*}
& \bar{Q}=1 \\
& \bar{\Psi}=0 \tag{3.3}\\
& \bar{\Theta}=\frac{1}{(2+2 s)} .
\end{align*}
$$

Now, we discuss the projective relation between generalized (α, β)-metric with Kropina and Randers metrics.

3.1 Projective relation between $\boldsymbol{F}=\mu_{1} \boldsymbol{\alpha}+\mu_{2} \boldsymbol{\beta}+\boldsymbol{\mu}_{3} \frac{\boldsymbol{\beta}^{2}}{\boldsymbol{\alpha}}$ and $\overline{\boldsymbol{F}}=\frac{\overline{\boldsymbol{\alpha}}^{2}}{\overline{\boldsymbol{\beta}}}$.

This section is about the projective relation between generalized metric F and Kropina metric \bar{F} on the same fundamental manifold M of dimension $n \geq 3$.
Now, we have the following theorem
Theorem 3.1. Let $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ be a generalized (α, β)-metric and $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$ be a Kropina- metric on n-dim manifold $M(n \geq 3)$, where β and $\bar{\beta}$ are two non-zero 1-forms, α and $\bar{\alpha}$ are two Riemannian metrics. Then Finsler metric F and \bar{F} are Douglas metrics if and only if both are Douglas tensors.

Proof. Let Finsler metric F and \bar{F} be Douglas metrics with Douglas tensors be $D_{j k l}^{i}$ and $\bar{D}_{j k l}^{i}$. Then $D_{j k l}^{i}=0$ and $\bar{D}_{j k l}^{i}=0$ (by the definition of Douglas metric), i.e., the pair F and \bar{F} are having identical Douglas tensor.
Conversely, suppose F, as well as \bar{F}, have the identical Douglas tensors, at that time Eq. (2.9) holds.
Substituting (3.1) and (3.2) in (2.9), we get

$$
\begin{align*}
& H_{00}^{i}=\frac{\left(A^{i} \alpha^{11}+B^{i} \alpha^{10}+C^{i} \alpha^{9}+D^{i} \alpha^{8}+E^{i} \alpha^{7}+F^{i} \alpha^{6}+G^{i} \alpha^{5}+H^{i} \alpha^{4}+I^{i} \alpha^{3}\right.}{M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}} \\
&+\frac{\left.J^{i} \alpha^{2}+K^{i} \alpha+L^{i}\right)}{\bar{A}^{i} \alpha^{2}+\bar{B}^{i}} \tag{3.4}\\
& 2 \bar{b}^{2} \bar{\beta}
\end{align*},
$$

where

$$
\begin{aligned}
& A^{i}=\mu^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(-2 \mu_{3} b^{i} s_{0}\left(\mu_{2}+2 \mu_{3}\right) \beta+2 \mu_{2} \mu_{3} b^{2} s_{0}^{i}\right) \text {, } \\
& B^{i}=\mu_{1}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(\left(\mu_{1} \mu_{2}+2 \mu_{1} \mu_{2} \beta+4 \mu_{3}^{2} b^{2} \beta\right) s_{0}^{i}-2 \mu_{1} \mu_{3} r_{0} \lambda y^{i}+\mu_{1} \mu_{3} b^{i} r_{00}\right) \text {, } \\
& C^{i}=4 \mu_{1} \mu_{2} \mu_{3}^{2}\left(2 \mu_{1}+\mu_{2} b^{2}\right)\left(b^{2} s_{0}^{i} \beta^{2}+\left(2 \mu_{1} \mu_{3} \beta^{3}+1\right) b^{i} s_{0}\right)+\beta^{2}\left[-3 \mu_{1}^{2} \mu_{2} \mu_{3}\left(\mu_{1}\right.\right. \\
& \left.\left.+2 \mu_{3} b^{2}\right)\right] s_{0}^{i}+\beta\left[-2 \mu_{1}^{2} \mu_{2} \mu_{3}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\right] s_{0} \lambda y^{i}, \\
& D^{i}=\beta^{3}\left[-\mu_{1} \mu_{3}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(9 \mu_{1}+4 \mu_{3} b^{2}\right)\right]+\beta^{2}\left[-2 \mu_{1}^{2} \mu_{2} \mu_{3}\left(2 \mu_{1}+\mu_{3} b^{2}\right)\right] s_{0}^{i}+ \\
& \beta^{2}\left[-\mu_{1} \mu_{3}^{2} b^{i}\left(\mu_{1}+2 \mu_{3} b^{2}\right)+a \mu_{1}^{2}+4 \mu_{1} \mu_{3} b^{2}\right] r_{00}+\beta^{2}\left[4 \mu_{1}^{2} \mu_{3}^{2}\left(2 \mu_{1}+\mu_{3} b^{2}\right)\right] \\
& r_{0} \lambda y^{i}+\beta\left(-6 \mu_{1}^{3} \mu_{3}^{2} b^{2} r_{00} \lambda y^{i}\right)+2 \mu_{1}^{2} \mu_{3}\left(-\mu_{1}\left(\mu_{1}+2 \mu_{3} b^{2}\right)+6 \mu_{3} b^{2}\left(\mu_{2}+\mu_{3}\right) \beta\right. \\
& \left.+2 \mu_{3} \beta^{2}\left(\mu_{1}+\mu_{3} b^{2}\right)\right) s_{0} \lambda y^{i}+\beta^{2}\left[4 \mu_{1}^{2} \mu_{3}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\right] \lambda y^{i}, \\
& E^{i}=\beta^{5}\left[2 \mu_{3}^{2} b^{i}\left(\mu_{2}+2 \mu_{3}\right)\left(\mu_{1}+2 \mu_{3} b^{2}+6 \mu_{1} \mu_{3}\right) s_{0}\right]+\beta^{4}\left[2 \mu _ { 2 } \mu _ { 3 } ^ { 2 } \left\{\mu_{1}\left(b^{2}+6 \mu_{1}\right)+\right.\right. \\
& \left.\left.\mu_{3} b^{2}\left(9 \mu_{1}+2 b^{2}\right)\right\}\right]+\beta^{3}\left[-\mu_{1} \mu_{2} \mu_{2}^{3}\left(22 \mu_{1}+8 \mu_{3} b^{2}\right) \lambda y^{i}\right], \\
& F^{i}=\beta^{5}\left[2 \mu_{3}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(\mu_{1}+6 \mu_{1} \mu_{3}^{2}+2 \mu_{3} b^{2}\right)\right] s_{0}^{i}+\beta^{4}\left[\mu_{3}\left(\left(\mu_{1}+2 \mu_{3} b^{2}\right)+6 \mu_{3}^{2}\right)\right. \\
& \left.\left\{\mu_{1}\left(\mu_{2} s_{0}^{i}+\mu_{3} b^{i} r_{00}\right)\right\}\right]+2 \mu_{1} \mu_{3}^{3}\left(2 \mu_{1}+\mu_{3} b^{2}\right)\left(6 s_{0}^{i} \beta^{3}+b^{i} r_{00} \beta^{2}\right)-\beta^{4}\left[12 \mu_{1} \mu_{3}^{2}\right. \\
& \left.\left(\mu_{1}+\mu_{3} b^{2}\right) r_{0} \lambda y^{i}\right]-\beta^{4}\left[16 \mu_{1} \mu_{3}^{3}\left(2 \mu_{1}+\mu_{3} b^{2}\right) s_{0} \lambda y^{i}\right]-\beta^{4}\left(12 \mu_{1}^{2} \mu_{3}^{2} \lambda y^{i}\right)+\beta^{3} \\
& {\left[6 \mu_{1}^{2} \mu_{3}^{2}\left(\mu_{1}+3 \mu_{3} b^{2}\right) r_{00} \lambda y^{i}\right]-\beta^{3}\left[24 \mu_{1} \mu_{3}^{2} b^{2}\left(\mu_{2}+1\right)+4 \mu_{1}^{2} \mu_{3}^{2}+8 \mu_{1}^{2} \mu_{3}^{2} b^{2}\right] \lambda s_{0} y^{i}} \\
& -\beta^{2}\left[2 \mu_{1}^{2} \mu_{3}^{2}\left(\mu_{1}-2 \mu_{3} b^{2}\right)-12 \mu_{1}^{2} \mu_{3}^{2}+8 \mu_{1} \mu_{3}^{4} b^{4}\right] s_{0} \lambda y^{i}+\beta\left[2 \mu_{1}^{2} \mu_{3}^{2}\left(\mu_{1}+4 \mu_{3} b^{2}\right)\right. \\
& \left.+8 \mu_{1} \mu_{3}^{4} b^{4}\right] s_{0} \lambda y^{i}, \\
& G^{i}=\beta^{6}\left[6 \mu_{3}^{3} b^{i}\left(\mu_{2}+\mu_{3}\right) s_{0}\right]-\beta^{6}\left[3 \mu_{2} \mu_{3}^{2}\left(\mu_{1}+4 \mu_{3} b^{2}+6 \mu_{1} \mu_{3}\right) s_{0}^{i}\right]+\beta^{5}\left(36 \mu_{1} \mu_{2} \mu_{3}^{3}\right) \\
& s_{0} \lambda y^{i}-\beta^{3}\left[8 \mu_{1} \mu_{2} \mu_{3}^{2}\left(\mu_{1}-\mu_{3} b^{2}\right)+12 \mu_{1} \mu_{2} \mu_{3}^{2}\left(b^{2}-6\right)+4 \mu_{2} \mu_{3}^{3} b^{4}\right] s_{0} \lambda y^{i}+\beta^{2} \\
& {\left[2 \mu_{1} \mu_{2} \mu_{3}^{3}\left(1+4 b^{2}\right)+4 \mu_{2} \mu_{3}^{3} b^{2}+\mu_{3}+2 b^{2}\right] \lambda y^{i},} \\
& H^{i}=\beta^{7}\left[-6 \mu_{3}^{3}\left(\mu_{1}+2 \mu_{2} b^{2}\right)\left\{\mu_{1}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)+6 \mu_{1}^{3} \mu_{3}+1\right\}\right] s_{0}^{i}+\beta^{6}\left[-3 \mu_{1} \mu_{2} \mu_{3}^{2} s_{0}^{i}\right. \\
& \left.-\mu_{1} \mu_{3}^{3}\left\{\mu_{1} b^{i}\left(\mu_{1}+2 \mu_{3} b^{2}\right)^{2}+6 \mu_{1} \mu_{3}^{2}\left(\mu_{1}+2 \mu_{3} b^{2}\right)+3 b^{i}\right\}\right] r_{00}+\beta^{6}\left(24 \mu_{1} \mu_{3}^{4}\right) \\
& s_{0} \lambda y^{i}-\beta^{5}\left[6 \mu_{3}^{3}\left(1+12 \mu_{1}^{2}\right)+6 \mu_{1} \mu_{3}^{3} b^{2}(1+2 n)\right] r_{00} \lambda y^{i}+\beta^{5}\left[12 \mu_{3}^{3} b^{2}\left(\mu_{3}-\mu_{2}\right)\right. \\
& \left.s_{0} \lambda y^{i}\right]-\beta^{4}\left[18 \mu_{1}^{2} \mu_{3}^{3}-12 \mu_{1} \mu_{3}^{3}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\right] s_{0} \lambda y^{i}-\beta^{3}\left[4 \mu_{1} \mu_{3}^{3}\left(3+4 \mu_{3} b^{2}\right)\right. \\
& \left.-2 \mu_{1}^{2} \mu_{3}^{3}-8 \mu_{3}^{4} b^{4}\right] \lambda y^{i}, \\
& I^{i}=\beta^{8}\left(9 \mu_{2} \mu_{3}^{3} s_{0}^{i}\right)-\beta^{7}\left[6 \mu_{2} \mu_{3}^{3}\left(\mu_{2}+2\right)\right] s_{0} \lambda y^{i}-\beta^{5}\left[-6 \mu_{2} \mu_{3}^{3}\left(\mu_{1}+b^{2}\right)+18 \mu_{1} \mu_{2} \mu_{3}^{2}\right] \\
& s_{0} \lambda y^{i}-\beta^{4}\left[12 \mu_{2} \mu_{3}^{3}\left(1+b^{2}\right)\right] s_{0} \lambda y^{i}, \\
& J^{i}=3 \mu_{3}^{4}\left(6 \beta^{9} s_{0}^{i}+6 \beta^{8} r_{00}\right)-\beta^{8}\left[6 \mu_{3}^{4}\left(r_{0}+2 s_{0}\right) \lambda y^{i}\right]-\beta^{7}\left[6 \mu_{3}^{4} b^{2}+6 \mu_{1} \mu_{3}^{3}\left(1-2 \mu_{3}\right)\right] \\
& r_{00} \lambda y^{i}-\beta^{6} \mu_{3}^{4}\left(10 \mu_{1}-32 \mu_{3} b^{2}\right) s_{0} \lambda y^{i}+\beta^{5}\left[18 \mu_{1} \mu_{3}^{4}-12 \mu_{3}^{4}\left(1+2 b^{2}\right)\right] s_{0} \lambda y^{i}, \\
& K^{i}=18 \mu_{2} \mu_{3}^{4} \beta^{6} s_{0} \lambda y^{i} \text {, }
\end{aligned}
$$

$$
\begin{align*}
L^{i}= & 18 \mu_{3}^{5} \beta^{7} s_{0} \lambda y^{i}-12 \mu_{3}^{5} \beta^{8}-6 \mu_{3}^{3} \beta^{9} r_{00} \lambda y^{i}, \\
M^{i}= & \mu_{1}^{3}\left(\mu_{1}+2 \mu_{3} b^{2}\right)^{2}, \\
N^{i}= & \beta^{2}\left[-\mu_{1}^{2} \mu_{3}\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(9 \mu_{1}+6 \mu_{3} b^{2}\right)\right], \\
O^{i}= & \beta^{4}\left[\mu _ { 1 } \mu _ { 3 } \left\{3 \mu_{1} \mu_{3}\left(7 \mu_{1}+8 \mu_{3} b^{2}\right)+\left(\mu_{1}+2 \mu_{3} b^{2}\right)\left(\mu_{1}+2 \mu_{3} b^{2}\right.\right.\right. \\
& \left.\left.\left.+4 \mu_{3}\left(2 \mu_{1}+\mu_{3} b^{2}\right)\right)\right\}\right], \\
P^{i}= & -\mu_{1}\left[6 \mu_{1}+12 \mu_{1} \mu_{3} b^{2}+18 \mu_{1}^{2} \mu_{3}+3 \mu_{1} \mu_{3}\left(7 \mu_{1}+8 \mu_{3} b^{2}\right)+\left(\mu_{1}+2 \mu_{3} b^{2}\right)\right], \\
Q^{i}= & 15 \mu_{1} \mu_{3}^{3}+3 \mu_{3}^{4}\left(6 \mu_{1}+4 b^{2}\right), \tag{3.5}\\
R^{i}= & -9 \mu_{3}^{4} \beta^{1} 0, \\
\bar{A}^{i}= & \bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}, \\
\bar{B}^{i}= & \bar{\beta}\left[2 \lambda \bar{y}^{i}\left(\bar{r}_{0}+\bar{s}_{0}\right)-\bar{b}^{i} \bar{r}_{00}\right], \\
& \text { and } \\
\lambda= & \frac{1}{n+1} .
\end{align*}
$$

Thus, (3.4) is equivalent to

$$
\begin{align*}
& \left(A^{i} \alpha^{11}+B^{i} \alpha^{10}+C^{i} \alpha^{9}+D^{i} \alpha^{8}+E^{i} \alpha^{7}+F^{i} \alpha^{6}+G^{i} \alpha^{5}+H^{i} \alpha^{4}+I^{i} \alpha^{3}+J^{i} \alpha^{2}\right. \\
& \left.+K^{i} \alpha+L^{i}\right) \times\left(2 \bar{b}^{2} \bar{\beta}\right)+\left(\bar{A}^{i} \alpha^{2}+\bar{B}^{i}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}\right. \tag{3.6}\\
& \left.+R^{i}\right)=H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) .
\end{align*}
$$

Replacing $\left(y^{i}\right)$ by $\left(-y^{i}\right)$ in (3.6) yields

$$
\begin{align*}
& \left(-A^{i} \alpha^{11}+B^{i} \alpha^{10}-C^{i} \alpha^{9}+D^{i} \alpha^{8}-E^{i} \alpha^{7}+F^{i} \alpha^{6}-G^{i} \alpha^{5}+H^{i} \alpha^{4}-I^{i} \alpha^{3}+J^{i} \alpha^{2}\right. \\
& \left.-K^{i} \alpha+L^{i}\right) \times\left(-2 \bar{b}^{2} \bar{\beta}\right)-\left(\bar{A}^{i} \alpha^{2}+\bar{B}^{i}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}\right. \tag{3.7}\\
& \left.+R^{i}\right)=-H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) .
\end{align*}
$$

Adding (3.6) and (3.7), we get

$$
\left(A^{i} \alpha^{11}+C^{i} \alpha^{9}+E^{i} \alpha^{7}+G^{i} \alpha^{5}+I^{i} \alpha^{3}+K^{i} \alpha\right) \times\left(2 \bar{b}^{2} \bar{\beta}\right)=0 .
$$

Rearranging the above equation

$$
\begin{equation*}
\left(A^{i} \alpha^{11}+C^{i} \alpha^{9}+E^{i} \alpha^{7}+G^{i} \alpha^{5}+I^{i} \alpha^{3}+K^{i} \alpha\right)=0 \tag{3.8}
\end{equation*}
$$

Using (3.8), equation (3.4) is equivalent to

$$
\begin{align*}
& \left(B^{i} \alpha^{10}+D^{i} \alpha^{8}+F^{i} \alpha^{6}+H^{i} \alpha^{4}+J^{i} \alpha^{2}+L^{i}\right)\left(2 \bar{b}^{2} \bar{\beta}\right) \\
& +\left(\bar{A}^{i} \alpha^{2}+\bar{B}^{i}\right) \times\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) \tag{3.9}\\
& =H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) .
\end{align*}
$$

From (3.9), we observe that $\bar{A}^{i} \alpha^{2}\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right)$ is divided by $\bar{\beta}$. Since, $\beta=\varphi \bar{\beta}$, then $\bar{A}^{i} \alpha^{2} M^{i} \alpha^{10}$ can be divided by $\bar{\beta}$. Because $\bar{\beta}$ is prime as related to α and $\bar{\alpha}, \bar{A}^{i}=\bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}$ can be divided by $\bar{\beta}$.
Hence,

$$
\begin{equation*}
\bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}=\bar{\beta} \psi^{i} \tag{3.10}
\end{equation*}
$$

Contracting (3.10) by $\bar{y}_{i}=\bar{a}_{i j}$, we get $\psi^{i}\left(\bar{y}_{i}\right)=-\bar{s}_{0}$. Since \bar{y}_{i} is arbitrary vector, we get $\psi^{i}(x)=-\bar{s}^{i}$. Then we have

$$
\begin{equation*}
\bar{s}_{i j}=\frac{1}{\bar{b}^{2}}\left[\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right], \tag{3.11}
\end{equation*}
$$

provided $\bar{b}^{2} \neq 0$. By Lemma 2.3(see,[7]), if $n=2$ then $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$ is a Douglas metric. As a result, the fact that F and \bar{F} have identical Douglas tensors indicates that they follow Douglas metrics.

Hence, the proof.
Now, we state and prove the following,
Theorem 3.2. Let $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ be a generalized (α, β)-metric and $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$ be a Kropina metric on n-dim manifold $M(n \geq 3)$. The Finsler metric F is projectively connected to \bar{F} if and only if the following equation holds true

$$
\begin{equation*}
G_{\alpha}^{i}+\tau \frac{\mu_{3}}{\mu_{1}} \alpha^{2} b^{i}=\bar{G}_{\bar{\alpha}}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+r_{00} \bar{b}^{i}\right)+\theta y^{i}, \tag{3.12}
\end{equation*}
$$

where β and $\bar{\beta}$ are non-zero 1-forms while α and $\bar{\alpha}$ are Riemannian metrics. $b^{i}=a^{i j} b_{j}, \bar{b}^{i}=$ $\bar{a}^{i j} \bar{b}_{j}, \bar{b}^{2}=\|\bar{\beta}\|_{\alpha}^{2}$, scalar $\tau=\tau(x)$ and $\theta=\theta_{i} y^{i}$ is a one-form on M.

Proof. Let the Douglas tensor is invariant in the projective relation between two Finsler metrics. Since, F is projectively related to \bar{F}, moreover both have the identical Douglas tensor.

From theorem (3.1), we have proved that together (α, β)-metrics F as well as \bar{F} are Douglas metrics.

We know that generalized (α, β)-metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$, is Douglas metric if and only if

$$
\begin{equation*}
b_{i \mid j}=2 \tau\left[\left(1+2 \frac{2 \mu_{3}}{\mu_{1}} b^{2}\right) a_{i j}-\frac{3 \mu_{3}}{\mu_{1}} b_{i} b_{j}\right] \tag{3.13}
\end{equation*}
$$

Within this instance, β is closed.
Substituting (3.13) and (3.1) in (2.3), we get

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\tau\left[\frac{\mu_{1} \mu_{2} \alpha^{3}-4 \mu_{3}^{2} \beta^{3}-3 \mu_{2} \mu_{3} \alpha \beta^{2}}{\mu_{1}\left(2 \mu_{1} \alpha^{2}+2 \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)}\right] y^{i}+\tau \frac{\mu_{3} \alpha^{2}}{\mu_{1}} b^{i} \tag{3.14}
\end{equation*}
$$

Also, substituting (3.15) and (3.6) in (2.3), we get

$$
\begin{equation*}
\bar{G}^{i}=\bar{G}_{\alpha}^{i}-\frac{1}{2 \bar{b}^{2}}\left\{-\bar{\alpha}^{2} \bar{s}^{i}+\left(2 \bar{s}_{0} y^{i}-\bar{r}_{00} \bar{b}^{i}\right)+\frac{2 \bar{r}_{00} \bar{\beta}}{\bar{\alpha}^{2}} y^{i}\right\} . \tag{3.15}
\end{equation*}
$$

In view of F is projectively related to \bar{F}, there is a scalar $P=P(x, y)$ on $T M \backslash\{0\}$ as a result

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P y^{i} \tag{3.16}
\end{equation*}
$$

By using (3.14), (3.15) and (3.16), we have

$$
\begin{array}{r}
\left\{P-\tau\left[\frac{\mu_{1} \mu_{2} \alpha^{3}-4 \mu_{3}^{2} \beta^{3}-3 \mu_{2} \mu_{3} \alpha \beta^{2}}{\mu_{1}\left(2 \mu_{1} \alpha^{2}+2 \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)}\right]-\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\bar{\alpha}^{2}}\right)\right\} y^{i}= \tag{3.17}\\
G_{\alpha}^{i}-\bar{G}_{\alpha}^{i}+\tau \frac{\mu_{3} \alpha^{2}}{\mu_{1}} b^{i}-\frac{1}{2 \bar{b}^{2}}\left(-\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)
\end{array}
$$

The RHS of (3.17) is quadratic. Then there exist $\theta=\theta_{i}(x) y^{i}$ is a 1 -form on M such that

$$
\begin{equation*}
\left\{P-\tau\left[\frac{\mu_{1} \mu_{2} \alpha^{3}-4 \mu_{3}^{2} \beta^{3}-3 \mu_{2} \mu_{3} \alpha \beta^{2}}{\mu_{1}\left(2 \mu_{1} \alpha^{2}+2 \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)}\right]-\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\bar{\alpha}^{2}}\right)\right\}=\theta \tag{3.18}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
G_{\alpha}^{i}+\tau \frac{\mu_{3} \alpha^{2}}{\mu_{1}} b^{i}=\bar{G}_{\alpha}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)+\theta y^{i} \tag{3.19}
\end{equation*}
$$

Conversely, from (3.14), (3.15) and (3.19), we get

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+\left[\theta+\frac{\mu_{1} \mu_{2} \alpha^{3}-4 \mu_{3}^{2} \beta^{3}-3 \mu_{2} \mu_{3} \alpha \beta^{2}}{\mu_{1}\left(2 \mu_{1} \alpha^{2}+2 \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)} \tau+\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\bar{\alpha}^{2}}\right)\right] y^{i} \tag{3.20}
\end{equation*}
$$

From (3.16), we have

$$
\begin{equation*}
P=\theta+\frac{\mu_{1} \mu_{2} \alpha^{3}-4 \mu_{3}^{2} \beta^{3}-3 \mu_{2} \mu_{3} \alpha \beta^{2}}{\mu_{1}\left(2 \mu_{1} \alpha^{2}+2 \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)} \tau+\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\bar{\alpha}^{2}}\right) y^{i} . \tag{3.21}
\end{equation*}
$$

This concludes that F is projectively related to \bar{F}. Hence proved.
From theorem 3.1 and theorem 3.2, we obtain the following result,
Corollary 3.3. The Finsler metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ and $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$, on a n-dim manifold $M(n \geq 3)$, where β and $\bar{\beta}$ denote non-zero 1 -forms and α and $\bar{\alpha}$ denote Reimannian metrics. The Finsler metric F is projectively related to \bar{F} if and only if $G_{\alpha}^{i}=\bar{G}_{\alpha}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)+$ $\theta y^{i}-\tau \frac{\mu_{3} \alpha^{2}}{\mu_{1}} b^{i}$, and $\bar{s}_{i j}=\frac{1}{\bar{b}^{2}}\left[\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right]$.

3.2 Projective relation between $\boldsymbol{F}=\boldsymbol{\mu}_{1} \boldsymbol{\alpha}+\boldsymbol{\mu}_{2} \boldsymbol{\beta}+\boldsymbol{\mu}_{3} \frac{\boldsymbol{\beta}^{2}}{\boldsymbol{\alpha}}$ and $\overline{\boldsymbol{F}}=\overline{\boldsymbol{\alpha}}+\overline{\boldsymbol{\beta}}$.

Now, we obtain the projective relation between generalized metric F and Randers metric \bar{F} on the same underlying manifold M of dimension $n \geq 3$.
First, we state the following.
Theorem 3.4. Let $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ be a generalized metric and $\bar{F}:=\bar{\alpha}+\bar{\beta}$ be a Randers metric on n-dim. $M(n \geq 3)$, where β and $\bar{\beta}$ are non-zero 1-forms while α and $\bar{\alpha}$ are Riemannian metrics. The Finsler metrics F and \bar{F} have the same Douglas tensor if and only if both are Douglas metrics.

Proof. Let Finsler metrics F and \bar{F} are Douglas metrics with Douglas tensors $D_{j k l}^{i}$ and $\bar{D}_{j k l}^{i}$. Then $D_{j k l}^{i}=0$ and $\bar{D}_{j k l}^{i}=0$ (by the definition of Douglas metric), i.e., the pair F as well as \bar{F} are having the identical Douglas tensor.
Conversely, if suppose F and \bar{F} have identical Douglas tensor, we claim equation (2.9). Substituting (3.1) and (3.3) in (2.9), we get

$$
\begin{align*}
H_{00}^{i} & =\frac{\left(A^{i} \alpha^{11}+B^{i} \alpha^{10}+C^{i} \alpha^{9}+D^{i} \alpha^{8}+E^{i} \alpha^{7}+F^{i} \alpha^{6}+G^{i} \alpha^{5}+H^{i} \alpha^{4}+I^{i} \alpha^{3}\right.}{M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}} \tag{3.22}\\
& +\left(J^{i} \alpha^{2}+K^{i} \alpha+L^{i}\right) \\
& \left(\bar{\alpha} \times \bar{s}_{0}^{i}\right)
\end{align*}
$$

where all the coefficients of different powers of α are stated in equation (3.9).
Furthermore, equation (3.22) can be re-written as

$$
\begin{align*}
& \left(A^{i} \alpha^{11}+B^{i} \alpha^{10}+C^{i} \alpha^{9}+D^{i} \alpha^{8}+E^{i} \alpha^{7}+F^{i} \alpha^{6}+G^{i} \alpha^{5}+H^{i} \alpha^{4}+I^{i} \alpha^{3}+J^{i} \alpha^{2}\right. \\
& \left.+K^{i} \alpha+L^{i}\right)=\left(H_{00}^{i}+\left(\bar{\alpha} \times \bar{s}_{0}^{i}\right)\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) \tag{3.23}
\end{align*}
$$

Replacing y^{i} by $-y^{i}$, we have

$$
\begin{align*}
& \left(-A^{i} \alpha^{11}+B^{i} \alpha^{10}-C^{i} \alpha^{9}+D^{i} \alpha^{8}-E^{i} \alpha^{7}+F^{i} \alpha^{6}-G^{i} \alpha^{5}+H^{i} \alpha^{4}-I^{i} \alpha^{3}+J^{i} \alpha^{2}\right. \\
& \left.-K^{i} \alpha+L^{i}\right)=\left(H_{00}^{i}-\left(\bar{\alpha} \times \bar{s}_{0}^{i}\right)\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) \tag{3.24}
\end{align*}
$$

Subtracting (3.24) from (3.23), we get

$$
\begin{align*}
& \left(A^{i} \alpha^{11}+C^{i} \alpha^{9}+E^{i} \alpha^{7}+G^{i} \alpha^{5}+I^{i} \alpha^{3}+K^{i} \alpha\right) \\
& =\left(\bar{\alpha} \times \bar{s}_{0}^{i}\right)\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) . \tag{3.25}
\end{align*}
$$

Adding (3.23) and (3.24), we get

$$
\begin{align*}
& \left(B^{i} \alpha^{10}+D^{i} \alpha^{8}+F^{i} \alpha^{6}+H^{i} \alpha^{4}+J^{i} \alpha^{2}+L^{i}\right) \\
& =H_{00}^{i}\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) . \tag{3.26}
\end{align*}
$$

From (3.25), we can see that $\bar{\alpha} R^{i} \bar{s}_{0}^{i}$ containing the element α. Now, we divide the proof into two different cases, and the result is as follows.

Case 1: Suppose $\bar{\alpha} \neq \delta(x) \alpha$, then α^{2} is one of the term in $\bar{\alpha} R^{i} \bar{s}_{0}^{i}=-9 \mu_{3}^{4} \bar{\alpha} \beta^{10} \bar{s}_{0}^{i}$. But β^{2} has no factor α^{2}. Then the only possibility is that $\beta \bar{s}_{0}^{i}$ has the factor α^{2}. This is because β^{10} and α are relatively prime polynomials of y^{i}. When $n \geq 3$, suppose $\tau^{i} \neq 0$, then

$$
\begin{equation*}
2 \geq \operatorname{rank}\left(b_{k} \bar{s}_{j}^{i}\right)+\operatorname{rank}\left(b_{j} \bar{s}_{k}^{i}\right)>\operatorname{rank}\left(b_{k} \bar{s}_{j}^{i}+b_{j} \bar{s}_{k}^{i}\right)=\operatorname{rank}\left(2 \tau^{i} \alpha_{j k}\right) \geq 3 . \tag{3.27}
\end{equation*}
$$

Equation (3.27) satisfies only when $\tau^{i}=0$. Then $\bar{s}_{0}^{i}=0$, which implies $\bar{\beta}$ is closed.
Case 2: Suppose $\bar{\alpha}=\delta(x) \alpha$, then (3.25) becomes

$$
\begin{align*}
& \left(A^{i} \alpha^{10}+C^{i} \alpha^{8}+E^{i} \alpha^{6}+G^{i} \alpha^{4}+I^{i} \alpha^{2}+K^{i}\right) \alpha \\
& =\left(M^{i} \alpha^{10}+N^{i} \alpha^{8}+O^{i} \alpha^{6}+P^{i} \alpha^{4}+Q^{i} \alpha^{2}+R^{i}\right) \alpha \delta(x) \bar{s}_{0}^{i}+\delta(x) \bar{s}_{0}^{i} R^{i} \tag{3.28}
\end{align*}
$$

We observe that $\delta(x) \bar{s}_{0}^{i} R^{i}=-9 \mu_{3}^{4} \beta^{10} \bar{s}_{0}^{i} \delta(x)$ has the factor of α. Since, $\operatorname{deg}(x) \neq 0$ then $\beta^{10} \bar{s}_{0}^{i}$ has the factor α implying $\bar{s}_{0}^{i}=0$, This shows that β is closed.

It is known that the Randers metric $\bar{F}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric. Now, from the above result, we can conclude that F and \bar{F} are Douglas metrics.

Hence the proof.
Now we can state the following results.
Theorem 3.5. Let $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ be a generalized metric and $\bar{F}=\bar{\alpha}+\bar{\beta}$ be a Randers metric on n-dim. $M(n \geq 0)$. The Finsler metric F is projectively related to \bar{F} if and only if the following equations holds true

$$
\begin{align*}
G_{\alpha}^{i} & =\bar{G}_{\bar{\alpha}}^{i}+P y^{i}, \\
b_{i \mid j} & =0, \tag{3.29}\\
d \beta & =0,
\end{align*}
$$

where $b=\|\beta\|_{\alpha}$ and P is a scalar function on $T M\{0\}$.
Proof. We know that for two Finsler metrics, the Douglas tensor is projectively invariant. Therefore F and \bar{F} are identical Douglas metrics if and only if they are projectively related. In view of Theorem 3.3, we have both F and \bar{F} are Douglas metrics. Consider a generalized (α, β)-metric is a Douglas metric if $\mathrm{n}=2$ then β is parallel to α. Thus

$$
\begin{equation*}
b_{i \mid j}=0 . \tag{3.30}
\end{equation*}
$$

Substituting (3.30) and (3.1) in (2.3), we get

$$
G^{i}=G_{\alpha}^{I}
$$

Since, F is projectively equivalent to \bar{F} and β is closed, then \bar{F} is Douglas metric that is

$$
\begin{equation*}
\bar{s}_{i j}=0 \tag{3.31}
\end{equation*}
$$

Substituting (3.31) and (3.3) in (2.3), we get

$$
\begin{equation*}
\bar{G}^{i j}=G_{\alpha}^{i}+\frac{\bar{r}_{00}}{2(\bar{\alpha}+\bar{\beta})} y^{i} . \tag{3.32}
\end{equation*}
$$

Suppose F is projectively equivalent to \bar{F}, we have

$$
\begin{equation*}
G^{i}=\bar{G}^{i j}+P y^{i} . \tag{3.33}
\end{equation*}
$$

From (3.30), (3.32) and (3.33), we get

$$
\begin{equation*}
G_{\alpha}^{i}=\bar{G}_{\alpha}^{i}+\left\{\frac{\bar{r}_{00}}{2(\bar{\alpha}+\bar{\beta})}+P\right\} y^{i} \tag{3.34}
\end{equation*}
$$

We know that the RHS of (3.34) is quadratic. Then it follows that 1 -form $\theta=\theta_{i} y^{i}$ on \mathbf{M} such that

$$
\begin{equation*}
G^{i}=\bar{G}_{\bar{\alpha}}^{i}+\theta y^{i}, \tag{3.35}
\end{equation*}
$$

where $\theta=P+\frac{\bar{r}_{00}}{2(\bar{\alpha}+\bar{\beta})}$. From (3.30), (3.32) and (3.34), α is projectively related to $\bar{\alpha}$.
Conversely, if $\bar{\beta}$ is closed. It can be proved that α is projectively related to $\bar{\alpha}$. Substituting (3.30) and (3.1) in (2.3), we get (3.32). Also, (3.32), (3.3) and (2.3) yields (3.33). Now, from (3.31), (3.33) and (3.35), we get $G^{i}=\bar{G}_{\bar{\alpha}}^{i}+\theta y^{i}$. Hence, F is projectively related to \bar{F}.

Also, if \bar{F} is locally-Minkowskian, $\bar{\alpha}$ is an Euclidean metric and $\bar{\beta}=\bar{b}_{i} y^{i}$ is 1-form with \bar{b}_{i} is constant. Then

$$
\begin{align*}
G_{\alpha}^{i} & =\bar{G}_{\bar{\alpha}}^{i}+P y^{i}, \tag{3.36}\\
b_{i \mid j} & =0 .
\end{align*}
$$

Thus, we state the following
Corollary 3.6. Finsler metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ is projectively equivalent to $\bar{F}=\bar{\alpha}+\bar{\beta}$ if and only if F is projectively flat. Furthermore, if F is projectively flat, the equation (3.36) holds.

4 Conclusion

In this article, we have obtained the projective relation between two important (α, β)-metrics. At first, we have considered generalized (α, β)-metric $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$ with Kropina metric $\bar{F}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$. Subsequently, we have considered generalized (α, β)-metric F with Randers metric $\bar{F}=\bar{\alpha}+\bar{\beta}$. Where α and $\bar{\alpha}$ represents Riemannian metrics and β and $\bar{\beta}$ denotes non-zero 1 -forms. This study provides two important results of two different (α, β)-metric pairs under the projective change.

References

[1] P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology, Springer Science \& Business Media, 58, (1993).
[2] S. Bacso, Projective changes between Finsler spaces with (α, β)-metric, Tensor NS, 55, 252-257 (1994).
[3] N. Cui and Y. B. Shen. Projective change between two classes of (α, β)-metrics, Differential geometry and its applications, 27(4), 566-573 (2009).
[4] V. K. Kropina, On projective Finsler spaces with a certain special form, naucn. Doklady vyss. Skoly, fiz.-mat. Nauki, 1960, 38-42 (1959).
[5] Pradeep Kumar, T. S. Madhu and M. Ramesha, Projective equivalence between two families of Finsler metrics, Gulf J. Math., 4(1), 65-74 (2016).
[6] Pradeep Kumar, S. K. Narasimhamurthy, M. Ramesha, and T. S. Madhu, On projective relation of two subclasses of (α, β)-metrics, Glob. J. Eng. Sci. Res., 6(2), 223-231 (2019).
[7] T. S. Madhu, M. Ramesha and Pradeep Kumar, On two important classes of (α, β)-metrics being projectively related, Int. J. Curr. Res., 10(6), 70528-70536 (2018).
[8] Pradeep Kumar, T. S. Madhu and B. R. Sharath, Projective changes between generalized (α, β)-metric and Randers metric, Adv. Pure Math., 10(5), 312-321 (2020).
[9] B. Li, Y. Shen and Z. Shen, On a class of Douglas metrics, Studia Sci. Math. Hungarica, 46(3), 355-365 (2009).
[10] H. Park and Y. Lee, Projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric, Tensor, 24, 163-188 (1984).
[11] M. Ramesha, S. K. Narasimhamurthy and Pradeep Kumar, Projective Change Between Two Subclasses of Finsler Metrics, General Math. Notes, 38(1), 1-13 (2017).
[12] M. Ramesha, T. S. Madhu, Pradeep Kumar and S. K. Narasimhamurthy, On Two Families of Finsler Metrics Being Projectively Related, J. Appl. Sci. Comput., 6(2), 1963-1969 (2019).
[13] A. Rapscak, On the orbital mappings of metric spaces, Publ. Math. Debrecen, 8, 285-290 (1961).
[14] Bankteshwar Tiwari and Manoj Kumar, Projective change between z-shen's square metric and Kropina metric with some curvature properties, Annals of the Alexandru Ioan Cuza University-Mathematics, 66(1), 67-80 (2020).

Author information

AjayKumar AR, Department of Mathematics, School of Engineering, Presidency University, Bangalore560064, INDIA.
E-mail: ajayabhi219@gmail.com
Pradeep Kumar, Department of Mathematics, School of Engineering, Presidency University, Bangalore560064, INDIA.
E-mail: pradimath@gmail.com
Received: 2022-01-25
Accepted: 2023-01-17

