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Abstract In this paper, we investigate the duality problem for the class of OWDC operators.
Precisely, we give a sufficient and necessary condition under which the order weak demicom-
pactness of an operator implies the order weak demicompactness of its adjoint, and conversely.
Also, we introduce a new class of OW∗DC operators. In addition, we establish some properties
of this class of operators on Banach lattices.

1 Introduction

The investigation of the demicompact operator class has a long history. It can be dated back to
1966, when Petryshyn used it to study the existence and construction of fixed points in noncom-
pact mappings [12]. For more details on this subject, we refer the reader to the references [4, 7].
Recently, Krichen and O’regan [9] introduced the generalized notion of relative demicompact
operators with respect to a given linear operator. In 2020, Benkhaled et al. [5] introduced the
new class of order weakly demicompact (OWDC) operators. Furthermore, the authors estab-
lished some properties of this class of operators. One of the goals of this paper is to study the
duality problem for this new class of operators. First, we need to fix some notations and recall
some definitions. All over this paper, X and Y will denote real Banach spaces, and E and F will
denote real Banach lattices. The positive cone of E will be denoted by E+ = {x ∈ E; 0 ≤ x}.
We will use the term operator T : E −→ F between two Banach lattices to mean a bounded
linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E [1]. Also, recall that a
Banach lattice E is called to have the dual Schur property ( E ∈ (DSP )), if each disjoint weak∗
null sequence (fn) ⊂ E′ is norm null [10]. A norm bounded subset A of a Banach lattice E is
said to be almost limited if every disjoint weak∗ null sequence (fn) ⊂ E′ converges uniformly
to zero [6]. An operator T : X → E is called almost limited if T (BX) is an almost limited set in
E, equivalently, ‖T ′(fn)‖ → 0 for every disjoint weak∗ null sequence (fn) in E′. An operator
T from a Banach lattice E into a Banach space F is said to be order weakly compact if for each
x ∈ E+, the subset T ([0, x]) is relatively weakly compact in F . An operator T : E −→ E is said
to be OWDC if, for every order bounded sequence (xn) in E+ such that xn → 0 in σ (E,E′) and
‖xn − Txn‖ → 0 as n→∞, we have ‖xn‖ → 0 as n→∞ [5].

Recall that the class of OWDC operators is not a subclass of order weakly compact operators.
For instance, the operator −Idl∞ is OWDC. However, since the norm of l∞ is not order contin-
uous, −Idl∞ is not order weakly compact operators. The duality problem of the latter class is
studied in [3]. Furthermore, the class of OWDC operators does not satisfy the duality property
[5]. That is, there is an OWDC operator T from E into E whose dual T ′ from E′ into E′ is not
an OWDC operator, and conversely, there is an operator T from E into E that is not an OWDC
operator while its dual T ′ from E′ into E′ is one. So, what are the conditions on the Banach
lattices E for which every order weakly demicompact operator T : E −→ E is order weakly
compact? And what are the necessary and sufficient conditions onE that guarantee the direct and
indirect duality property of the class of order weakly demicompact operators? The answers to
these questions are given in the first part of this paper (see Theorem 2.1, Theorem 2.2 and Propo-
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sition 2.1). In the second part of this paper, we introduce a new class of operators, which we
will call order weakly∗ demicompact (Definition 3.1). Then, we use our new class to generalize
some results regarding the characterizations of the operators T : E → E whose dual T ′ is order
weakly compact (resp, almost limited T : E → E) operators ( Proposition 3.1). Furthermore,
we illustrate our analysis with some examples (see Examples, 3.1, 3.2, 3.3, 3.4). Also, the class
of order weakly∗ demicompact operators does not satisfy the duality property; that is, there exist
order weakly∗ demicompact operators whose adjoints are not order weakly∗ demicompact. In-
deed, it is clear that −Idl1 is an order weakly∗ demicompact. But (−Idl1)′ = −Idl∞ is not order
weakly compact because the norm of l∞ is not order continuous. The solution to this problem is
given in Proposition 3.2. It should also be noted that an order weakly∗ demicompact operator is
not necessarily almost limited. In fact, it is clear that −Idl1 is order weakly∗ demicompact. but
−Idl1 is not almost limited. The solution to this problem is proved in Proposition 3.3. Lastly,
we characterize Banach lattices on which all operators are order weakly∗ demicompact, and we
prove that for a Banach lattice E, each operator T from E into E is order weakly∗ demicompact
if and only if E′ has the norm order continuous (see Theorem 3.1). This latest theorem allows us
to characterize that a Banach lattice has the order continuous norm (see Corollary 3.1). In this
work:

• OWDC(E, E) denotes the class of order weakly demicompact operators from a Banach
lattice E into E,

• OW∗DC(E, E) denotes the class of order weakly∗ demicompact operators from a Banach
lattice E into E.

2 The duality problem for OWDC operators.

In this part, we will study two properties: The first one concerns direct duality, and the second
one concerns indirect duality.

(i) The class OWDC(E, E) admits the property of direct duality (Dd), if

T ∈ OWDC(E,E) =⇒ T ′ ∈ OWDC(E′, E′)

(ii) The class OWDC(E, E) admits the property of indirect duality (Di), if

T ′ ∈ OWDC(E′, E′) =⇒ T ∈ OWDC(E,E)

2.1 Direct duality (Dd)

Theorem 2.1. Let E be Banach lattice. The following two propositions are equivalent:

(i) The class of OWDC(E, E) admits the property of direct duality (Dd).

(ii) E′ has order continuous norm.

Proof. (1) =⇒ (2) By way of contradiction, let us assume that the norm of E′ is not order
continuous. To complete the proof, we need to look for an operator T : E → E that satisfies the
following two pieces of information:

• T is order weakly demicompact,

• but its adjoint T ′ is not.

Then, it follows from Theorem 4.14 of Aliprantis and Burkinshaw [1] that there exists a
disjoint sequence (un) of elements in E+ with ‖un‖ 6 1 for all n and there exists some 0 6 χ ∈
E′ satisfying χ (un) = 1 for all n.

Hence, by Lemma 2.6 of [2] there exists a positive disjoint sequence χn of E′ with ‖χn‖ 6 1
such that

χn (um) =

{
χ (un) = 1 if n = m

0 if n 6= m
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Note that 0 6 χn 6 χ holds for all n.
Define two operators S1 : E → `1 and S2 : `1 → E by

S1(x) = (χn(x))
∞
n=1 ; x ∈ E

S2 ((λn)) =
∞∑
n=1

λnun ; (λn) ∈ `1

.
Since

∑∞
n=1 |χn(x)| 6

∑∞
n=1 χn(|x|) 6 χ(|x|). It should be stressed that the operator S1(x)

is well defined for every x ∈ E.
Note that, given

∑∞
n=1 ‖λnun‖ =

∑∞
n=1 |λn| < ∞, the series defining S2 ((λn)) converges

in norm for each (λn) ∈ `1.
Next, we will consider the operator T = S2 ◦ S1 : E → `1 → E. From the definition of

T = S2 ◦ S1 we derive the following formula:

T (x) =
∞∑
n=1

χn(x)un for all x ∈ E.

It is evident that the formula for its adjoint T ′ : E′ → E′ is

T ′(ψ) =
∞∑
n=1

ψ (un)χn for all ψ ∈ E′. (∗)

Obviously, T is an order weakly compact operator because by, Corollary 3.43 of [1], the
operator S2 is a weakly compact, and so is T = S2 ◦ S1. According to Proposition 2.1(1) of [5],
T will be order weakly demicompact operator. But the adjoint operator T ′ is not order weakly
demicompact. In fact, through (∗) we have T ′(χn) = χn for all n. Now, it can easily be seen
that the order bounded sequence (χn) in E′+ satisfying

χn
w→ 0 and ‖χn − T ′χn‖ = 0 , but ‖χn‖9 0 as n→∞

It results from the definition 2.1 of [5] that the adjoint operator T ′ is not order weakly demicom-
pact, as desired.

(2) =⇒ (1) Follows from Theorem 2.1 of [5].

2.2 Indirect duality (Di)

Theorem 2.2. Let E be an order σ-complete Banach lattice. The following propositions are
equivalent:

(i) The class of OWDC(E, E) admits the property of indirect duality (Di).

(ii) E has order continuous norm.

Proof. (1) =⇒ (2) By way of contradiction, let us assume that the norm of E is not order
continuous. We have to construct an operator T : E → E that satisfies the following two pieces
of information:

• T ′ is order weakly demicompact,

• but its adjoint T is not.

Since the norm of E is not order continuous, they exist some y ∈ E+ and a disjoint sequence
(xn) ⊂ [0, y] which ‖xn‖9 0. It can be assumed that ‖xn‖ = 1 for all n. So, by Lemma 3.4 of
[3] we can deduce the existence of a disjoint sequence (fn) of (E′)+ with ‖fn‖ 6 1 such that:

fn (xm) =

{
1 if n = m

0 if n 6= m
(∗∗)
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Firstly, let’s take the positive operator R : E → `∞ defined by

R(x) = (fn(x))
∞
n=1 for all x ∈ E.

Secondly, since E is order σ-complete, it results from the proof of Theorem 117.3 of [14]
that the operator S : `∞ → E defined by

S ((tn)
∞
n=1) = (o)

∞∑
n=1

tnxn for all ((tn)
∞
n=1) ∈ `

∞.

is a lattice isomorphism, where (o)
∑∞
n=1 tnxn denotes the order limit of the sequence of the

partial sums
∑m
n=1 tnxn for each (tn)

∞
n=1 ∈ `∞.

Next, we consider the operator T = S ◦ R : E → E. From the definition of T = T = S ◦ R
we derive the following formula:

T (x) = (o)
∞∑
n=1

fn(x)xn for all x ∈ E.

It is evident that the formula for its adjoint T ′ = R′ ◦ S′ : E′ → (`∞)′ → E′ is

T ′(ϕ) = (o)
∞∑
n=1

ϕ(xn)fn for all ϕ ∈ E′.

Clearly T ′ is order weakly demicompact. Indeed, the operator T ′ is order weakly compact
because, the norm of (`∞)′ is order continuous then, and according to Proposition 2.1(1) of [5],
the operator T ′ will be order weakly demicompact. But T is not order weakly demicompact. In
fact, according to the relation (∗∗) we have T (xn) = xn for all n. Now, it is easy to notice that
(xn) is an order bounded sequence in E+ verified

xn
w→ 0 and ‖xn − Txn‖ = 0 , but ‖xn‖9 0 as n→∞

It results from Definition 2.1 of [5], that the operator T is not order weakly demicompact, as
desired.

(2) =⇒ (1) Follows from Theorem 2.1 of [5].

Before defining a new class of operators, we will state the following result which gives a
sufficient and necessary condition under which every OWDC operator is order weakly compact.

Proposition 2.1. For a Banach lattice E, the following propositions are equivalent:

(i) Every OWDC operator T : E −→ E is order weakly compact.

(ii) E has order continuous norm.

Proof. (1) ⇒ (2) It is very easy to notice that −IdE is OWDC operator. So according to our
hypothesis−IdE will be order weakly compact which implies thatE has order continuous norm.

(2)⇒ (1) Obvious.

3 The OW∗DC operators class.

We will now pass on the definition of our new operator class.

Definition 3.1. Let E be a Banach lattice. An operator T : E → E is said to be OW∗DC if
‖x′n‖ → 0 as n → ∞, for every order bounded sequence (x′n) in E′+ such that x′n

w∗→ 0 and
‖x′n − T ′(x′n)‖ → 0 as n→∞.

For the rest, it should be remembered that a Banach lattice E has the positive Grothendieck
property if weak∗ null sequences in E′ with the positive terms are weak null.

Remark 3.1. Let E a Banach lattice.
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(i) If T ∈ OW∗DC(E,E), then its adjoint T ′ ∈ OWDC(E′, E′).

(ii) If E has the positive Grothendieck property, then an operator T : E → E is OW∗DC if and
only if its adjoint T ′ is OWDC.

Proposition 3.1. LetE be a Banach lattice. The class of OW∗DC operators T : E → E contains,
among others, the following operators.

(i) The operators T : E → E whose adjoints T ′ is order weakly compact.

(ii) Almost limited operators T : E → E.

(iii) Operators T : E → E for which (IdE′ − T ′)−1 exists and is bounded.

(iv) The operators family
(
T̃β

)
β 6=1

from Ẽ into Ẽ defined via the matrix:

(
βIdE T

0 0

)

where T : E → F and Ẽ = E ⊕ F .

For proof, we will follow the same approach of Benkhaled et al. in [5].

Proof. (1) Assume that T ′ is order weakly compact and let (x′n) ⊂ (E′)+ be an order bounded

sequence satisfying x′n
w∗→ 0 and ‖x′n − T ′(x′n)‖ → 0. By Corollary 3.5.6 of [11], the operator T

admits a factorization through a Banach lattice F

E E

F

T

S j

such that the norm on F ′ is order continuous and j is an interval preserving lattice homomor-
phism. Clearly, j′ is positive, and hence the sequence (j′ (x′n)) ⊂ (F ′)+ is order bounded and

satisfying j′ (x′n)
w∗→ 0. So, by Theorem 3.1 of [13] ‖j′ (x′n)‖ → 0, and hence ‖T ′ (x′n)‖ =

‖S′j′ (x′n)‖ → 0.
From the following inequality

‖x′n‖ ≤ ‖x′n − T ′(x′n)‖+ ‖T ′(x′n)‖,

it follows that ‖x′n‖ → 0 as n→∞, as desired.
(2) Follows from (1) because if T almost limited operator then T ′ is order weakly compact.
(3) Let (x′n) be an order bounded sequence of E′+ such that x′n

w∗→ 0 and ‖x′n − T ′(x′n)‖ → 0
as n→∞. Since (IdE′ − T ′)−1 exists and is bounded, and from the following inequality

‖x′n‖ =
∥∥∥(IdE′ − T ′)−1

(IdE′ − T ′)x′n
∥∥∥ ≤ ∥∥∥(IdE′ − T ′)−1

∥∥∥ ‖(IdE′ − T ′)x′n‖
for each n, we get ‖x′n‖ → 0 as n→∞.
(4) Let β 6= 1 and {x̃′n = (x′n, y

′
n)}, x′n ∈ E′, y′n ∈ F ′, be an order bounded sequence

of (Ẽ′)+ such that x̃′n
w∗→ 0 and

∥∥∥x̃′n − (T̃ )′x̃′n

∥∥∥
Ẽ′
→ 0 as n → ∞. We have to show that∥∥x̃′n∥∥Ẽ′ → 0 as n→∞. Since

∥∥x̃′n∥∥Ẽ′ = ‖x′n‖E′ + ‖y′n‖F ′ , it suffices to prove that ‖x′n‖E′ → 0
and ‖y′n‖F ′ → 0. Accordingly, for every n, we have∥∥∥x̃′n − (T̃ )′x̃′n

∥∥∥
Ẽ′

=
∥∥∥(x′n, y′n)− (T̃ )′ (x′n, y

′
n)
∥∥∥
Ẽ′

= ‖(x′n, y′n)− (βx′n + T ′y′n, 0)‖Ẽ′

= ‖((1− β)x′n − T ′y′n, y′n)‖Ẽ′ = ‖(1− β)x
′
n − T ′y′n‖E′ + ‖y

′
n‖F ′
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Since
∥∥∥x̃′n − (T̃ )′x̃′n

∥∥∥
Ẽ′
−→ 0, then ‖(1− β)x′n − T ′y′n‖E′ −→ 0 and ‖y′n‖F ′ −→ 0. On

the other hand, from the following inequalities

|1− β| ‖x′n‖E′ = ‖(1− β)x
′
n − T ′y′n + T ′y′n‖E′

≤ ‖(1− β)x′n − T ′y′n‖E′ + ‖T
′y′n‖E′

and since β 6= 1, we get ‖x′n‖E′ −→ 0.

Example 3.1. The assumption β 6= 1 is essential. Indeed, if we consider E = l1, F = l∞ and T be
an from l1 into l∞. Put Ẽ = l1 ⊕ l∞, let T̃ be an operator defined as follows:

T̃ =

(
Idl1 T

0 0

)

The operator T̃ is not OW ∗DC. In fact, take x̃′n = (en, 0) for every n, where en is the se-
quence with the nth entry equals to 1 and others are zero. So that

(
x̃′n
)

is an order bounded
sequence of (Ẽ)′+. As (en) is weakly null in c0, (en) is also weakly null in (l1)′ = l∞. In
this way, we have

(
x̃′n
)

is a weakly null sequence in (Ẽ)′. Also,
∥∥∥x̃′n − (T̃ )′x̃′n

∥∥∥
(Ẽ)′

=∥∥∥(en, 0)− (T̃ )′ (en, 0)
∥∥∥
(Ẽ)′

= ‖(en, 0)− (en, 0)‖(Ẽ)′ = 0. However,
∥∥x̃′n∥∥(Ẽ)′

= ‖en‖∞ =

1 9 0.

Remark 3.2. Note that the adjoint of an OW∗DC operator is not necessarily order weakly com-
pact. Indeed, let Idl1 : l1 −→ l1 be the identity operator. It is easy to verify that −Idl1 is
OW∗DC. But since the norm of l∞ is not order continuous, (−Idl1)′ = −Idl∞ is not order
weakly compact.

The next result provides a sufficient and necessary condition under which the adjoint of every
OW∗DC operator is order weakly compact.

Proposition 3.2. Let E be Banach lattice. The following conditions are equivalent:

(i) The adjoint of every OW∗DC operator T : E → E is order weakly compact.

(ii) E′ has order continuous norm.

Proof. (1) ⇒ (2) It is easy to notice that the operator −IdE is OW∗DC. So according to our
hypothesis (−IdE)′ will be order weakly compact which shows that the norm of E′ is order
continuous.

(2)⇒ (1) Obvious.

Remark 3.3. Note that an OW∗DC operator is not necessarily almost limited. Indeed, let Idl1 :
l1 −→ l1 be the identity operator. It is easy to see that −Idl1 is OW∗DC, but −Idl1 is not almost
limited.

The next result provides a sufficient and necessary condition under which every OW∗DC
operator is almost limited.

Proposition 3.3. Let E be a Banach lattice, then the following assertions are equivalent:

(i) Every OW∗DC operator T : E −→ E is almost limited.

(ii) E has the dual Schur property.

Proof. (1) ⇒ (2) It is clear that the operator −IdE is OW∗DC, so according to our hypothesis
−IdE will be almost limited which implies that E has the dual Schur property.

(2) ⇒ (1) Since E has the dual Schur property, ‖fn‖ → 0 for every disjoint weak∗ null
sequence (fn) ⊂ E′. Then ‖T ′(fn)‖ → 0 for every disjoint weak∗ null sequence (fn) ⊂ E′. i.e.
T : E −→ E is almost limited.

Generally, the sum of two OW∗DC operators is not necessarily OW∗DC.



248 A. EL ALOUI and K. BOURAS

Example 3.2. Let S be an operator from l1 into l∞. We take Ẽ = l1 ⊕ l∞ and let the operators
T1 and T2 define as follows:

T1 =

(
2Idl1 S

0 0

)
and T2 =

(
−Idl1 S

0 0

)

According to Proposition 3.1, the operators T1 and T2 are OW∗DC, but the sum T1 + T2 defined
by

T1 + T2 =

(
Idl1 2S

0 0

)
is not (see Example 3.1).

If T1 : E −→ E is OW∗DC and the adjoint of T2 : E → E is order weakly compact, we have
the following:

Proposition 3.4. Let T1 : E −→ E be an OW∗DC operator. If the adjoint of an operator T2 :
E → E is order weakly compact, then the operator T1 + T2 is OW∗DC.

Proof. Let (x′n) be an order bounded sequence ofE′+ such that x′n
w∗→ 0 and ‖x′n − (T1 + T2)′x′n‖ =

‖x′n − (T ′1 + T ′2)x
′
n‖ → 0 as n→∞. The order weak compactness of T ′2, means that ‖T ′2x′n‖ →

0 as n→∞. On the other hand, from the following inequalities

‖x′n − T ′1x′n‖ = ‖x′n − T ′1x′n − T ′2x′n + T ′2x
′
n‖ ≤ ‖x′n − (T ′2 + T ′1)x

′
n‖+ ‖T ′2x′n‖

we get ‖x′n − T ′1x′n‖ → 0 as n→∞. Thus, the order weak∗ demicompactness of T1 argues that
‖x′n‖ → 0 as n→∞ and therefore T1 + T2 is OW∗DC.

The next example illustrates that the class of operators OW∗DC does not have the structure
of a vector space, more precisely does not verify the external product.

Example 3.3. Let S be an operator from l1 into l∞. Take E = l1 ⊕ l∞ and let T be an operator
defined by:

T =

(
−Idl1 S

0 0

)
we can conclude that

−T =

(
Idl1 −S

0 0

)
From Proposition 3.1 and Example 3.1, the operator T is OW∗DC, but −T is not.

The present example shows that the domination problem of class OW∗DC operators is not
generally verified.

Example 3.4. Let’s take β > 1 and define two operators as follows:
S, T : l1 → l1 with S(x) = x, and T (x) = βx. Thus, T is a OW∗DC and 0 ≤ S ≤ T . On the

other hand, it is easy to see that S is not a OW∗DC operator.

The next result provides a necessary and sufficient condition under which any operator is of
OW∗DC.

Theorem 3.1. For a Banach lattice E, the following propositions are equivalent:

(i) Every operator T : E −→ E is OW∗DC.

(ii) The identity operator of E is OW∗DC.

(iii) The adjoint of every operator T : E → E is order weakly demicompact.

(iv) The identity operator of E′ is order weakly demicompact.

(v) E′ has order continuous norm.
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(vi) The adjoint of every operator T : E → E is order weakly compact.

Proof. (1)⇒ (2) and (3)⇒ (4) are obvious.
(2) ⇒ (4) The identity operator of E is OW∗DC, implies that the identity operator Id :

E′ −→ E′ is order weakly demicompact.
(4)⇔ (5) and (5)⇒ (6) and (4)⇒ (3) Follows from Theorem 2.1 of [5].
(6)⇒ (1) Result of the Proposition 3.1 (1).

From the above Theorem 3.1, we can deduce the following corollary which gives the charac-
terizations of a Banach lattice whose dual has order continuous norm.

Corollary 3.1. For a Banach lattice E, the following assertions are equivalent:

(i) The norm of E′ is order continuous.

(ii) ‖fn‖ → 0 as n→∞ for every order bounded sequence (fn) in E′+ satisfying fn
w→ 0.

(iii) ‖fn‖ → 0 as n→∞ for every order bounded sequence (fn) in E′+ satisfying fn
w∗→ 0.

(iv) fn(zn) → 0 for every disjoint bounded sequence (zn) in E+ and for every order bounded
sequence (fn) in E′+ satisfying fn

w∗→ 0.
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