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Abstract In this paper we introduce a different types of matrices. We determine the charac-
teristic polynomial theoretically and by using software. In some cases we draw conclusions from
it about the eigenvalues of the matrices. The proofs are sometimes constructive in the sense that
we construct a basis of the nullspace.

1 Introduction

In [7] Nordgren proved that QR magic squares have signed pairs of eigenvalues just as do regular
magic squares according to a well-known theorem of Mattingly. This leads to the fact that odd
powers of QR magic squares are magic squares which also can be established directly from
the QR condition. Since all pandiagonal magic squares of order 4 are MP, they are QR. Also,
the researcher showed that all pandiagonal magic squares of order 5 are QR but higher order
ones may or may not be. Similarly, in [8] Stephens studied magic squares of order 4 and 5
and detailed the results concerning the eigenvalues. A n by n matrix A = (Aij) is called a
pentadiagonal matrix if Aij = 0 whenever |i − j| > 2. Tridiagonal and pentadiagonal matrices
appear in several areas of mathematics and engineering, specially involving linear systems of
differential equations. Since every 3 by 3 matrix is a pentadiagonal one, it is clear that not every
pentadiagonal matrix is similar to a symmetric matrix. In [3] Alvarez et. al. consider two classes
of pentadiagonal matrices and obtain recursive formulas for the characteristic polynomials and
explicit formulas for the eigenvalues of these classes of pentadiagonal matrices. They show that
if A is a pentadiagonal matrix, then under certain conditions on the sign of the product of the
entries the matrix A is similar to a symmetric pentadiagonal matrix. Thus, all the eigenvalues of
A are real and A is diagonalizable.

We are going to consider different types of symbolic matrices. For each type we determine
the rank or the characteristic polynomial.

2 Squares with Four Blocks Property

In the literature we encounter the concept of a Franklin square (see [1] and [2]). Usually its a 8
by 8 matrix satisfying many conditions. One of these conditions is the four blocks property; i.e.

aij + a(i+1)(j+1) + ai(j+1) + a(i+1)j = s

for all 1≤ i, j ≤ 7, where s is a constant. We are going to study the class of matrices, which
satisfy this condition and call it squares with the four blocks property. A simple example of a 6
by 6 square of this type is
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

p b j k l m

c s− p− b− c p+ c− j s− k − p− c p+ c− l s− p− c−m
d p+ b− d j − p+ d p− d+ k d+ l − p p+m− d
f s− p− b− f f + p− j s− p− f − k f − l+ p s− p− f −m
g p+ b− g g + j − p p− g + k g + l − p p− g +m

h s− p− b− h p− j + h s− h− k − p p− l+ h s− h−m− p


Its nullspace has as a basis the following set of vectors

b− k
j − p
k − b
p− j

0
0





j − l
0

l − p
0

p− j
0


,



b−m
j − p
m− b

0
0

p− j


.

We will prove that all matrices of this type of an even order have rank 3. We consider the
following notation of this type, which we illustrate by this 4 by 4 square:

p c1 c2 c3

r1 s− p− r1 − c1 p+ r1 − c2 s− p− r1 − c3

r2 p− r2 + c1 −p+ r2 + c2 p− r2 + c3

r3 s− p− r3 − c1 p+ r3 − c2 s− p− r3 − c3


Definition 2.1. A matrix (mij) is a square with four blocks property if and only if m11 = p and
for 2 ≤ i, j ≤ n the following hold

m1j = cj−1, mi1 = ri−1 , mij = s− p− rj−1 − cj−1 when i, j are even,
mij = rj−1 + cj−1 − p when i, j are odd,
mij = p+ (−1)i−1cj−1 + (−1)j−1rj−1 when i, j have different parity.

Proposition 2.2. Assume that s (p− c2) (p− r2) 6= 0. For all n ≥ 3 a matrix (mij) is a square
with four blocks property of order 2n by 2n has rank three.

Proof. If we calculate the determinant of the 3 by 3 upper left corner of this matrix then we
obtain

−s (p− c2) (p− r2) .

Thus the rank is at least 3. We give now the explicit form of 2n − 3 independent vectors in
the nullspace, which can be checked by forward computation. The first set of vectors has the
structure for 2 ≤ i ≤ n− 1 :

(c2 − c2i,−p+ c2i, 0, ..., 0, p− c2, 0, ..., 0)
t

where p− c2 will be located at the position 2i+ 1.
The second set of vectors has the structure for 2 ≤ i ≤ n− 1 :

(c1 − c2i−1,−p+ c2, c2i−1 − c1, 0, ..., 0, p− c2, 0, ..., 0)
t

where p− c2 will be located at the position 2i+ 2. 2

Proposition 2.3. Assume that s = 0, (p+ c1) (p+ r1) 6= 0. For all n ≥ 2 a matrix (mij) is a
square with four blocks property of order 2n by 2n has rank two.

Proof. If we calculate the determinant of the 2 by 2 upper left corner of this matrix then we
obtain − (p+ c1) (p+ r1). Thus, the rank is at least 3. We give now the explicit form of 2n− 2
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independent vectors in the nullspace, which can be checked by forward computation: The first
set of vectors has the structure for 1 ≤ i ≤ n− 1 :

(−c1 − c2i, p− c2i, 0, ..., 0, p+ c1, 0, ..., 0)
t

where p + c1 will be located at the position 2i + 1. The second set of vectors has the structure
for 1 ≤ i ≤ n− 1 :

(c1 − c2i+1,−p− c2i+1, 0, ..., 0, p+ c1, 0, ..., 0)
t

where p+ c1 will be located at the position 2i+ 2. 2

Remark 2.4. If we add the vector

(−c2 − c3 − ...0− c2n−1,−c2 − c3 − ...0− c2n−1, p+ c1, p+ c1, ..., p+ c1)
t

to the set of independent vectors in the nullspace, which were described in Proposition 2.2, then
we obtain a basis for the nullspace in case s = 0.

The following 8 by 8 square of the structure[
Γ Θ

Λ Ψ

]
where

Γ =


F m− p− q − F f + k − J m− k − x− f

f + s− F −j + 2b+ x− s J + s− k −s+ k + x

G f − b+ k L −j + f + b

m− f − s−G s+ b− k m− f − s− L j + s− b



Λ =


b− q + x −b− p− x+m p+ x− U q − x− U
−b+ p+ q b U −b+ j + k

H j − 2b+ k + p q p

m− p− x−H −j + 2b− k + x J x



Θ =


f + s−M m− b− x− f R m+D − f

M −s+ b+ x f + s−R −D − s
−f − k − a+m f − j + k −f + j + a f

k − s+ a j − k + s −j − s+m− a s



Ψ =


−a+ p+ x m− j − x− p B −k − p− x+m

a j −a− j − k +m k

q − a− U p− b+ k b− p+ a −b+ p+ j

N x+ b− k m− b− a− x −j + b+ x


D = j − b− k − x,B = p+ a+ x−m+ j + k, F = −j + f + 2b− q + x− p,

G = −f + b− k − q − p+m,H = −j + 2b− k − 2p− q +m,J = m− q − x− p,

L = j + q + p− f − b,M = a+ j + s− b− x,N = j + a− x− b+ k,

U = b+m− j − k − p− q,R = b+ a+ x+ k + f −m.

is a traditional Franklin square 8 by 8. We know that Γ, Θ, Λ, Ψ are all semi magic squares. If
we require the condition that x = m − 1

2b then we obtain also a traditional magic square since
Franklin squares do not strictly qualify as "magic squares" according to the common definition of
the term that includes the diagonal sums. Its characteristic polynomial is according to computer
calculations X5 (X − 2m) (X2 − 2 (b+m)X − 4A), where
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A = 2 (b− j)2 − 4k2 + b(m+ 3a+ 4(f − s)) + k(5b− 2f) + 2(j + k)(s− a)−

(4f + b)(p+ q)− 4p(a+ k) + 2m(p− j) + 2(m− j)(f + k) + 2q(j − k).
We consider another class of 8 by 8 squares, namely

c+ d+ x −x −c −d b l a −b− l − a
h+ k +m −h −k −m n o p −n− o− p

r −r 0 0 0 0 u −u
w −w 0 0 0 0 y −y
y −y 0 0 0 0 w −w
u −u 0 0 0 0 r −r

n+ o+ p −p −o −n m k h −(h+ k +m)

b+ l+ a −a −l −b d c x −c− d− x


We notice that it consists of four semi magic squares (here the sum is zero 0) like a Franklin

square. It is apparent that the two following independent vectors belong to the nullspace:

(1, 1, 1, 1, 0, 0, 0, 0)t , (0, 0, 0, 0, 1, 1, 1, 1)t .

After tedious computations with the aid of computer we found that its characteristic polynomial
is

X2(X6 + αX4 + βX2)

where
β = (r + u− w − y)(r − u− w + y)

((k + o)(b+ d)− (m+ n)(c+ l))((k − o)(b− d) + (m− n)(c− l)).
So, in general the rank is 6.

3 S-Squares

Another interesting structure in the case of matrices with even order is the following 6 by 6
matrix

S =



h d −c c −d −h
−k f −u u −f k

j t g −y t j

−j −t y −g −t −j
−k f −u u −f k

h d −c c −d −h


It has in general rank four, and a basis of the nullspace basis is

g − y
0
−2j
−2j

0
g − y


,



0
g − y
−2t
−2t
g − y

0


Its minimum polynomial is X4 +

(
y2 − g2 + 4cj + 4tu

)
X2 while its characteristic polyno-

mial is X6 +
(
y2 − g2 + 4cj + 4tu

)
X4. We generalize for matrices of order 2n+ 2. We denote

by E the matrix order n, which has on ones on the opposite diagonal, i.e. E = (eij) with
ei(n−i) = 1 for i = 1, ..., n and 0 else. It is well known that left/right multiplication of a suitable
matrix K by E will reverse the order of the rows/columns of K and, hence, E2 = I .
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Definition 3.1. A matrix S ∈M2n+2(R) is called a S-matrix iff it has the form
A C −C −AE
R g −y RE

−R y −g −RE
EA −EC EC −EAE


where A ∈M2n(R), R ∈M1n(R), C ∈Mn1(R) and g, y ∈ R.

We notice that S2 can be calculated by employing block matrix multiplications, and yields
2CR (g − y)C −C 2CRE

(g + y)R+ 2RA (g2 − y2) + 2RC −2RC (g + y)RE − 2RAE
(g + y)R− 2RA −2RC (g2 − y2) + 2RC (g + y)RE + 2RAE

2ECR (g − y)EC EC 2ECRE


We obtain also

S4 = (g2 − y2 + 2RC) + S2 (1)
For example the entries in n+ 1, n+ 2 rows and columns of S2 are calculated by

[
R

−R

] [
C −C

]
+

[
g −y
y −g

][
g −y
y −g

]
+

[
RE

−RE

] [
EC −EC

]
=

[
(g2 − y2) + 2RC −2RC

−2RC (g2 − y2) + 2RC

]
Lemma 3.2. The number (g2 − y2) + 4RC is an eigenvalue of S2.

Proof. By direct computation we verify that

(0, ..., 0,−1, 1, 0, ..., 0)t , (C, g + y, 0, EC)t

are corresponding eigenvalues. We notice that these two eigenvectors are linearly independent. 2

Proposition 3.3. The rank of S2 is two and the nullity is 2n.

Proof. Without loss of generality we assume that for the first element in C, c1 6= 0. Clearly, S2

is now equivalent to
2CR (g − y)C (g − y)C 2CRE

(g + y)R+ 2RA (g2 − y2) + 2RC −2RC (g + y)RE − 2RAE
(g + y)R− 2RA −2RC (g2 − y2) + 2RC (g + y)RE + 2RAE

[0]n×n
−→
0

−→
0 [0]n×n


We consider two cases:
i) For g + y 6= 0, apply the row operations sequence

Ri → Ri −
ci
c1
R1, 2 ≤ i ≤ n,Rn+1 → Rn+1 +Rn+2,

Rn+1 →
1

g + y
Rn+1, Rn+1 → Rn+1 −

1
c1
R1

to obtain the form
2c1R (g − y)c1 (g − y)c1 2c1RE

[0]n×n
−→
0

−→
0 [0]n×n

(g + y)R− 2RA −2RC (g2 − y2) + 2RC (g + y)RE + 2RAE
[0]

−→
0

−→
0 [0]


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Therefore, rank of S2 is 2 and its nullity is 2n.
ii) For g + y = 0 we proceed similarly, observing that Rn+1 = −Rn+2. 2

Theorem 3.4. The matrix S has minimal polynomial

q(x) = x2(x2 − ((g2 − y2) + 4RC))

and characteristic polynomial

ΦS(x) = x2n(x2 − (g2 − y2 + 4RC))

Proof. From the relation (1) we conclude that is a root of the polynomial

x(x2 − ((g2 − y2) + 4RC)).

Thus, p(x) is the minimal polynomial of S2, since none of its factors is annihilated by S2.
Furthermore, since nullity of S2 is 2n, the algebraic multiplicity of the zero eigenvalue is greater
than or equal 2n and the algebraic multiplicity of the eigenvalue (g2− y2)+ 4RC is greater than
or equal two. Putting everything together, we conclude that the characteristic polynomial of S2

is
x2n(x− (g2 − y2 + 4RC))2.

Now, we proceed with matrix S. From relation (1) again, we find that S is a root of the
polynomial q(x). By direct calculation, we verify that

S(S2 − (g2 − y2 + 4RC)I) 6= 0.

Hence, q(x) is the minimal polynomial.
It is well known that the algebraic multiplicities of the variable x in the characteristic poly-

nomial of S2 as well S are the same. Furthermore, every factor of has to be prsentd in the
characteristic polynomial of S. Therefore, the characteristic polynomial of S is given by

x2n(x2 − (g2 − y2 + 4RC)).2

Remark 3.5. (i) Let
−→
0 j repersent the zero j-column vector and rj the entries of R. We verify

that for the n linearly independent vectors for 0 ≤ k ≤ n− 1 :

vk = (
−→
0 n−k−1, g − y,

−→
0 k,−2rk+1,−2rk+1,

−→
0 k, g − y,

−→
0 n−k−1)

t

that Svk =
−→
0 n holds. Hence, v1, v2, ...., vn form a bais for the nullspace of S. This forces the

rank of S to be equal to n+ 2.
(ii) We avoided the trivial cases like that R,C are zero in this section. Also, we discard the case
that the matrix is one and the same entry in the squares with four blocks property.

4 Self-Complementary Squares of Even Order

So far we saw many squares like S-squares, where the coefficients of odd powers of X in the
characteristic polynomial vanish. There are other cases of squares, which pocess this property.
They are self-complementary squares with a condition on the summation of the rows or columns.
We give a similar definition to the one in [6].

Definition 4.1. A 2n by 2n magic square A = (Aij) is called self-complementary square iff
Aij +A(2n+1−i)(2n+1−j) =

µ
n whenever 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, µ is the magic constant.

We start with a self-complementary 4 by 4 square with the magic constant zero:
−j − l − n n j l

j + k + 2l+ n −k − l − n −j − k − l k

−k j + k + l k + l+ n −j − k − 2l − n
−l −j −n j + l+ n


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Its characteristic polynomial is X2(X2 +
(
4jk − 4jn− 4kn− 8ln− 4n2

)
), while its mini-

mum polynomial is

X(X2 +
(
4jk − 4jn− 4kn− 8ln− 4n2

)
).

Its nullspace basis is

{(j − n,− (l+ n) , j + l, 0)t, (l+ n, j + 2l+ n, 0, j + l)t} .

When we add the same value for all entries we obtain the following self-complementary 4 by 4
square with magic constant 4s

s− j − l − n n+ s j + s l+ s

j + k + 2l+ n+ s s− k − l − n s− j − k − l k + s

s− k j + k + l+ s k + l+ n+ s −j − k − 2l − n+ s

s− l s− j s− n j + l+ n+ s


Its characteristic polynomial is

X (X − 4s) (X2 + 4
(
jk − jn− kn− 2ln− n2)).

The nullspace basis is spanned by the vector

(n− j, j + 2l+ n,− (j + 2l+ n) ,−(n− j))t.

This can be explained by the theorem, which is proved in [4]: For any A is a semi-magic
square with eigenvalues µ (magic constant) m2, ...,mn in the field of complex numbers and p a
complex number, thenA+pE, whereE is the all 1’s matrix, has the same eigenvaluesm2, ...,mn

except that µ is replaced with µ+ pn.

On the other side a general self-complementary square, which is not necessarily magic like
m n j l

p q h k

s− k s− h s− q s− p
s− l s− j s− n s−m


has rank four and a characteristic polynomial in general of the form

X4 − 2sX3 −AX2 −BX + C.

We see that zero is now not necessarily an eigenvalue. The following matrix
m n j 2s−m− n− j
p q h 2s− p− q − h

h+ p+ q − s s− h s− q s− p
j +m+ n− s s− j s− n s−m


has zero as an eigenvalues, and the characteristic polynomial is

X(X − 2s)
(
X2 + 2V + h2 + j2 + n2 − q2) ,

V = j(m− h+ n− p− q) + s(p+ q −m− n) +mn− np.

It is similar to a self-complementary square. We explain the need for the row or column sum
condition as follows: In general for a self-complementary square we look for a vector in nullpace
as follows: (−x,−y, y.x)t. The multiplication of the matrix with this vector yields just the
following two different entries xD − Ay +By − ax and Kx− dy − fx+ gy. Since the entries
are equal this vector is zero if and only if

x(D − a) + (B −A)y = 0,
(K − f)x+ (g − d)y = 0.
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It has a nontrivial solution if one equation is a multiple of the other. The conditions

B −A = d− g,D − a = f −K

will be enough. The requirement that the sum in all columns is 2s (to be columns magic) means
that

A+ d+ s− g + s−B = 2s, a+ f + s−K + s−D = 2s.

This leads to the previous condition. Also when we encounter
m n j 2s−m− n− j
p q h 2s− p− q − h

h+ p+ q − s s− h s− q s− p
j +m+ n− s s− j s− n s−m


We transpose the matrix

m p h+ p+ q − s j +m+ n− s
n q s− h s− j
j h s− q s− n

2s−m− n− j 2s− p− q − h s− p s−m


Its determinant is zero since it satisfies the column sum condition. Hence, the original matrix

has a nontrivial nullspace. So any self-complementary square of even order, which satisfies the
row sum condition, will have zero as an eigenvalue. We consider the 6 by 6 squares. A general
self-complementary square 6 by 6 with row sum 3s is the matrix

a b c d e 3s− a− b− c− d− e
f g h i j 3s− f − g − h− i− j
k l m n o 3s− k − l −m− n− o

k + l+m+ n+ o− 2s s− o s− n s−m s− l s− k
f + g + h+ i+ j − 2s s− j s− i s− h s− g s− f
a+ b+ c+ d+ e− 2s s− e s− d s− c s− b s− a


By using computer we find that its characteristic polynomial is

X(X − 3s)(X4 +GX2 +H),

where
G = 2 (a+ b+ c+ e− k − l −m− n− o) d + 2e(a + b + c − f − g − h − i − j) +

2 (io+ ab+ ac+ bc− bf − ck − hl)− 4s (a+ b+ c) + b2 + c2 + d2 + j2 + n2 + e2 − g2 −m2.

We consider a subset of such self-complementary square 6 by 6 with row sum 3s, where the
squares have a zero summation of the middle columns

S1 =



a −c− d− e c d e 3s− a
f −h− j − p h p j 3s− f
k −m− n− o m n o 3s− k

k − 2s s− o s− n s−m m+ n+ o+ s s− k
f − 2s s− j s− p s− h h+ j + p+ s s− f
a− 2s s− e s− d s− c c+ d+ e+ s s− a


Proposition 4.2. If the condition

s =
2 (m+ n− p)h+ 2 (f − k) (c+ d) + 2(h+ p)(o− j)− (h2 +m2 + p2 − n2)

4 (a− d− e)− 2 (f + k − j − n− o− p)

holds, then the eigenvalues of S1 are the four complex roots of a real number besides 0 and 2s.
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Proof. The characteristic polynomial of S1 is

X(X − 2s)(X4 +KX2 + L)

where

K = 2 (f + k − j − n− o− p) s+ 2 (m+ n− p)h+ 2 (f − k) (c+ d)+

2(h+ p)(o− j)− 4s (a− d− e)− (h2 +m2 + p2 − n2)

When the condition holds then the characteristic polynomial becomes

X(X − 2s)(X4 + L).

and we are done. 2

In case of 8 by 8 we have an interesting case of pandiagonal self-complementary square.
Actually, the structure is 8 by matrix, where the first four columns are shown below (the last four
columns are obtained by the self-complementary property)

e A+ g + n G x

f L H m

t p q f + α+E

v w g γ

M −α −s −δ
A −u −β R

R−G+ w −λ Q −n
C t− s−m E F


where

A = 2f + g +m− n+ p+ q + s+ t+ u+ 2v + w + α+ λ+ γ + e,

C = −2f − 2s− 2t− 2u− 2v − 2α− β − λ− δ − 2e,
E = −2f − g −m− p− q − s− t− u− v − w − x− 2α− β − γ − e,

F = 4(f + v) + 3(e+ g + s+ w + α) + 2(m+ p+ q + t+ u+ γ) + x+ β + λ+ δ,

G = w −m− 2s− t− 2u− v − 2f − x− 2α− β − λ− 2e,
H = 2f + p+ 2s+ 2t+ 2u+ v + x+ 2α+ 2β + 2e,

M = g + s+ v + w + α+ γ + δ,

L = −2f − 2g − 2p− q − 2t− 2v − 2w − γ − e,
Q = 2f + 2m+ 2s+ u+ v + x+ 2α+ β + λ+ γ + e,

R = n− 2g − 2m− 3f − p− q − 2s− t− u− 3v − 2w − x− 2α− λ− 2γ − 2e.

We already explained that 0 is a double eigenvalue. We observed that the other eigenvalues are
always pairs in the form ±t or ±yi for some real numbers t, y.

In closing, we conjecture that this is the situation for all squares of this type, and conjecture
that the characteristic polynomial of a self-complementary square is

X8 + a1X
6 + a2X

4 + a3X
2

for some real numbers a1, a2, a3. We think also that a theoretical mathematical computation of
the characteristic polynomial instead of a calculation by using computer is a better approach for
studying a wider class of matrices.
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