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Abstract. The semiconformal curvature tensor has been studied for the spacetime of general
relativity. It is shown that the energy-momentum tensor with divergence-free semiconformal
curvature tensor is of Codazzi type, as well as the energy-momentum tensor of a spacetime
having semi-symmetric semiconformal curvature tensor is also semi-symmetric. The semicon-
formal curvature tensor has also been expressed in terms of different tensors already known in
the literature, and the relationship between their divergences has been established.

1 Introduction

The study of curvature properties play a significant role in differential geometry and General
Relativity. G. P. Pokhariyal and others ([6]-[9]) have studied some curvature tensors and, their
geometrical and, physical properties. Furthermore, some other authors ([2], [3], [4], [15], [16],
[21]) studied these tensors in different ambient spaces. Recently, J. Kim ([11], [12]) introduces
a new curvature tensor which is invariant under conharmonic transformation ([19]) and, this
curvature-like tensor is called semiconformal curvature tensor denoted by P. This (0,4) type
tensor on a Riemannian manifold is defined by

Pivea = —(n — 2)aCipea + [ + (1 — 2) 8] Zived, (1.1)

where o and 3 are constants (not simultaneously zero). The Weyl conformal tensor denoted
by C and conharmonic curvature tensors Z are respectively defined by

1 R
Wibed = Rived — po—) (91aRbe — 9icRid + gveRia — gpaRic) + CENCED) (91d9bc — GicGba)s
(1.2)
and |
Zibed = Riped — m(gldnbc — 91cRid + gbeRia — gpaRic), (1.3)
Making use of (1.2) and (1.3), Equation (1.1) may be expressed as (for n = 4).
1 BR
Pivea = [Riped — m(gldec — 91cRod + goeRia — gpaRuc)| — T(gldgbc — Giega)- (1.4)

It is clear that from the Equation (1.4), we can obtain conformal and conharmonic curvature
tensors for certain values of « and (3, with some conditions on them. It is evident from Equation
(1.4), that the semiconformal curvature tesnor satisfies the following properties

Pived = —Phicd
Pivca = —Pivdc (1.5)
Pivca = Pediv

Pivea + Poeta + Pepa = 0
A Riemannian manifold M is semi-symmetric ([1], [17], [23]), if

(ViVj = V;iVi)Ripea = 0, (1.6)
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and Ricci semi-symmetric, if

A semi-symmetric manifold implies a Ricci semi-symmetric but converse need not to be true in
general. Hassan Abu-Donia et al. ([10]) studied the W*—curvature tensor on relativistic space-
times. They investigated that the energy-momentum tensor of a spacetime with divergence-free
W* —curvature tensor is of Codazzi type whereas the energy-momentum tensor of a spacetime
having a semi-symmetric W*—curvature tensor is semi-symmetric. Motivated by the above, we
have defined a semi-symmetric semiconformal curvature tensor as

(ViV; — V; V) Pipea = 0. (1.8)

This paper is organised as follows: Section 2 divided in, two subsections 2.1 and 2.2. In 2.1,
we study semiconformally semi-symmetric spacetime and in 2.2, we study semiconformally
symmetric spacetime. It is found that the divergence of the semiconformal curvature tensor
and other curvature tensor are proportional or identical under certain conditions even though
the algebraic properties of these tensors ( projective, conformal, concircular and conharmonic
curvature tensors ) are different, this study we have arranged in Section 3 with four subsections.

2 Semiconformally semi-symmetric and symmetric spacetimes

2.1 Semiconformally semi-symmetric spacetimes

A four dimensional spacetime manifold M is said to admit a semi-symmetric semiconformal
curvature tensor if

R(X,Y)P=0, 2.1
where R(X,Y) act as a derivation on the tensor P. In local coordinate system we may get
1
(ViV; = V;Vi)Pihea = a(V;V;—V;Vi)[Ribea — m(gldec — g1cRua
+  goeRia — gpaRic))- (2.2)
Here, R = 0 for semi-symmetric spacetime.
Contracting both sides with ¢! in Equation (2.2), we get
(VLV] — VjVi)Pbc = 20&(V¢Vj - VjVi)Rbc, (23)

where Pye = ¢'Prieq.
Thus, we may state

Theorem 2.1. A spacetime manifold M is Ricci semi-symmetric if and only if Py = ¢'“Plycq is
semi-symmetric.

The following result is direct consequence of this theorem.
Corollary 2.2. A spacetime manifold M is Ricci semi-symmetric if P-curvature is semi-symmetric.

A spacetime manifold is conformally and conharmonically semi-symmetric if the conformal
and conharmonic curvature tensors are semi-symmetric respectively, that is,

(ViV; = V;Vi)Wipea = 0, (2.4)

and
(ViV,; =V;Vi)Zibea =0 2.5

In view of Equations (1.1), (2.4) and (2.5), we may state the following
Theorem 2.3. Assume that a spacetime manifold M is admitting a semi-symmetric Py = ¢'¥Pjpea.

Then M is conharmonically semi-symmetric if and only if M is conformally semi-symmetric,
provided, o+ 23 # 0.
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The Einstein field equation with cosmological terms

1
Rbc - EgbcR + goe\ = kﬂ;m (26)

where R, k and, A are the scalar curvature, the gravitational constant and, cosmological constant
respectively. Then

(ViV; — V;Vi)Roe = k(ViV; — V;Vi) The 2.7)

From the Equations (2.3) and, (2.7), we may establish the following

Theorem 2.4. The energy-momentum tensor is semi-symmetric if and only if Py = ¢'“Pyeq is
semi-symmetric.

De and Velimirovic ([18]) studied a spacetime M with semi-symmetric energy-momentum ten-
sor. It is clear that V,;P;.q = 0 implies (V;V,; — V,;V;)Pyeq = 0. Thus we may state the
following result

Corollary 2.5. Let M be a spacetime with covaraintly constant P — curvature tensor. Then M is

semiconformally semi-symmetric and the energy-momentum tensor is semi-symmetric.

2.2 Semiconformally symmetric spacetime

A spacetime manifold M admits P-symmetric, if the covariant derivative of semiconformal cur-
vature tensor is zero, i.e.,

VePipea = 0. (2.8)

Now, the covariant form of Equation (1.4), may take the following form

1
VePibed = o[VeRipea — E(gldveRbc = 91cVeRba + gveVeRia
VR
— gdVeRi)] — b 3 (9196 — Gicgvd)- (2.9)

If the spacetime manifold M is P-symmetric, then

«
—aVRiped = _E(gldveRbc — 91cVeRbd + 9ocVeRia — gpaVeRic)
VR
- g 3 (91d9vc — Gicga)- (2.10)

Multiplying by ¢'? to the above equation, one gets

2
20V, Rpe = — (O‘ +2 b ) 9V R. 2.11)

Thus, we may establishe the following theorem.

Theorem 2.6. The spacetime manifold M is Ricci symmetric if the scalar curvature tensor is
covariantly constant for a P-symmetric spacetime, provided (« + 3) # 0.

3 Semiconformal curvature tensor and other cuvature tensors

In this section, we will represent semiconformal cuvature tensor with regard to projective, con-
formal, conharmonic and concircular cuvature tensors, and obtain the relationships between the
divergences of semiconformal curvature tensor with these curvature tensors. The semiconformal
curvature tensor is defined in the section 1 [Equation (1.1)] for the spacetime of general relativity.
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3.1 Projective curvature tensor

For a Riemannian space V}, the projective curvature tensor ch 4 defined as ([20])

1

Wl?cd = R;)Lcd - 3

(6" Rpe — 6" Rpa). (3.1)

The projective curvature tensor vanishes, if we take its contraction over h and d. The covariant
form of the projective curvature tensor is

Wabed = Rabed — %(Rbcgad — RbdJac)- (3.2)
It’s covariant derivative is
VeWiea = VRl — é(ésvemc — 61V Ra), 3.3)
and the divergence of this tensor is ([5])
ViWla = ViR — %(vdmc — VeRpa). (3.4)
Using the Equations (2.9) and (3.4), we have
VPl = VWi + £(VeRus — VaRac) + 3 (004VeR — 0 VaR)]
- é(gchdR — gbdVeR). (3.5)

3

Put Ry = % Jve, (for Einstein spaces the scalar curvature is constant i.e. V4R = 0).

Thus we state

Theorem 3.1. For Einstein spaces, the divergences of semiconformal curvature tensor and pro-
jective curvature tensor are related through ¥V, Pl ; = aW} ;.

Corollary 3.2. For Einstein spaces, the divergences of semiconformal and projective curvature
tensors are identical if o = 1.

Writing Equation (3.5) as

VPl = aVyaWh, + %(VCRM — VaRye) + <

30428

3 )(gdehR? — g VaRE)  (3.6)

and we thus have

Theorem 3.3. For a Riemannian space, the divergences of semiconformal and projective curva-
ture tensors are proportional if the Ricci curvature tensor is divergence-free and is of Codazzi

type.

Corollary 3.4. For a Riemannian space with a=1, the divergences of semiconformal and pro-
Jective curvature tensors are identical, if the Ricci curvature tensor is divergence-free and is of
Codazzi type.

3.2 Conformal curvature tensor

For a Riemannian space, the conformal curvature tensor is defined in section 2 (equation (2.2)).
In Einstein space from equation (2.1), the semiconformal curvature tensor in terms of conformal
curvature tensor can be expressed as

1
Prea = —2BCpq + (o + 28)[Rifey + 1(5?7391711 — 6" Rabe)]s (3.7)
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so that the divergence of the semiconformal curvature tensor, equation (3.7) takes the form

ViPilg = =28ViClg + (a4 28)[VaRi.q + %(gbdch — g VaR)]. (3.8)
We know that the Bianchi identity is given by
ViRiea + VeRian + VaRipe = 0,
or

ViRiqg = VaRpe — VeRpa, (3.9)

Using Equation (3.9) and conditions for Einstein space, Equation (3.8) leads to
ViPhea = ~2B8VCheq (3.10)
Thus we have

Theorem 3.5. In an Einstein space, the divergences of semiconformal and conformal curvature
tensors are proportional.

Corollary 3.6. For an Einstein space, the divergences of two tensors are identical if § = —%.

Now using the equations (3.8) and (3.9), we have

1
ViPla = —26ViCl,+ (a+2B)[(VaRpe — VeRba) + Z(gbdvhRZ — ViR, (3.11)

However, for a semi-Riemannian space it is seen that ([20], [22])
2VLCly = VeRba — VaRpe. (3.12)
Now from the equations (3.11) and (3.12), we get

a+2p

VP =2(c+ B)ViCig + ( ) (90aViRY — gocVaRY) (3.13)

From Equation (3.13), we may state

Theorem 3.7. In a semi-Riemannian space, the divergences of conformal curvature tensor and
semiconformal curvature tensors are connected through the following relation

h
ViPhea = 2(a + B)ViCly,
in case, the Ricci tensor is divergence-free.

Corollary 3.8. For a semi-Riemannian space, the divergences of two tensors semiconformal and
conformal curvature tensor are identical if o + = % and Ricci tensor is divergence-free.

Equation (3.11) will also lead to the result

Theorem 3.9. For a Riemannian space, the divergences of semiconformal and conformal curva-
ture tensor are proportional if Ricci tensor is divergence-free and, is of a Codazzi type.

Corollary 3.10. For a Riemannian space with § = f%, the divergences of semiconformal and
conformal curvature tensor are identical if Ricci tensor is divergence-free and, is of a Codazzi

ype
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3.3 Conharmonic curvature tensor

We have discussed about the conharmonic curvature tensor in section 1.
Now from equations (1.1) and (1.2), we have

1
Pry = (a+28)Z8,—28 [Rgcd + 5(5g73bd — 68 Rpe + gpaRY — goeRY)
R
+ ¢ (Oigne = 0 gva)]. (3.14)

Operating the covariant derivative on Equation (3.14), we have

1
vﬁpglcd = (Oé + Zﬂ)vezl?cd - ZB [veRI]}cd + E(égvenbd - 6gveRbc
h h VR h
+ gaVeRe — gocVeRy) + 3 (6 9be — 0L gva)], (3.15)
on contraction over h and e, equation (3.15) leads to
1
ViPha = (a+28)ViZp, —28[ViRie + 5 (VeRoa = VaRac)
1
4+ 2 (96aVaRE — g VARY)]. (3.16)

3
Using the Equation (3.9), Equation (3.16) takes the form

2
VPl = (a+28)VyZl, 4+ B(V.Rys — VaRee) + g(gbcvmg — g VaRY).  (3.17)

Thus we have

Theorem 3.11. In a spacetime, the divergences of semiconformal and conharmonic curvature
tensors are connected through the following relation

ViPheq = (0 +26)VaZjq
if the Ricci tensor is divergence-free and, is of a Codazzi type.

Corollary 3.12. In a spacetime Vi with o + 25 = 1, the divergences of semiconformal and
conharmonic curvature tensors are identical, if the Ricci tensor is divergence-free and, is of a
Codazzi type.

Also from equation (3.17), we have

Theorem 3.13. For Einstein spaces, the divergences of semiconformal and conharmonic curva-
ture tensors are proportional.

Corollary 3.14. For Einstein spaces with « + 28 = 1, the divergences of semiconformal and
conharmonic curvature tensors are identical.

3.4 Concircular curvature tensor

Generally, we cannot transform a geodesic circle into a geodesic circle by the conformal trans-
formation

b = > gap, (3.18)
where g, is the first fundamental tensor. K. Yano ([13], [14]) introduced a transformation that
preserves the geodesic circles. The conformal transformation (3.18) satisfying the equation

W;a;b = (Yab (3.19)

transforms a geodesic circle into a geodesic circle and corresponding transformation is concir-
cular transformation.



The semiconformal curvature tensor on Relativistic spacetimes 307

A (0, 4) type tensor M4 that remains invariant under such transformation, for a Riemannian
space V4, is given by ([14], [20])

R
Mabcd = 7?/abcd - E(gbcgad - gbdgac) (320)
Also
ho_ph R
Miea = Ripea 12(5d9bc e Gvd)- (3.21)

The tensor M gpcq OF M{}Cd defined by means of Equation (3.20) or (3.21) is known as concircular
curvature tensor.
Contraction over h and d, Equation (3.21) takes the form

R
Mpe = Rye — Zgbm (322)
which is also invariant under conharmonic transformation and it may be noted that g M. = 0.
From equations (1.4) and (3.21), we have

a—4p

,Pl?cd = aMgcd—i_ <12

(67
)(63Rgb0—5§Rgbd)+2(62Rbd—6snbc+gbm’;—gbcns» (3.23)

On applying the covariant derivative, Equation (3.23) leads to

a—4
,Plfbcd;e = aMgcd;e + ( 12 5) (527?’;69176 - 6?R;egbd) + %(52Rbd;e - 53Rbc;e
(3.24)
+gpaRE, — gbcRZ;e)7
contraction over h and e, caries the Equation (3.24) in the form
Sa+4 «
Riseain = Mgy — <126> (9ocR.a — gpaR.c) + i(Rbd;c — Rbe:d)- (3.25)

We thus have

Theorem 3.15. For an Einstein space, the divergences of semiconformal and concircular curva-
ture tensor are proportional.

Corollary 3.16. For an Einstein space with o = 1, the divergences of two tensors P}, and M},
are identical.

Also from Equation (3.25), we have

S5a+4 o
Proan = Mgy, — (126> (gbc R — goaREy) + E(Rbd;c — Roeid)- (3.26)

Thus we have

Theorem 3.17. The divergences of semiconformal and concircular curvature tensors are pro-
portional if the Ricci Tensor is divergence-free and is of a Codazzi type.

Corollary 3.18. If o = 1 and when the Ricci tensor is divergence-free as well as Codazzi type
the divergences of semiconformal and concircular curvature tensors become identical.
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