A new generalization of Hopfian modules

Abderrahim El Moussaouy* and M'Hammed Ziane

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16D10; Secondary 16D40, 16D90.

Keywords and phrases: Hopfian modules, μ -weakly Hopfian modules, weakly Hopfian modules.

The authors would like to thank the referee and the Editor-in-Chief of the journal (PJM).

Abstract In this paper, we introduce the notion of μ -weakly Hopfian modules which is a new generalization of Hopfian modules. It is shown that over a ring R, every quasi-projective (projective, free) R-module is μ -weakly Hopfian if and only if R has no nonzero semisimple injective R-module. Some basic characterizations of projective μ -weakly Hopfian modules are proved. We demonstrate that if the ACC holds on μ -small submodules of an R-module M, then M is μ -weakly Hopfian. Other properties of μ -weakly Hopfian modules are also obtained with examples.

1 Introduction

Throughout this paper all rings have identity and all modules are unital right modules. We will use the notations \leq , \ll , \ll_{μ} and \leq^{\oplus} to denote submodule, small submodule, μ -small submodule and direct summand, respectively, and $\operatorname{Rad}(M)$, $Z^*(M)$, E(M), $\operatorname{End}_R(M)$ will denote the radical, the cosingular submodule, the injective hull, and the ring of endomorphisms of an R-module M.

Recall that a submodule K of an R-module M is said to be small in M, if for each $L \leq M$ such that K + L = M implies L = M. A submodule P of an R-module M is said to be δ -small in M ($P \ll_{\delta} M$), if for every submodule N of M such that P + N = M with M/N singular implies N = M (see [12]). For a right R-module M, Ozcan [8], defined the submodule $Z^*(M) = \{m \in M : mR \ll E(M)\}$ as a dual of singular submodule. A module M is called cosingular, (resp, noncosingular) if $Z^*(M) = M$ (resp, $Z^*(M) = 0$). It is clear that $Rad(M) \leq Z^*(M)$. A submodule K of an R-module M is said to be μ -small in M, if for all $L \leq M$ such that K + L = M and M/L cosingular implies M = L ([11]). It is clear that if A is a small submodule of M, then A is a μ -small submodule of M, but the converse is not true in general.

In [6], Hiremath introduced the concept of Hopfian modules. An *R*-module *M* is said to be Hopfian if any surjective endomorphism of *M* is an automorphism. In [9], Varadarajan investigated and studied the notion of co-Hopfian modules. An *R*-module *M* is said to be co-Hopfian if every injective endomorphism of *M* is an automorphism. In [5], Ghorbani and Haghany introduced the concept of generalized Hopfian modules. A right *R*-module *M* is called generalized Hopfian if every surjective endomorphism of *M* has a small kernel. In [10], Wang studied the notion of weakly Hopfian modules. A right *R*-module *M* is called weakly Hopfian if any small surjective endomorphism of *M* is an automorphism. In [3], we studied the concept of μ -Hopfian modules. A right *R*-module *M* is said to be μ -Hopfian if every surjective endomorphism of *M* has a μ -small kernel. In [2], the concept of δ -weakly Hopfian modules was introduced and studied. A right *R*-module *M* is called δ -weakly Hopfian if every δ -small surjective endomorphism of *M* is an automorphism. Such modules and other generalizations have been examined by many authors ([2, 3, 4, 5, 6, 9, 10]).

By works mentioned we are motivated to introduce in this paper the notion of μ -weakly Hopfian modules which is a proper generalizations of that of Hopfian modules. We call a module μ -weakly Hopfian if every its μ -small surjective endomorphism is an automorphism, which implies that a right *R*-module *M* is Hopfian if and only if *M* is both μ -Hopfian and μ -weakly Hopfian.

The paper is organized as follows:

In Section 2, we show that if M is a quasi-projective cosingular module then it is μ -weakly Hopfian (Proposition 2.3). A submodule N of an R-module M is said to be fully invariant if $f(N) \subseteq N$ for every endomorphism f of M. We obtain that if M is a quasi-projective cosingular module and if N is a fully invariant μ -small submodule of M, then M/N is μ -weakly Hopfian (Corollary 2.7).

In Section 3, some basic characterizations of projective μ -weakly Hopfian modules are proved in (Theorem 3.4). It is proved that a projective module M is μ -weakly Hopfian if and only if whenever $f \in \operatorname{End}_R(M)$ has a right inverse and Ker(f) is semisimple, then f has a left inverse in $\operatorname{End}_R(M)$. Moreover, we show that every quasi-projective (projective, free) R-module is μ weakly Hopfian if and only if R has no nonzero semisimple injective R-module (Theorem 3.5). At the end of the paper, some open problems are given.

We list some properties of cosingular modules that will be used in the paper.

Lemma 1.1. [8]

- (i) For any ring R, the class of cosingular R-modules is closed under submodules, homomorphic images and direct sums but not (in general) under essential extensions or extensions.
- (ii) Let R be a right cosingular ring. Then any (right) R-module is cosingular.

Now we list some properties of μ -small submodules that will be utilized in the paper.

Lemma 1.2. [3] Let M be an R-module and $N \leq M$. The following are equivalent.

- (i) $N \ll_{\mu} M$.
- (ii) If X + N = M, then $X \oplus L = M$ for a semisimple injective submodule L of M.

Lemma 1.3. [11]. Let $M = M_1 \oplus M_2$ be an *R*-module and let $A_1 \leq M_1$ and $A_2 \leq M_2$, then $A_1 \oplus A_2 \ll_{\mu} M_1 \oplus M_2$ if and only if $A_1 \ll_{\mu} M_1$ and $A_2 \ll_{\mu} M_2$.

Definition 1.4. [7] Let M be an R-module. We say that M is duo module provided every submodule of M is fully invariant.

Definition 1.5. [1]. A module M is called semi Hopfian if any surjective endomorphism of M has a direct summand kernel, i.e. any surjective endomorphism of M splits.

Example 1.6.

- (i) Every semisimple *R*-module is semi Hopfian. [1]
- (ii) Every quasi-projective *R*-module is semi Hopfian. [1]
- (iii) By [6, Theorem 16(ii)], a vector space V over a field K is Hopfian if and only if it is finite dimensional. Hence an infinite-dimensional vector space over a field is semi Hopfian, but it is not Hopfian. [4]
- (iv) Every module with D2 is semi Hopfian. (Recall that a module M has D2 if any submodule N of M such that M/N is isomorphic to a direct summand of M is a direct summand of M). [1]
- (v) Every semi Hopfian indecomposable *R*-module is Hopfian. [4]
- (vi) Every semi Hopfian co-Hopfian *R*-module is Hopfian. [4]

2 μ -weakly Hopfian

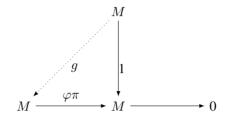
Definition 2.1. Let M be an R-module. We say that M is μ -weakly Hopfian if any μ -small surjective endomorphism of M is an automorphism.

The following example introduces a module that is not μ -weakly Hopfian.

Example 2.2. Let $G = Z_{p^{\infty}}$. Since in G every proper subgroup is μ -small, hence every its surjective endomorphism has a μ -small kernel. But the multiplication by p induces an epimorphism of G which is not an isomorphism.

Proposition 2.3. Let M be a quasi-projective module. If M is cosingular, then it is μ -weakly Hopfian.

Proof. \diamond Let M be a quasi-projective cosingular module. Suppose $M \cong M/K$ for some $K \ll_{\mu} M$. Let $\varphi : M/K \to M$ be an isomorphism. The map $\varphi \pi : M \to M$, where $\pi : M \to M/K$ is a canonical epimorphism with kernel K i.e. $Ker(\varphi \pi) = K$. Since M is quasi-projective, there is $q : M \to M$ which makes the following diagram commutative.



Thus, $M = Ker(\varphi \pi) \oplus Im(g)$. Since M is cosingular, by lemma $1.1 \ M/Im(g)$ is cosingular. Now since $Ker(\varphi \pi) = K \ll_{\mu} M$, K = 0. Therefore M is μ -weakly Hopfian by lemma 3.1. \Box

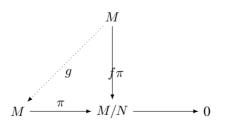
Proposition 2.4. Let M be an R-module and N a nonzero μ -small submodule of M. If M/N is μ -weakly Hopfian, then M is μ -weakly Hopfian.

Proof. If M is not μ -weakly Hopfian. Then there exists a μ -small surjection f of M which is not an isomorphism, and f induces an isomorphism $g: M/Kerf \to M$. If $\pi: M \to M/Kerf$ denotes the canonical quotient morphism, then $\pi g: M/Kerf \to M/Kerf$ is a μ -small surjection which is not an isomorphism. This is a contradiction.

Example 2.5. Let *P* be a set of all primes and $\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in P} \mathbb{Z}_{p^{\infty}}$. If $\bigoplus_{p \in P} \mathbb{Z}_{p^{\infty}}$ is a μ -weakly Hofian \mathbb{Z} -module, hence $\mathbb{Z}_{p^{\infty}}$ is μ -weakly Hofian by Proposition 2.11, contradiction with example 2.2. Then \mathbb{Q}/\mathbb{Z} is not μ -weakly Hopfian, but \mathbb{Q} is a μ -weakly Hofian \mathbb{Z} -module.

Theorem 2.6. Let M be a quasi-projective cosingular module. If N is a fully invariant μ -small submodule of M, then M/N is Hopfian.

Proof. Let M be a quasi-projective cosingular module and N a fully invariant μ -small submodule of M. If $f: M/N \to M/N$ is an epimorphism, then by the canonical epimorphism $\pi: M \to M/N$, we have $f\pi: M \to M/N$ is an epimorphism. Since M is quasi-projective, there exists an endomorphism g of M which makes the following diagram commutative.



i.e., $\pi g = f\pi$, then N + Img = M. Therefore g is onto, hence g is an isomorphism. We have $f(x + N) = f\pi(x) = \pi g(x) = g(x) + N$, and Kerf = K/N where $N \subset K = \{x \in M; g(x) \in N\} = g^{-1}(N) \subset M$. Since N is a fully invariant submodule of $M, g^{-1}(N) \subset N$. Hence $Kerf = g^{-1}(N)/N = 0$. Therefore M/N is Hopfian.

Corollary 2.7. Let M be a quasi-projective cosingular module. If N is a fully invariant μ -small submodule of M, then M/N is μ -weakly Hopfian.

Corollary 2.8. Let *M* be a finitely generated quasi-projective module. If *M* is cosingular, then M/Rad(M) is μ -weakly Hopfian.

Proof. Rad(M) is a fully invariant submodule of M. Since M is finitely generated, Rad(M) is small in M, then it is μ -small. Thus M/Rad(M) is μ -weakly Hopfian, by corollary 2.7.

Proposition 2.9. Let M be a semi Hopfian R-module. If M is co-Hopfian, then it is μ -weakly Hopfian.

Proof. Let $f: M \to M$ be a μ -small surjective endomorphism. Since M is a semi Hopfian R-module, f splits, and hence there exists an endomorphism $g: M \to M$, such that fg = 1. This implies that g is an injective endomorphism. Now since M is co-Hopfian, g is an automorphism. Therefore f is an automorphism and M becomes a μ -weakly Hopfian R-module.

- **Corollary 2.10.** (i) Let M be an R-module with D2. If M is co-Hopfian, then it is μ -weakly Hopfian.
- (ii) Every semisimple co-Hopfian R-module is μ -weakly Hopfian.
- (iii) Every quasi-projective co-Hopfian R-module is μ -weakly Hopfian.

Proposition 2.11. Any direct summand of a µ-weakly Hopfian module M is µ-weakly Hopfian.

Proof. Let $K \leq^{\oplus} M$, $\exists N \leq M$ such that $M = K \oplus N$. Let $f : K \to K$ be a μ -small surjective endomorphism, then f induces a surjective endomorphism of M, $f \oplus 1_N : M \to M$ with $(f \oplus 1_N)(k+n) = f(k) + n$, where $k \in K$ and $n \in N$. Thus by lemma 1.3, $Ker(f \oplus 1_N) = Ker(f) \oplus 0 \ll_{\mu} K \oplus N$. Since M is μ -weakly Hopfian, $f \oplus 1_N$ is an automorphism of M. Hence f is an automorphism of K. Therefore K becomes μ -weakly Hopfian.

The next result gives a condition that a direct sum of two μ -weakly Hopfian modules is μ -weakly Hopfian.

Proposition 2.12. Let $M = M_1 \oplus M_2$ and let M_1 , M_2 be invariant submodules under any surjection of M. Then M is μ -weakly Hopfian if and only if M_1 , M_2 are μ -weakly Hopfian.

Proof. \Rightarrow) Clear by Proposition 2.11.

 \Leftarrow) Let $f: M \to M$ be a μ -small epimorphism, then $f|_{M_i}: M_i \to M_i$ is a μ -small surjection where $i \in \{1, 2\}$. By assumption, $f|_{M_i}$ is an automorphism. Let $f(m_1 + m_2) = 0$, then $f(m_1) + f(m_2) = 0$ and so $m_1 = m_2 = 0$. Thus f is an injective endomorphism and M is μ -weakly Hopfian.

Corollary 2.13. Let $M = M_1 \oplus M_2$ be a duo module. Then M is μ -weakly Hopfian if and only if M_1 and M_2 are μ -weakly Hopfian.

It is clear that every μ -weakly Hopfian module is weakly Hopfian. The following examples shows that the converse is not true, in general.

Example 2.14. If M is a noncosingular semisimple R-module, since every nonozero homomorphic image of M is noncosingular, then every submodule of M is μ -small. Hence M is not μ -weakly Hopfian. But the only small submodule of M is the zero submodule. Thus M is weakly Hopfian.

Lemma 2.15. Let M, N and L be modules. If $f : M \to N$ and $g : N \to L$ are two μ -small epimorphisms. Then gf is a μ -small epimorphism.

Proof. Suppose that Kergf + K = M with M/K is cosingular, then Kerg + f(K) = f(M). Since M/K is cosingular, f(M)/f(K) is cosingular. Now since $Kerg \ll_{\mu} f(M) = N$, f(M) = f(K) and M = Kerf + K. As $Kerf \ll_{\mu} M$ and M/K is cosingular, M = K. Thus gf is a μ -small epimorphism. **Theorem 2.16.** Let M be an R-module with ACC on μ -small submodules. Then M is μ -weakly Hopfian.

Proof. Let M be an R-module and $f: M \to M$ be a μ -small epimorphism of M. Then $Kerf \subseteq Kerf^2 \subseteq ... \subseteq Kerf^n \subseteq ...$ is an ascending chain of μ -small submodules of M by Lemma 2.15. Since M satisfies the ACC on μ -small submodules, there exists a positive number n such that $Kerf^n = Kerf^{n+1}$. Let $x \in Kerf$, then f(x) = 0. Since f is an epimorphism, there exists $x_1 \in M$ such that $f(x_1) = x$. Since f is an epimorphism, there exists $x_2 \in M$ such that $f(x_2) = x_1$. Repeating the process, we obtain that $x_{n-1} \in M$ with $f(x_n) = x_{n-1}$. Thus

$$x = f(x_1) = f^2(x_2) = \dots = f^n(x_n).$$

Since $x \in Kerf$, $0 = f(x) = f(f^n(x_n))$, that is, $f^{n+1}(x_n) = 0$. So $x_n \in Kerf^{n+1} = Kerf^n$. Consequently, $f^n(x_n) = 0$, hence x = 0, thus Kerf = 0 and f is an isomorphism. Then M is μ -weakly Hopfian.

3 Characterizations the class of rings R for which every R-module is μ -weakly Hopfian

Lemma 3.1. Let M be a nonzero R-module. Then the following statements are equivalent. (i) M is μ -weakly Hopfian.

(ii) $M/K \cong M$ for every $K \ll_{\mu} M$ if and only if K = 0.

Proof. (i) \Rightarrow (ii) Assume that $M \cong M/K$ for any $K \ll_{\mu} M$. Let $\varphi : M/K \to M$ be an isomorphism and $\pi : M \to M/K$ the canonical epimorphism. Then $\varphi \pi$ is an epimorphism with $Ker(\varphi \pi) = K$. Hence $\varphi \pi$ is a μ -small epimorphism. Then $\varphi \pi$ is an isomorphism by (i). Therefore K = 0.

(ii) \Rightarrow (i) Let $f : M \to M$ be a μ -small epimorphism. Then $M \cong M/Ker(f)$ by the first isomorphism theorem. From (ii), we find Ker(f) = 0. This prove that f is an isomorphism. Therefore M is μ -weakly Hopfian.

Proposition 3.2. Let M be a μ -weakly Hopfian module. If $M \cong M \oplus N$ for some injective semisimple module N, then N = 0. More if M is projective, then we have the converse.

Proof. Let M be a μ -weakly Hopfian module and $M \cong M \oplus N$ for some injective semisimple module N. It is easy to see that $M \cong K \oplus L$ where $K \cong N$ and $L \cong M$. Note that K is a μ -small submodule of M as N is semisimple injective by Lemma 1.2. Since $M/K \cong L \cong M$, K = 0 by Lemma 3.1.

For the moreover statement, assume that M is projective and f is a surjective endomorphisme of M, where $Ker(f) \ll_{\mu} M$. Then $M = Kerf \oplus T$, where $T \leq M$ and $T \cong M$. Since $Ker(f) \ll_{\mu} M$, we have $M = H \oplus T$ where H is an injective semisimple submodule of Ker(f), by Lemma 1.2. Now, modular law implies that Ker(f) = H. Therefore $M \cong Ker(f) \oplus M$ and Kerf is semisimple injective. Hence Ker(f) = 0 and M becomes μ -weakly Hopfian. \Box

Proposition 3.3. Let R be a semisimple artinian ring. Then a free R-module F is μ -weakly Hopfian if and only if it has finite rank.

Proof. Let F be a free μ -weakly Hopfian R-module. If F has infinite rank, then $R^{\mathbb{N}}$ is μ -weakly Hopfian (because $R^{\mathbb{N}}$ is a direct summand of F). Since $R^{\mathbb{N}} \cong R^{\mathbb{N}} \oplus R^{\mathbb{N}}$ and $R^{\mathbb{N}} \neq 0$, it is impossible, by Proposition 3.2. Hence F has finite rank. Conversely, If F has finite rank, then it is Hopfian and so it is μ -weakly Hopfian.

In the following, we present some basic characterizations of projective μ -weakly Hopfian modules.

Theorem 3.4. Let M be a projective R-module and $f \in \text{End}_R(M)$. Then the following statements are equivalent:

(i) M is μ -weakly Hopfian.

- (ii) If f has a right inverse and Ker(f) is semisimple injective, then f has a left inverse in $End_R(M)$.
- (iii) If f has a right inverse and $Ker(f) \ll_{\mu} M$, then f has a left inverse in $End_R(M)$.
- (iv) If f has a right inverse g and $(1 gf)M \ll_{\mu} M$, then f has a left inverse in $\operatorname{End}_{R}(M)$.
- (v) If f is a surjective endomorphism and Ker(f) is semisimple injective, then f has a left inverse in $End_R(M)$.

Proof. If M be a projective module and $f \in \text{End}_R(M)$, then f is a surjective endomorphism if and only if f has a right inverse g. Therefore Ker(f) = (1 - gf)M and $M = Ker(f) \oplus (gf)M$.

 $(1) \Rightarrow (2)$ If f has a right inverse g, then fg = 1. Since $Ker(f) \leq^{\oplus} M$, it is projective. Then $M \cong M \oplus Kerf$ where Kerf is semisimple injective. Now by Proposition 3.2, Ker(f) = 0.

(2) \Rightarrow (3) If f has a right inverse and $Ker(f) \ll_{\mu} M$. Since $Ker(f) \leq^{\oplus} M$, Ker(f) is semisimple injective. Therefore f has a left inverse in $End_R(M)$.

(3) \Rightarrow (4) It is clear, because $Ker(f) = (1 - gf)M \ll_{\mu} M$

(4) \Rightarrow (5) It is clear, because $Ker(f) = (1 - gf)M \ll_{\mu} M$ if and only if Ker(f) is semisimple injective.

 $(5) \Rightarrow (1)$ Let f be a surjective endomorphism of M and $Ker(f) \ll_{\mu} M$. Since M is projective, f has a right inverse g and $Ker(f) = (1 - gf)M \leq^{\oplus} M$. Hence Ker(f) is semisimple injective. Therefore by (5), f has a left inverse and it is an automorphism.

Theorem 3.5. Let *R* be a ring. Then the following statements are equivalent:

- (i) Every quasi-projective R-module is μ -weakly Hopfian.
- (ii) Every projective R-module is μ -weakly Hopfian.
- (iii) Every free R-module is μ -weakly Hopfian.
- (iv) Every minimal right ideal of R is small in R_R .
- (v) R has no nonzero semisimple injective R-module.

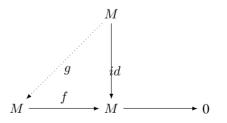
Proof. $(1) \Rightarrow (2)$ Is clear.

- $(2) \Rightarrow (3)$ Is clear.
- $(3) \Rightarrow (2)$ Is clear by Proposition 2.11

 $(2) \Rightarrow (4)$ Assume that *m* is a minimal right ideal of *R*. Then either *m* is a direct summand of R_R or it is small in R_R . If *m* is a direct summand of R_R , then $M = (R/m)^{(\mathbb{N})}$ is semisimple. Hence *R* is semisimple. Then *M* is injective projective. Therefore *M* is μ -weakly Hopfian by (2). Since $M \cong M \oplus M$, M = 0, by Proposition 3.2, which is impossible, and so *m* is small in R_R .

 $(4) \Rightarrow (5)$ Is clear.

 $(5) \Rightarrow (1)$ Assume that M is a quasi-projective module and $f: M \to M$ is an epimorphism where $Ker(f) \ll_{\mu} M$. Since M is quasi-projective, there exists an endomorphism g of M which makes the following diagram commutative.



Therefore, fg = id and $M = Kerf \oplus Img$. As $Ker(f) \ll_{\mu} M$, $M = N \oplus Img$, for some semisimple injective submodule N of Ker(f), by Lemma 1.2. Then by modular law $Ker(f) = N \oplus (Im(g) \cap Ker(f)) = N$. Since R has no nonzero semisimple injective Rmodule, N = 0, hence Kerf = 0. Therefore f is an automorphism and M becomes μ -weakly Hopfian.

4 Conclusion

In this paper the notion of μ -weakly Hopfian modules are present. The relation between the class of μ -weakly Hopfian and other classes of Hopfian modules are given. Some basic characterizations of μ -weakly Hopfian modules are proved. And some other properties of μ -weakly Hopfian modules are also obtained with examples.

For further studies we shall be interested in the following problems:

- What is the structure of rings whose finitely generated right modules are μ -weakly Hopfian?
- Let R be a ring with identity, and M be a μ -weakly Hopfian module. Is $M[X, X^{-1}] \mu$ -weakly Hopfian in $R[X, X^{-1}]$ -module?
- Let R be a μ -weakly Hopfian ring and $n \ge 1$ an integer. Is the matrix ring $M_n(R) \mu$ -weakly Hopfian?

References

- P. Aydogdu, A. C. Ozcan, Semi co-Hopfian and Semi Hopfian Modules, *East West J. Math*, 10(1), 57-72 (2008).
- [2] El Moussaouy, A., Khoramdel, M., Moniri Hamzekolaee, A. R., and Ziane, M.: Weak Hopfcity and singular modules. *Ann Univ Ferrara*, 68, 69-78 (2022).
- [3] El Moussaouy, A., Ziane, M.: Modules in which every surjective endomorphism has a μ-small kernel. Ann Univ Ferrara, 66, 325-337 (2020).
- [4] El Moussaouy, A., Ziane, M.: Notes on Generalizations of Hopfian and co-Hopfian modules. *Jordan J. Math. Stat*, 15(1), 43-54 (2022).
- [5] Ghorbani, A., Haghany, A.: Generalized Hopfian modules. J. Algebra, 255(2), 324-341 (2002).
- [6] Hiremath, V. A.: Hopfian rings and Hopfian modules, Indian J. Pure Appl. Mat, 17(7), 895-900 (1986).
- [7] Özcan A. C., Harmanci A. and Smith P.F.: Duo modules, *Glasgow Math. J*, 48, 533–545 (2006).
- [8] Ozcan, A. C.: Modules with small cyclic submodules in their injective hulls, *Comm. In Algebra*, 30(4) 1575-1589, (2002).
- [9] Varadarajan, K.: Hopfian and co-Hopfian objects. Publications Matematiques, 36, 293-317 (1992).
- [10] Wang, Y.: Generalizations of Hopfian and co-Hopfian modules. Int. J. Math. Sci, 9, 1455-1460 (2005).
- [11] Wasan, K. Enas, M. K.: On a Generalization of small submodules. Sci.Int.(Lahore), 30(3), 359-365 (2018).
- [12] Zhou, Y.: Generalizations of perfect, semiperfect, and semiregular rings, *Algebra Colloquium*, 7(3), 305-318 (2000).

Author information

Abderrahim El Moussaouy^{*} and M'Hammed Ziane, Department of Mathematics, Faculty of Sciences, University of Mohammed First, Oujda, BP 717 60000, Morocco. E-mail: a.elmoussaouy@ump.ac.ma

Received: 2022-05-06WWW Accepted: 2023-01-17