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Abstract This paper studies Rota-Baxter (RB) operators in complex semi-simple algebras A.
They are certain C-linear endomorphisms of A, when considered the latter as a C-vector space.
Properties as the nilpotency or the spectrum of such operator R are studied. Some examples are
given when A is a Clifford algebra.

1 Introduction

Given an F−algebra A and a scalar λ ∈ F , where F is a field with characteristic different from
two. A linear operator R : A −→ A is called an Rota-Baxter operator (RB operator, shortly) on
A of weight λ if the following relation

R(x)R(y)− λxy = R(R(x)y + xR(y)), (1.1)

holds for all x, y ∈ A.
Rota-Baxter operators or relations were introduced by G.Baxter [2]. It was introduced in

order to solve certain analytic and combinatorial problems and then applied to many fields in
mathematics and mathematical physics. In fact, the Rota-Baxter relation (1.1) generalizes the
integration-by-parts formula.

The Lie algebraic version of equation (1.1) with λ = 0 is just the well-known classical Yang-
Baxter equation which plays an important role in intergrable systems and when the weight λ = 1,
it corresponds to the operator form of the modified classical Yang-Baxter equation.

There is a big difference between RB operators of nonzero weight and RB operators of weight
zero. There are few known general constructions for the first ones such as splitting and triangular-
splitting RB operators. In contrast, there are a lot of examples for the second ones, and it is not
clear which of them are of most interest.

Also, RB operators have been studied by their own interest. In [4] it was proved that any RB
operator of nonzero weight on an odd-dimensional simple Jordan algebra J of bilinear form is
splitting. RB operators were classified on sl2(C) [10, 11], M2(C) [4], sl3(C) [11], the Grass-
mann algebra Gr2 [4, 8], the 3-dimensional simple Jordan algebra of bilinear form, the Ka-
plansky superalgebra K3 [4], 3-dimensional solvable Lie algebras [11], low-dimensional Lie
superalgebras [9], low-dimensional pre-Lie (super)algebras [1], low-dimensional semigroup al-
gebras [7]. The classification of RB perators of special kind on polynomials, power series and
Witt algebra was found [5, 6].

An application of Rota-Baxter (associative) algebras is to get some new algebraic structures.
In fact, if the weight λ = 0, then from equations (1.1), it is obvious that the product

x ∗ y := [R(x), y] = R(x)y − yR(x)

defines a pre-Lie algebra.
Throughout of the paper, without special saying, all algebras are considered associative with

unit e.
By the trivial RB operators of weight λ, we mean the zero operator and -λid, where id denotes

the identity map.
In this paper, we study Rota-Baxter operators on complex semi-simple algebras A: We prove

that any RB operator of zero weight of A is nilpotent. Any eigenvector x ∈ A of a RB operator
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R of weight -1 with R(x) = λx where λ /∈ {0, 1} (if any) is nilpotent. When A is simple, then
{0, 1} is a subset of the spectrum of any non-trivial RB operator of weight -1. Some examples
of RB operator of weight -1 on A are given, when A is a Clifford algebra.

The paper is organized as follows. After introduction, preliminary Section 2 consists to recall
some basic results of RB operators. In section 3, we study Rota Baxter operators of zero weight
on A. In section 4, we study eigenvalues and eigenvectors of RB operators of weight -1. In
section 5, we make some examples of RB operators when A is a simple algebra, in particular, if
A is a Clifford algebra.

2 PRELIMINARIES

We start by collecting some examples and some general properties of RB operators for later use.
We need recall that: An element t of A is said to be an idempotent element if t2 = t. Two

idempotent elements f and h such that hf = fh = 0 are called orthogonal. A non-zero idempo-
tent element of A is said to be primitive if it is not a sum of two non-zero orthogonal idempotent
elements.

Example 2.1. 1. Given an algebra A of continuous functions on R, an integration operator
R(f)(x) :=

∫ x
0 f is an RB operator on A of weight zero.

2. consider the algebra of sequences in a F -algebra, with componentwise addition and multi-
plication. Define an operator

R : (a1, a2, a3, ..., an, ...) 7−→ (0, a1, a1 + a2, ...,
∑
k<n

ak, ...).

R is a Rota-Baxter operator of weight 1.

3. A linear map Ra on the polynomial algebra F [x] defined as R(xn) = (xn+1−an+1)
n+1 is an RB

operator on F [x] of weight zero, for any a ∈ F .

Proposition 2.2. [4] Let A be an associative unital algebra.

1. Let R be an RB operator on A of weight λ. Then −R − λid is an RB operator of weight λ
and the operator λ−1R is an RB operator of weight 1, provided that λ 6= 0.

2. Let R be an RB operator of weight λ on A, and let ψ ∈ Aut(A). Then, Rψ = ψ−1Rψ is an
RB operator on A of weight λ. The same result is true when ψ is an antiautomorphism of
A, i.e., a bijection from A to A satisfying ψ(xy) = ψ(y)ψ(x) for all x, y ∈ A

Proposition 2.3. Let A be an algebra and R : A −→ A be a linear isomorphism. Then R is a
RB operator of weight zero on A if and only if R−1 is a derivation on A.

Proof. For any x, y ∈ A, R is a RB operator onA if and only ifR(x)R(y) = R(R(x)y+xR(y)),
which is equivalent to R−1(uv) = uR−1(v) +R−1(u)v, where u = R(x), v = R(y). Therefore,
the conclusion follows. 2

Proposition 2.4. Let t ∈ A such that t2 = −λt with λ ∈ C. The linear map Rt : x 7−→ xt is an
RB operator on A of weight λ.

Proof. It follows, easily, from relation (1.1). 2

Remark 2.5. A particular case of the previous proposition is when t2 = t, (t is an idempotent
element of A, the RB operator Rt is a projector of A; that is Rt satisfying the relation R2

t = Rt.
In the same way, the map Lt : x 7−→ tx is an RB operator. It is the same for the composition
map LtoRt : x 7−→ txt.
If t and t′ are two orthogonal idempotent elements of A then, the sum Rt + Rt′ = Rt+t′ is an
RB operator of A.

Proposition 2.6. Let R be an RB operator on A of weight zero. Then
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1. e /∈ Im(R).

2. If R(e) ∈ Ce, then R(e) = 0, and R2 = 0.

3. Ker(Rk) is an Im(Rk)-module for all k ≥ 1.

Proof.

1. Assume there exists x ∈ A such thatR(x) = e. We have e = ee = R(x)R(x) = R(R(x)x+
xR(x)) = 2R(x) = 2e, a contradiction.

2. From (1), R(e) = 0. The other statement follows from 0 = R(e)R(x) = R(R(e)x +
eR(x)) = R(R(x)).

3. Let x ∈ Ker(R) and y = R(z) ∈ Im(R). We have 0 = R(x)R(z) = R(R(x)z+xR(z)) =
R(xy) = R(yx). Then, yx ∈ Ker(R) and so, Ker(R) is an Im(R)-module. Suppose
we have proved the result for all numbers less or equal to k. Let x ∈ Ker(Rk+1) and
y = R(z) ∈ Im(R), we get Rk+1(xRk+1(z)) = Rk(R(xRk+1(z))) = Rk(R(x)Rk(y) −
R(R(x)Rk(z))). By the induction hypothesis, R(x)Rk(y), R(x)Rk(z) ∈ Ker(Rk). So,
Rk+1(xRk+1(z)) = 0 and so, the result is holds for k + 1. 2

Corollary 2.7. (i) There is no bijective derivation on A.

(ii) Let R an RB operator R on A of weight zero, and let t be a non zero idempotent element of
A. Then, t /∈ Im(Rk) ∩Ker(R), for k ≥ 2. Moreover, if t is primitive and if t = R(x) ∈
Im(R) then, either txt = 0 or t ∈ Im(R) ∩Ker(R).

Proof.

(i) According to Proposition 2.3 and the first point of the previous proposition.

(ii) Suppose that t ∈ Im(R2)∩Ker(R), i.e., t = R(x) for some x ∈ Im(R). Then t = R(x) =
R(x)R(x) = R(R(x)x+ xR(x)) = R(tx+ xt) = 0. It is a contradiction. The same proof
for k ≥ 2. The second point follows from the previous proposition (4). 2

Remark 2.8. If y = R(x) ∈ Im(R) is an invertible element of A, where R is an RB operator of
zero weight on A and x ∈ A, then R(x)−1 /∈ Im(R). In particular, R(x)−1 6= R(x−1), when x
is an invertible element of A.

From now on, A denotes a complex semi-simple algebra with dimension N ≥ 1.

3 Rota-Baxter operators of weight zero

In order to study the nilpoency of RB operators of zero weight of A, we use its semi-simplicity
properties and the algebraic closure of C. Let us start by giving some elementary properties that
we can use thereafter.

Proposition 3.1. Let R be an RB operator on A of weight zero. Then Im(R) is a subalgebra of
A. Moreover, if Im(R)2 = {0} then, R is nilpotent.

Proof. Let x = R(u), y = R(v) ∈ Im(R). Then xy = R(u)R(v) = R(R(u)v + uR(v)) ∈
Im(R). So, Im(R) is a subalgebra of A. On the other hand, it is easy to see that 0 is the only
eigenvalue of R. Indeed: Suppose that x is an eigenvector of R with nonzero eigenvalue λ. We
have

0 = R(x)R(e) = R(R(x) + xR(e)) = R[
1
λ
R(e)R(x) +R(x)] = R2(x) = λ2x,

a contradiction. Hence, R is nilpotent. 2

Proposition 3.2. Let R be an RB operator on A of weight zero. Then

1. Rk(e) = 1
k!(R(e))

k, for all integer k.

2. If R(e) 6= 0 then, R(e) is a divisor of zero in A.
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Proof.

1. By induction on k ∈ N. For k = 0, 1, it is true. Suppose that the statement holds true for all
numbers less or equal to k. Using (1.1), we have

Rk+1(e) = R(Rk(e)) = R[eRk(e) +R(e)Rk−1(e)−R(e)Rk−1(e)]

= Rk(e)R(e)−R(R(e)Rk−1(e))

= 1
k!R(e)

k+1 − k!
(k−1)!R

k+1(e); (by induction hypothesis).

Finally, we have Rk+1(e) = 1
(k+1)!R(e)

k+1.

2. For dimensional-reason, there exists a non zero polynomial
P =

∑r
k=0 akX

k ∈ C[X], of minimal degree r ≥ 1, such that P (R(e)) = 0. By Proposi-
tion 2.6 (1), a0 = 0. Hence,R(e)[Q(R(e))] = 0, whereQ =

∑r
k=1 akX

k−1. By minimality
of r, we have Q(R(e)) 6= 0 and we are done. 2

Corollary 3.3. Let R be an RB operator on A of weight zero. Then, R(e) is nilpotent.

Proof. Assume that R(e) is not nilpotent. Then, there exists a non zero polynomial P = a1X +
a2X

2 + ... + Xr ∈ C[X] of minimal degree r ≥ 1, such that P (R(e)) = 0 : (∗). Using the
previous proposition (first point), we have

(r + 1)R(P (R(e)))−R(e)P (R(e)) = r − 1
2

a1R(e)
2 + · · ·+ 1

r
ar−1R(e)

r = 0 : (∗∗).

By minimality of r, we have ar−1 6= 0 and hence, (∗)− r
ar−1

(∗∗) = 0. Again, the minimality of
r implies a1 = ... = ar−1 = 0, a contradiction. 2

Lemma 3.4. Let R be an RB operator on A of weight zero. Then,

(i) Rl(e)Rk(e) = (l+k)!
k!l! R

(l+k)(e), for all l, k ∈ N.

(ii)

R(x)Rm(e) =
m∑
k=0

Rm+1−k (xRk(e)) (3.1)

For all x ∈ A and for all m ∈ N.

Proof.

(i) It follows from Proposition 3.2.

(ii) By induction on m ∈ N. For m = 0, it is true. Let m ∈ N. Suppose that the statement
holds for m. Using Relation (1.1), we have

R(x)Rm+1(e) = R
(
R(x)Rm(e) + xRm+1(e)

)
= R (R(x)Rm(e)) +R

(
xRm+1(e)

)
(∗)
= R

(∑m
k=0 R

m+1−k (xRk(e)))+R
(
xRm+1(e)

)
=

∑m+1
k=0 R

m+2−k (xRk(e)) .
Equality (∗) is justified by induction hypothesis. 2

Corollary 3.5. Given a RB operatorR onA of weight zero, and l,m non negative integers. Then,
for any x ∈ A, we have the following relations

Rl(x)Rm(e) =
m∑
k=0

akR
m+l−k (xRk(e)) , (3.2)

for some non negative integers ak.
If R(e)m = 0, for some m ≥ 1, then

Rl(x) = −
m−1∑
k=1

Rl−k
(
xRk(e)

)
, for all l ≥ m+ 1. (3.3)
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Proof. From Lemma 3.4, it follows that:

Rl(x)Rm(e) =
m∑
k1=0

k1∑
k2=0

...

k(l−1)∑
kl=0

Rm+l−kl
(
xRkl(e)

)
.

By inverting the sums we obtain the first equality. The second one follows from Relation (3.1).
2

Remark 3.6. 1. Analogously to the proof of Lemma 3.4, we obtain

Rm(e)R(x) =
m∑
k=0

Rm+1−k(Rk(e)x), and

R(x)Rm(y) = Rm(R(x)y) +
m∑
k=1

Rm+1−k(xRk(y)),

for all x, y ∈ A and for all integer m ≥ 1.

2. By Corollary 3.5, we give the following equality

Rl(x)R(e) = lRl+1(x) +Rl(xR(e)).

To summaries, we get the following theorem which characterize RB operators of weight zero
of A.

Theorem 3.7. Any RB operator R on A of weight zero is nilpotent.

Proof. It follows from Lemma 3.4 (i) and Formula (3.3). 2

4 Rota-Baxter operators of weight -1

Let us compare the obtained results in the case of zero weight and nonzero case. By Proposition
2.2, any RB operator of nonzero weight on A can be assumed of weight -1. We are intersted in
this section on RB operators of weight -1 on A.

Lemma 4.1. Let R be an RB operator of weight -1 on A. Then

1. If R(e) ∈ Ce, then R(e) ∈ {0, e}. In this case, we have

A = Ker(R)⊕ Im(R).

2. Ker(Rk) is a Im(R− id)k-bi-module for all integer k ≥ 1.

Proof.

1. It follows, easily, from Relation (1.1).

2. Let x ∈ Ker(R) and y ∈ A. By (1.1) we have
R(x(R(y)− y)) = R(x)R(y)−R(R(x)y) = 0.
Then, xIm(R− id) ⊂ Ker(R). Analogously, we obtain Im(R− id)x ⊂ Ker(R).
Let k be a non negative integer. Assume that, the result is provided for all numbers less or
equal to k. Let x ∈ Ker(Rk+1) and y ∈ A. We have

Rk+1(x[(R− id)k+1(y)])

= Rk
(
R(x[R− id](R− id)k(y)

)
= Rk(R(x)R(R− id)k(y))−Rk(R(x)(R− id)k(y))
= Rk(R(x)(R− id)k(R(y)))−Rk(R(x)(R− id)k(y)).

Since R(x) ∈ Ker(Rk) then, Induction hypothesis gives

Rk+1(x[(R− id)k+1(y)]) = 0.

So, xIm(R−id)k+1 ⊂ Ker(Rk+1). Analogously, we have Im(R−id)k+1x ⊂ Ker(Rk+1).
2
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Corollary 4.2. Let R be a nonzero RB operator of weight −1 on A. Then

1. If R(e) ∈ Ce then, R is a projector operator. (That is R2 = R).

2. If A is simple. Then id is the only bijective RB operator of weight -1 on A.

Proof.

1. From Lemma 4.1, if R(e) ∈ Ce then, R(e) ∈ {0, e}. Using Relation (1.1), we obtain
R(x)R(e) = R(R(x) + xR(e)− x). According to the value of R(e), we obtain R(R(x)−
x) = 0, for all x ∈ A. So, R is a projector operator on A.

2. Let R be a bijective RB operator of weight -1 on A. By Proposition 2.2 (id− R) is an RB
operator of weight -1 on A. By Lemma 4.1 Ker(id−R) is a bi-ideal of A = Im(R). Since
A is assumed simple, then Ker(id − R) = {0} or Ker(id − R) = A. That is R − id is
bijective or R = id. If (R− id) is bijective, then Im(R− id) = A = Im(R).
Thus, there are x, y ∈ A such that R(y) = e = R(x)− x.
By Relation (1.1) we have

R(x) = R(x)R(y) = R[R(x)y + xR(y)− xy] = R[R(x)y + x− xy].

SinceR is bijective thenR(x)y+x−xy = x and hence,R(x)y = xy. SinceR(x) = (x+e),
then (x + e)y = xy and so, y = 0, as a result, we obtain e = R(y) = 0, a contradiction.
Consequently, R = id. 2

Lemma 4.3. Let R be an RB operator of weight -1 on A. Then

1. Rm(e)R(e) = (m+ 1)Rm+1(e)−mRm(e), for all m ≥ 1.

2. Rm(e) =
∑m
k=1 α

m
k R(e)

k, for some non negative rational numbers αmk such that αmm =

αm1 = 1
m! and αm+1

k =
αmk−1+mα

m
k

m+1 , for all m ≥ 2 and for all k = 2, ...,m.

3. R(e)m =
∑m
k=1 β

m
k R

k(e), for some non zero integers βmk such that βmm = m!, βm1 =

(−1)m−1 and βm+1
k = (k + 1)βmk−1 − kβmk , for all m ≥ 2 and for all k = 2, ...,m.

Proof. By a simple calculation, using Identity (1.1) we obtain (1). The other statements follow
by induction on m ≥ 1, using (1). 2

Corollary 4.4. Assume that R(e) /∈ Ce. We have

1. span{Rk(e), 0 ≤ k ≤ m} = span{R(e)k, 0 ≤ k ≤ m}, for all integer m.

2. Let m ≥ 2. R(e), R2(e), ..., Rm(e) are linearly independent if and only if the R(e), R2(e),
..., Rm(e) are.

3. If R(e) is nilpotent then, R is not.

4. If Rm(e) = 0 for some m ≥ 2 then, R(e) is not nilpoent.

Proof. The first two points follow immediately from Lemma 4.3. The proof of the third statement
and that of the fourth are analogous. Let us show, therefore (3). Assume that R(e) is nilpotent
with nilpotnce index denoted m ≥ 2. By Lemma 4.3, we have, for all l ≥ m,

Rl(e) =
∑l
k=1 α

l
kR(e)

k

=
∑m−1
k=1 αlkR(e)

k

Multiplying this equality by R(e)m−2 gives

Rl(e)R(e)m−2 = αl1R(e)
m−1 6= 0.

So, we get the result. 2

Proposition 4.5. Let R be an RB operator of weight -1 on A such that R(e) /∈ Ce. Then R(e) is
not nilpotent.
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Proof. It follows from Corollary 4.4. 2

Remark 4.6. 1. The result of the previous proposition is true for all RB operator of nonzero
weight on A.

2. An RB operator R, of nonzero weight on A, can be nilpotent without R(e) being.

3. An RB operator of nonzero weight on A is not necessarily nilpotent, (see Corollary 4.2).
However that any RB operator of weight zero on A is strongly nilpotent, (by Theorem 3.7).

Our objective in the following is to describe the spectrum of an RB operator R on A, which
we denote Sp(R). For any eigenvalue λ of R with multiplicity-order which we denote mλ, we
set Eλ = Ker(R− λid) and Nλ = Ker((R− λid)mλ). More hover, for any number γ /∈ Sp(R)
we denote Eγ = {0}. It is well-know that, Eλ ⊂ Nλ,∀λ ∈ Sp(R) and A = ⊕Nλ.
In all the following, R denoted an RB operator of weight -1 on A.

Lemma 4.7. Let λ, α ∈ Sp(R) such that {α, λ} 6= {0, 1}, and let x ∈ Eλ, y ∈ Eα. So, either
xy = 0 or xy ∈ Eγ , where γ = λα

λ+α−1 . In particular, EλEα ⊂ Eγ . Moreover, if λ and α are
different from 0 and 1 then, γ /∈ {0, 1, λ, α}.

Proof. By Relation 1.1, we have λαxy = (λ+ α− 1)R(xy). So, we get the result. 2

Corollary 4.8. Let x ∈ Ker(R−λ1id)\{0} for some number λ1 /∈ {0, 1} (provided his existence)
then, for all integer k ≥ 2, either xk = 0 or x, x2, ..., xk are linearly independent eigenvectors of
R. In particular, x is necessarily nilpotent.

Proof. Let k ≥ 2. Assume that xk 6= 0. Then, xl 6= 0 and R(xl) = λlx
l, for all 2 ≤ l ≤ k, with

λl =
λ1λl−1

λl−1+λ1−1 . From the previous lemma, it follows that the λ1, λ2, ..., λk are pairwise distinct
eigenvalues of R. So, we get the result. 2

Remark 4.9. For all numbers λ ∈ {0, 1} and for all α /∈ {0, 1}. We have, EλEα ⊂ Eλ.

Proposition 4.10. R is diagonalizable if, and only if, R2 = R.

Proof. If R2 = R then, R is easily, diagonalizable. Conversely, suppose that R is diagonalizable
with eventual pairwise distinct eigenvalues λ0 = 0, λ1 = 1, ..., λr for some r ≥ 1. Let us write

e = x0 + x1 + · · ·+ xr, xi ∈ Eλi for all i = 0, ..., r.

For any j ≥ 2 we have, xj = exj = x0xj︸︷︷︸
∈Eλ0

+ x1xj︸︷︷︸
∈Eλ1

+ ...+ xrxj︸ ︷︷ ︸
∈⊕i6=jEλi

∈ Eλj . So, xj = 0 and so,

e = x0 + x1. In the same way, we show that x = x0x+ x1x︸ ︷︷ ︸
∈Eλ0⊕Eλ1

= 0, for any x ∈ Eλj . Thus,

Eλj = {0}, for all j ≥ 2. Consequentially, A = Eλ0 ⊕ Eλ1 , and hence, R2 = R. 2

Remark 4.11. IfR2 = R then, the only elements t ∈ Im(R) and t′ ∈ Ker(R) such that e = t+t′

are orthogonal idempotent elements of A.

Lemma 4.12. For any eigenvalue λ 6= 1 of R we have NλE0 ⊂ E0 and E0Nλ ⊂ E0.

Proof. Let λ an eigenvalue of R different from 1 with multiplicity-order m. Given x ∈ Nλi and
x0 ∈ E0. If x ∈ Eλ then, xx0 ∈ EλE0 ⊂ E0, (by Lemma 4.7). If x /∈ Eλ then, m ≥ 2 in which
case, we have

(R− λid)m(x) = 0 =
m∑
k=0

Ckm(−λ)m−kRk(x).

Thus,

−
m∑
k=0

Ckm(−λ)m−kx =
m∑
k=0

Ckm(−λ)m−k[Rk(x)− x].



Rota-Baxter Operators on Complex Semi-simple Algebras 327

That is,

−(1− λ)mx =
m∑
k=1

Ckm(−λ)m−k[Rk(x)− x].

Hence,

−(1− λ)mxx0 =
m∑
k=1

Ckm(−λ)m−k[Rk(x)x0 − xx0].

and hence,

−(1− λ)mR(xx0) =
m∑
k=1

Ckm(−λ)m−kR[Rk(x)x0 − xx0].

Using Identity 1.1, we have

R[Rk(x)x0 − xx0] = R
(∑k

i=1[R
i(x)x0 −Ri−1(x)x0]

)
=

∑k
i=1 R[R

i(x)x0 −Ri−1(x)x0]

=
∑k
i=1 R

i(x)R(x0) = 0.

It follows that, R(xx0) = 0, (since (1− λ)m 6= 0) and hence, xx0 ∈ E0.
Consequentially, NλE0 ⊂ E0. In the same way, we show that, E0Nλ ⊂ E0.
Let us now, show that, N0E0 ⊂ E0. Given the elements x ∈ N0 and x0 ∈ E0. If x ∈ E0 then,
xx0 ∈ E0. (By Lemma 4.7). If R(x) 6= 0 then m0 ≥ 2, in this case, we have

−xx0 = [Rm0(x)x0 − xx0] =
∑m0
k=1 [R

k(x)−Rk−1(x)]x0︸ ︷︷ ︸
∈Ker(R)

.

So, xx0 ∈ E0 and so, N0E0 ⊂ E0. In the same way, one shows that, E0N0 ⊂ E0. 2

Theorem 4.13. If A is simple then, we have: 1 /∈ Sp(R) if, and only if, R = 0.

Proof It is easy, to see that, if R = 0 then, 1 /∈ Sp(R).
Conversely, Assume that 1 /∈ Sp(R). By the previous lemma, we have Ker(R) is a nonzero
bi-ideal of A. So, Ker(R) = A, since A is simple. We are done. 2

Corollary 4.14. When A is simple we have

1. R is nilpotent if, and only if, R = 0.

2. If R is non trivial (that is R 6= 0 and R 6= id) then, {0, 1} ⊂ Sp(R).

Proof It follows from Theorem 4.13 2

Proposition 4.15. (i) NλE1 ⊂ E1 and E1Nλ ⊂ E1, for all λ 6= 0.

(ii) EλN0 ⊂ N0 and N0Eλ ⊂ N0, for all λ 6= 1.

(iii) EλN1 ⊂ N1 and N1Eλ ⊂ N1, for all λ 6= 0.

Proof

(i) Given a nonzero eigenvalue λ of R. Set x ∈ Nλ and x1 ∈ E1. We have

−(−λ)mλxx1 = −
mλ∑
k=1

(−λ)mλ−kCkmλR
k(x)x1︸ ︷︷ ︸
∈E1

.

Hence, xx1 ∈ E1 and hence, NλE1 ⊂ E1. In the same way, we obtain E1Nλ ⊂ E1.
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(ii) Let λ ∈ Sp(R) with λ 6= 0 and λ 6= 1. If m0 = 1 then, EλN0 ⊂ N0 by Remarque 4.9.
Suppose that m0 ≥ 2. Let v ∈ Eλ and x ∈ N0. By induction on k = 1, ...,m0, we prove
that vRm0−k(x) ∈ Ker(Rk). The result is true for k = 1, since Rm0−1(x) ∈ Ker(R) (see
Remarque 4.9). Assume that the result is proved for a fixed k ∈ {1,m0 − 1}. Since

λvRm0−k(x) = R(v)Rm0−k(x)

= R[R(v)Rm0−k−1(x) + vRm0−k(x)− vRm0−k−1(x)]

= R[λvRm0−k−1(x) + vRm0−k(x)− vRm0−k−1(x)]

= (1− λ)R[vRm0−k−1(x)] +R(vRm0−k(x))

hence, by induction hypothesis, we have

0 = Rk(λvRm0−k(x))) = (1− λ)Rk+1[vRm0−k−1(x)] +Rk+1(vRm0−k(x))︸ ︷︷ ︸
=0

,

and hence, vRm0−k−1(x) ∈ Ker(Rk+1). In particular, for k = m0 we obtain vx ∈
Ker(Rm0). So, EλN0 ⊂ N0. In the same way, one can obtain N0Eλ ⊂ N0.

(iii) It follows from (ii) and Proposition 2.2, (replacing R by id−R and λ by (1− λ)). 2

Corollary 4.16. If A is simple of dimension 4 then, Sp(R) ⊂ {0, 1}. With equality, if and only
if, R is non trivial.

Proof Assume that R 6= 0 and R 6= id. By Corollary 4.14, we have {0, 1} ⊂ Sp(R). By
Proposition 4.10, Sp(R) contains at most one eigenvalue other that 0 and 1 and. Suppose that
R has an eigenvalue λ different from 0 and 1 with multiplicity-order m. If m = 1 then, A =
N0 ⊕N1 ⊕ Eλ. Set e = x0︸︷︷︸

∈N0

+ x1︸︷︷︸
∈N1

+ xλ︸︷︷︸
∈Eλ

. Thus, xλ = x0xλ + x1xλ︸ ︷︷ ︸
∈N0⊕N1

+ x2
λ. By Corollary 4.8,

we have x2
λ = 0 hence, xλ = 0 and hence e = x0 + x1. Consequently, x = x0x+ x1x︸ ︷︷ ︸

∈N0⊕N1

= 0 for

all x ∈ Eλ, a contradiction. So, m = 2. In this case, Eλ 6= Nλ (see Proposition 4.10). Moreover,
there exists v1, v2 ∈ Nλ such that R(v1) = λv1 and R(v2) = v1 + v2. In one hand, we have
v2

1 = 0 (see Corollary 4.8). On the other hand, we have

R(v1)R(v2) = R(R(v1)v2 + v1R(v2)− v1v2).

That is,
λv1v2 = R(λv1v2 + v1v2 − v1v2)

= λR(v1v2).

Thus, v1v2 ∈ E1.
Set e = x0 + x1 + α1v1 + α2v2, where x0 ∈ E0, x1 ∈ E1 and (α1, α2) ∈ C2. So,

v1 = v1x0 + v1x1︸ ︷︷ ︸
∈E0⊕E1

+ α1v
2
1

=0
+ α2v1v2︸ ︷︷ ︸

∈E1

∈ (E0 ⊕ E1) ∩ Eλ,

and so, v1 = 0, a contradiction. 2

Corollary 4.17. If A is simple of dimension 4 then, for all non trivial RB operator R of weight
-1 on A we have, m0 +m1 ≤ 3.

Proof At once, we have 0 ≤ m1,m0 ≤ 3. By replacing R by id− R, it suffices to eliminate the
cases where m0 = 3 or m1 = m0 = 2.

(i) If m0 = 3 then, dim(E0) = dim(E1) = 1 and dim(N0) = 3. Moreover, there exist nonzero
vectors u0, u1, u2 ∈ N0 such that R(u0) = 0, R(u1) = u0 and R(u2) = u1 + u0.
Let v be a nonzero vector of E1. By Formula (1.1), we have

u0v = R(u1)R(v) = R[u0v + u1v − u1v] = R(u0v).
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Hence, u0v ∈ E1. In the same way we have u1v ∈ E1.
On the other hand, we have

u2
0 = R(u1)R(u1) = R[u0u1 + u1u0 − u2

1] ∈ E0,

then, u2
1 ∈ span(u0, u1). In the same way, we have

u0u1 = R(u1)R(u2) = R[u0u2 + u2
1 − u1u2] ∈ E0,

then, u2
1 − u1u2 ∈ span(u0, u1) from which we get u1u2 ∈ span(u0, u1).

Let us write e = α0u0 + α1u1 + α2u2 + αv for some numbers α0, α1, α2 and α.
• If α = α2 = 0 then, e = α0u0 + α1u1 and so, u2 = u2e = α0u0u2 + α1u1u2 ∈
span(u0, u1), a contradiction.
• If α2 = 0 and α 6= 0 then, u0 = α0u

2
0 + α1u0u1︸ ︷︷ ︸
∈E0

+ αu0v︸ ︷︷ ︸
∈E1

and hence, u0v = 0 ∈ E0 which

gives AE0 ⊂ E0. On the other hand, we have N0E0 ⊂ E0, we deduce that E0 is a nonzero
bi-ideal of A and so, E0 = A a contradiction.
• If α = 0 and α2 6= 0 then,

v = α0u0v + α1u1v︸ ︷︷ ︸
∈E1

+ α2u2v + αv2︸︷︷︸
∈E1

and hence, u2v = 0 ∈ E1. According to (i) and (ii), we obtain AE1 ⊂ E1, we deduce that
E1 is a nonzero bi-ideal of A and so E1 = A a contradiction.
• If αα2 6= 0 then, as above, we have u2v, vu2 ∈ E1 and so, E1 is a nonzero bi-ideal of A
and so E1 = A a contradiction.

(ii) If m0 = m1 = 2. Then, dim(E0) = dim(E1) = 1 and there exist nonzero vectors u1, u2 ∈
N0 such that R(u1) = 0 and R(u2) = u1. Similarly, there are nonzero vectors v1, v2 ∈ N1
such R(v1) = v1 and R(v2) = v1 + v2. Formula (1.1) gives v1u1 = u1v1 = 0.
Let us write e = α1u1 + α2u2 + λ1v1 + λ2v2 for some numbers α1, α2, λ1 and λ2.
• If α2 6= 0 then, by multiplying e by v1 we get u2v1, v1u2 ∈ E1 which makes E1 a nonzero
bi-ideal of A, a contradiction. Thus, α2 = 0.
• If λ2 = 0 then, e = α1u1 + λ1v1. In this case, α1 and λ1 are necessarily non-zero.
(multiply e by v1 and by u1). By multiplying e by v2 we get v2 = α1u1v2 + λ1v1v2. So,
u1v2 =

1
α1
(v2 − λ1v1v2) and so, R(u1v2) =

1
α1
(v1 + v2 − λ1v1v2). Calculating R(u1v2) we

get λ1v1 = α1u1 a contradiction. Thus, λ2 6= 0 which gives u1v2, v2u1 ∈ E0. Consequently,
E0 is a nonzero bi-ideal of A, a contradiction.

Remark 4.18. dim(E0) + dim(E1) ≥ 3.

5 Examples

Let A be a complex finite dimensional semi-simple algebra. Then, there exist τ1, ..., τr ∈ A such
that

e =
r∑
i=1

τi, with τiτj = δijτi for all 1 ≤ i, j ≤ r. (Pierce decomposition of e ). (5.1)

Here, δij is the Kronecker symbol: (δij = 0 if i 6= j and δii = 1). For more details, see for
example, [13].
We denote, For all 1 ≤ i, j ≤ r, Ai = Aτi := {aτi/a ∈ A} and Aij = τiAτj .
We will also need the following notations:

A0 = ⊕iAii, A− = ⊕i<jAij and A+ = ⊕i>jAij .

It is easy to see that:
• A = ⊕iAi = ⊕ijAij .
• A = A− ⊕A0 ⊕A+.
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• A−A0 = A− = A0A−.
• A+A0 = A+ = A0A+.
• A0A0 = A0 and A−A+ = {0} = A+A−.
• A+A+ ⊂ A+ and A−A− ⊂ A−.

In particular, A0 is an unital subalgebra of A of which (τ1, ..., τr) is a basis, (since each Ai is
minimal left ideal of A, see [3]).

Proposition 5.1. If R0 is an RB operator of weight λ on A0, then an operator R defined as

R(a− + a0 + a+) = R0(a0)− λa±, a± ∈ A±, a0 ∈ A0,

is an RB operator on A of weight λ.

Proof. It follows from Formula (1.1), using the fact that A0A± ⊂ A± and A+A− = {0}. 2

Theorem 5.2. A linear operator R(τi) =
∑r
k=1 aikτk, aik ∈ C, is an RB operator of weight 1

on A0 if and only if the following conditions are satisfied:

aikajk = ajiaik + aijajk for i 6= j, aik(aik − 2aii − 1) = 0 for i = j. (5.2)

Proof. For any 1 ≤ i, j ≤ r, we have

R(τi)R(τj) = R(τiR(τj) +R(τi)τj + τiτj)

if and only if,
r∑
k=1

aikτk

r∑
l=1

ailτl = R

(
τi

r∑
k=1

ajkτk +
r∑
k=1

aikτkτj + δijτi

)

if and only if,
r∑
k=1

(
r∑
l=1

aikajlτkτl

)
= R(ajiτi + aijτj + δijτi)

if and only if,
r∑
k=1

aikajkτk =
r∑
k=1

(ajiaik + aijajk + δijaik) τk.

From which (5.2) follows. 2

Using Theorem 5.2, we make some examples of RB operators on A, when A denotes Com-
plex Clifford algebras Cl(p, q). We use definitions and notations of complex Clifford algebras
using in [12].

Example 5.3. 1. Consider A = Cl(1, 1) equipped with generators e1, e2: They satisfy e2
1 =

e = −e2
2 and e1e2 = 0. Set t1 = 1

2(e − e1) and t2 = 1
2(e + e1). We have e = t1 + t2; a

Pierce decomposition of identity.

An operator R0 defined as R0(ti) =
∑
aiktk is a RB operator on A0 of weight 1 if ,and

only if, one of the following cases is true:

a. a11 = a22 = −1 and (a12 = −1, a21 = 0 or a21 = −1, a12 = 0). That is
R0(t1) = −t1 − t2 and R0(t2) = −t2,
or
R0(t1) = −t1 − t2 and R0(t2) = −t1

b. a11 = a22 = 0 and (a12 = 1, a21 = 0, or a21 = 1, a12 = 0). That is
R0(t1) = t2 and R0(t2) = 0,
or
R0(t1) = 0 and R0(t2) = t1

On the other hand, we have A− = Ct3 and A+ = Ct4 where t3 = e1e2 and t4 = (e1e2−e2).
Proposition 5.1 gives RB operators on Cl(1, 1) of weight 1.
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2. Let us consider A = Cl(1, 3) with generators e1, e2, e3, e4. They satisfy the following
relation (e2

1 = e = −e2
2 = −e2

3 = −e2
4). The following operator is an RB operator of weight

1 on A0 = ⊕4
i=1Cti.

R0(t1) = 0, R0(t2) = −t2, R0(t3) = −t2 − t3, R0(t4) = −t2 − t3 − t4,

where t1 = 1
4(e− e1)(e− ie2e3), t2 = 1

4(e− e1)(e+ ie2e3), t3 = 1
4(e+ e1)(e− ie2e3) and

t4 = 1
4(e+ e1)(e+ ie2e3) form a Pierce decomposition of identity: e = t1 + t2 + t3 + t4.

Proposition 5.1 makes RB operators on A.
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