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Abstract In this paper, we exploit the concept of a particular n× n symmetric matrix of the
form F = [Fk]n×n, where k = max(i, j)+1 and FK is the kth Fibonacci number. We investigate
some special properties of this new matrix. In addition, we construct the Hadamard exponential
form of this new matrix. We compute the spectral norm, determinant, principal minors, some
upper and lower bounds of this matrix and its Hadamard exponential. Finally, we prove that its
Hadamard inverse is positive definite, and investigate some properties of its Hadamard inverse.

1 Introduction

Recently, numerous researchers [8, 9, 10, 11, 12, 13, 14, 15] studied many properties of par-
ticular matrices involving special numbers. Specifically, Akbulak and Bozkort [1] investigated
the properties of Toeplitz matrices involving Fibonacci and Lucas numbers. Akbulak [2] stud-
ied Hadamard exponential matrix of the form e◦Hn = [ei+j ]i,j . Bozkurt [3] found lp norms
of almost Cauchy-Toeplitz matrices. Solak and Bozkort [4] determined bounds for the spectral
and lp norms of Cauchy-Hankel matrices of the form Hn = [ 1

g+kh ]
n
i,j=0, where k is defined by

i + j = k and g, h are any positive numbers. Civciv and Turkmen [6] established a lower and
upper bound for the lp norms of the Khatri-Rao product of Cauchy-Hankel matrix of the form
Hn = [ 1

0/5+i+j ]
n
i,j=0.

Koken and Bozkurt [7] defined the Lucas QL-matrix similar to the Fibonacci Q-matrix and
found some well-known equalities and a Binet-like formula for the Lucas numbers. In [11],
Petroudi and Pirouz investigated some properties of particular circulant matrix involving Van
Der Laan hybrid sequence. Solak and Bahsi [14] studied the matrix of the form B = [bij ]
wherebij = a+min(i, j)−1. They studied some properties of this matrix. For more information
of the concerned literature, one can go through these references [1, 2, 3, 4, 5]

2 Preliminiaries and Definitions

If we start from n = 0, then the Fibonacci and Lucas numbers Fn and Ln are given respectively
by

F0 = 0,F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2;
L0 = 2,L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

From [1, 7, 8], we have the following relations for Fibonacci and Lucas numbers

n∑
i=1

Fi = Fn+2 − 1; Fm+n = Fm+1Fn + FmFn−1, (2.1)

n−1∑
i=1

F 2
i = FnFn−1; Ln = 2αn −

√
5Fn. (2.2)
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Fn =
αn − βn

α− β
, αβ = −1,

Ln = αn + βn, α2 =
3 +
√

5
2

, β =
3−
√

5
2

, (2.3)

where α = 1+
√

5
2 , β = 1−

√
5

2 .

Let A = [aij ] is an n×n matrix then the maximum column length norm C1(.) and maximum
row length norm r1(.) of A [1] is defined by

C1(A) = max
j

√∑
i

|aij |2 , r1(A) = max
i

√∑
j

|aij |2. (2.4)

Hadamard exponential and Hadamard inverse of this matrix are defined respectively by e◦A =
eaij and A◦(−1) = ( 1

aij
). Accoeding to [3], the lp norm of A can be defined by

‖A‖p =

 n∑
i=1

n∑
j=1

|aij |p
 1

p

. (2.5)

For p = 2, this norm is called Frobenius or Euclidean norm and denoted by ‖A‖F or‖A‖E .
By [3], the spectral norm of A is defined by

‖A‖2 =
√

max |λi|
1≤i≤n

, (2.6)

where λi are the eigenvalues of matrix AAH . Also, AH is conjugate transpose of A. The
inequality between the Frobenius and spectral norm [6] can be given as follows

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F . (2.7)

Let A = [aij ] and B = [bij ] are m× n matrices. Hadamard product of A and B is defined by
A ◦B = [aijbij ]. Let A,B and C are m× n matrices and A = B ◦ C. Then we have [7]

‖A‖2 ≤ r1(B).c1(C). (2.8)

It is known that ∑n−1
k=1 x

k = x+ x2 + · · ·+ xn−1 = xn−x
x−1 ,∑n−1

k=1 kx
k = (n−1)xn+1−nxn−1+x

(x−1)2 .
(2.9)

In 2012, Abulak and Ipek [2] defined Hadamard inverse F ◦(−1) and Hadamard exponential
Hn = e◦[F ]n×n of F as follows

F ◦(−1) =



1
F2

1
F3

1
F4
· · · 1

Fn+1
1
F3
1
F4

1
F3
1
F4

1
F4
· · ·

1
F4
. . .

1
Fn+1

1
Fn+1

...
...

...
...

1
Fn+1

1
Fn+1

1
Fn+1
· · · 1

Fn+1


, (2.10)

and

Hn = e◦[F ]n×n =



eF2 eF3 eF4 · · · eFn+1

eF3

eF4

eF3

eF4

eF4 · · ·
eF4 . . .

eFn+1

eFn+1

...
...

...
...

eFn+1 eFn+1 eFn+1 · · · eFn+1

 . (2.11)
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3 Main Results

In this section, we introduce a particular n× n matrix F = [Fk]n×n =
[
Fmax(i,j)+1

]n
i,j=1, where

Fk (for k = 0, 1, 2, . . . , n), is the kth Fibonacci number, in the following form

F =



1 2 35 · · · Fn+1

2
3

2
3

35 · · ·
35 . . .

Fn+1

Fn+1
...

...
...

...
Fn+1 Fn+1 Fn+1Fn+1 · · · Fn+1

 =



F2 F3 F4 · · · Fn+1

F3

F4

F3

F4

F4 · · ·
F4 . . .

Fn+1

Fn+1
...

...
...

...
Fn+1 Fn+1 Fn+1 · · · Fn+1

 .
(3.1)

We observe that this matrix is symmetric. First, we find determinant of this matrix. Then, we
show that this matrix is invertible and find its inversion.

Theorem 3.1. Let F be a matrix as in (3.1). Then we have

det(F ) = (−1)n+1Fn+1

n∏
i=2

(Fi+1 − Fi) = (−1)n+1Fn+1

n∏
i=2

Fi−1. (3.2)

Proof. By definition of F , we have

det(F ) = det



F2 F3 F4 · · · Fn+1

F3

F4

F3

F4

F4 · · ·
F4 . . .

Fn+1

Fn+1
...

...
...

...
Fn+1 Fn+1 Fn+1 · · · Fn+1

 (3.3)

If we use elementary row operations then we get

det(F ) = det



F2 F3 F4 · · · Fn+1

F3 − F2 0 0 · · · 0
F4 − F2 F4 − F2 0 · · · 0

...
...

...
...

...
Fn+1 − F2 Fn+1 − F3 Fn+1 − F4 · · · 0

 . (3.4)

By expanding this determinant, we obtain

det(F ) = (−1)n+1Fn+1

n∏
i=2

(Fi+1 − Fi) = (−1)n+1Fn+1

n∏
i=2

Fi−1. (3.5)

Theorem 3.2. Let F be a Matrix as in (3.1). Then, F is invertible and the inversion of F is a
tridiagonal matrix of the form

G = [gij ] = F−1 =



g11 = −F2

gij = 0 for |i− j| > 1

gii = − Fi

Fi−1Fi−2
for1 < i = j < n

gij =
1

Fi−1
for |i− j| = 1

gnn = −Fn

Fn−1Fn+1

. (3.6)

Proof. By theorem 3.1 it is clear that F is nonsingular. So, F is invertible. Now, to proving the
theorem, we need a lemma from matrix algebra.
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Lemma 3.3. Let A is an n× n nonsingular matrix, b is an n× 1 matrix and c is a real number.

If we take M =

[
A b

bT c

]
. Then we have

M−1 =

[
A−1 + 1

kA
−1bbTA−1 − 1

kA
−1b

− 1
k b
TA−1 1

k

]
, (3.7)

where k = c− bTA−1b.

Proof. By multiplying of two matrices M,M−1, we have[
A b

bT c

]
.

[
A−1 + 1

kA
−1bbTA−1 − 1

kA
−1b

− 1
k b
TA−1 1

k

]
= In+1. (3.8)

Thus the proof is completed.

Now, by principal of mathematical induction on n, we prove the theorem 3.2.
Proof. The result is true for n = 2 that is

F =

[
1 2
2 2

]
=

[
F2 F3

F3 F3

]
then

A−1 =

[
−1 1
1 − 1

2

]
=

[
−F2 1

1 F2
F3F1

]
.

Now, assume that the result is true for n, that is

F = [Fmax(i,j)+1]
n
i,j=1, F

−1 = ([Fmax(i,j)+1]
n
i,j=1)

−1.

We prove that the result is true for n+ 1.

By taking M = [Fmax(i,j)+1]
n+1
i,j=1 and A = [Fmax(i,j)+1]

n
i,j=1, we have

bT =
[
Fn+2 Fn+2 · · · Fn+2

]
, c = Fn+2,

1
k
= − Fn+1

FnFn+2
,

1
k
A−1b =

[
0 0 · · · 1

Fn

]T
,

−1
k
bTA−1 =

[
0 0 · · · 1

Fn

]
.

By substituting these values along with lemma 3.3, we get the result.

Theorem 3.4. Let F be as in (3.1), then the Euclidean norm of F is

‖F‖E =

√
2
5
(nL2n+4 − (n+ 1)L2n+2 + L2) +

2n(−1)n

5
− 1

5
(L2n+3 − L3). (3.9)

Proof. By definition of F and Euclidean norm, we have

‖F‖2
E = (2n− 1)F 2

n+1 + (2n− 3)F 2
n + (2n− 5)F 2

n−1 + . . .+ 3F 2
3 + F 2

2 =
n∑
k=1

(2k − 1)F 2
k+1.

By using (2.11), we have

‖F‖2
E =

n∑
k=1

(2k − 1)
(
αk+1 − βk+1

α− β

)2

= 2
n∑
k=1

k

(
αk+1 − βk+1

α− β

)2

−
n∑
k=1

(
αk+1 − βk+1

α− β

)2

=
2
5

n∑
k=1

k
(
α2k+2 + β2k+2 − 2 (αβ)k+1

)
− 1

5

n∑
k=1

(
α2k+2 + β2k+2 − 2 (αβ)k+1

)
.
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Now, according to (2.9), we get

‖F‖2
E = 2

5

[
α2
(
n(α2)n+2−(n+1)(α2)n+1+α2

(α2−1)2

)
+ β2

(
n(β2)n+2−(n+1)(β2)n+1+β2

(β2−1)2

)]
+ 4

5

(
n(αβ)n+2−(n+1)(αβ)n+1+αβ

(αβ−1)2

)
− 1

5

[
α2
(
(α2)n+1−α2

α2−1

)
+ β2

(
(β2)n+1−β2

β2−1

)
− 2αβ

(
(αβ)n+1−αβ

αβ−1

)]
.

If we set α = 1+
√

5
2 , β = 1−

√
5

2 , then, we have

αβ = 1, α2 − 1 =

(
1 +
√

5
2

)2

− 1 =
1 +
√

5
2

= α, β2 − 1 =

(
1−
√

5
2

)2

− 1 =
1−
√

5
2

= β.

So, we get

‖F‖2
E = 2

5

(
n(α2n+4 + β2n+4)− (n+ 1)(α2n+2 + β2n+2) + (α2 + β2)

)
+ 2n(−1)n

5
− 1

5

(
(α2n+3 + β2n+3)− (α3 + β3)

)
= 2

5 (nL2n+4 − (n+ 1)L2n+2 + L2) +
2n(−1)n

5 − 1
5 (L2n+3 − L3) .

By taking 1
2 th power from the both sides of above equalities, we have

‖F‖E =

√
2
5
(nL2n+4 − (n+ 1)L2n+2 + L2) +

2n(−1)n

5
− 1

5
(L2n+3 − L3). (3.10)

Theorem 3.5. Let F be as in (3.1), then we have the following upper and lower bounds for the
spectral norm of F .

1√
n

√
2
5 (nL2n+4 − (n+ 1)L2n+2 + L2) +

2n(−1)n
5 − 1

5 (L2n+3 − L3) ≤ ‖F‖2

≤
√

2
5 (nL2n+4 − (n+ 1)L2n+2 + L2) +

2n(−1)n
5 − 1

5 (L2n+3 − L3)

Proof. It follows from theorem 3.4 and statement (2.7).

Theorem 3.6. Let F be as in (3.1), then we have the following upper bound for spectral norm of
F .

‖F‖2 ≤ Fn+1

√
n(FnFn+2 − 1). (3.11)

Proof. By definition of A, we have

F2 F3 F4 · · · Fn+1

F3

F4

F3

F4

F4 · · ·
F4 . . .

Fn+1

Fn+1
...

...
...

...
Fn+1 Fn+1 Fn+1 · · · Fn+1



=



F2 1 1 · · · 1
F3

F4

F3

F4

1 · · ·
F4 . . .

1
1

...
...

...
...

Fn+1 Fn+1 Fn+1 · · · 1

 ◦


1 F3 F4 · · · Fn+1

1
1

1
1

F4 · · ·
1 . . .

Fn+1

Fn+1
...

...
...

...
1 1 1 · · · Fn+1


= A ◦B.

By definition of row maximum length norm and column maximum length norm, we have

r1(A) = max
i

√∑
j

|aij |2 =

√√√√n+1∑
i=2

F 2
i =

√√√√ n∑
i=2

F 2
i + F 2

n+1. (3.12)
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By applying (2.1), we get

r1(A) =
√
FnFn+1 − F1 + F 2

n+1 =
√
Fn+1(Fn + Fn+1)− 1 =

√
FnFn+2 − 1. (3.13)

c1(B) = max
j

√∑
i

|bij |2 =
√
nF 2

n+1
=
√
nFn+1. (3.14)

From (2.8) we know ‖F‖2 ≤ r1(A)c1(B). Thus, we have

‖F‖2 ≤
√
FnFn+2 − 1

√
nFn+1 = Fn+1

√
n(FnFn+2 − 1). (3.15)

Theorem 3.7. Let F be as in (3.1), then determinant of Hadamard inverse of F is

det(F ◦(−1)) =
1

Fn+1

n∏
2

1
Fi+1

. (3.16)

Proof. By definition of Hadamard inverse, we have

det
(
F ◦(−1)

)

= det



1
F2

1
F3

1
F4
· · · 1

Fn+1
1
F3
1
F4

1
F3
1
F4

1
F4
· · ·

1
F4
. . .

1
Fn+1

1
Fn+1

...
...

...
...

1
Fn+1

1
Fn+1

1
Fn+1
· · · 1

Fn+1


=



1
F2

1
F3

1
F4
· · · 1

Fn+1
1
F3
− 1

F2
1
F4
− 1

F2

0
1
F4
− 1

F3

0 · · ·
0 . . .

0
0

...
...

...
...

1
Fn+1

− 1
F2

1
Fn+1

− 1
F3

1
Fn+1

− 1
F4
· · · 0



= (−1)n+1 1
Fn+1

(
1
F3
− 1
F2

)(
1
F4
− 1
F3

) · · · ( 1
Fn+1

− 1
Fn

)

=
(−1)n+1

Fn+1
(
F2 − F3

F2F3
)(
F3 − F4

F3F4
) · · · (Fn − Fn+1

FnFn+1
)

=
(−1)n+1

Fn+1
(
−F1

F2F3
)(
−F2

F3F4
) · · · ( −Fn−1

FnFn+1
)

=
(−1)n+1

Fn+1
(−1)n−1 1

F3F4F5 · · ·FnFn+1

=
1

Fn+1

n∏
i=2

1
Fi+1

.

Thus, the proof is completed.

Corollary 3.8. Let F ◦(−1) be as in (2.10), then F ◦(−1)is a positive definite matrix.

Proof. According to theorem 3.7, all leading principal minors of F ◦(−1) are positive, thus the
result follows from [16].

Corollary 3.9. Let F ◦(−1) be as in (2.10), then all eigenvalues of F ◦(−1) are positive.

Proof. Since F ◦(−1) is positive definite, so all eigenvalues of F ◦(−1) are positive [16].

Example 3.10. Let F ◦(−1) be as in (2.10). We represent in Table 1, determinants and eigenvalues
of F ◦(−1) for some values of n.
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n det(F ◦(−1)) Eigen values of each A (is rounded off to four dec-
imal places)

2 0.2500 1.3090, 0.1910
3 0.0275 0.0682, 0.2731, 1.4921
4 0.0022 0.0454, 0.0981, 0.3172, 1.5727
5 1.0417 ×

10−4
0.0279, 0.0550, 0.1225, 0.3437, 1.6091

6 3.0819 ×
10−6

0.0174, 0.0358, 0.0616, 0.1379, 0.3581, 1.6244

Table1. Determinants and eigenvalues of F ◦(−1)

Theorem 3.11. Let F ◦(−1) be as in (2), then F ◦(−1) is invertible and the inversion of F ◦(−1) is a
tridiagonal matrix of the form

G = [gij ] =
(
F ◦(−1)

)−1
=



g11 = F2

gij = 0 for |i− j| > 1

gii =
F 3

i−1
Fi−3Fi−2

for1 < i = j < n

gij = −Fi−1Fi

Fi−2
for |i− j| = 1

gnn = F 2
n

Fn−2

. (3.17)

Proof. The proof is similar to theorem 3.2.

Theorem 3.12. Let Hn = e◦[F ]n×nbe a matrix as in (2.11), then

det
(
e◦[F ]2×2

)
= e3(1− e),

det
(
e◦[F ]3×3

)
= e6(1− e)2,

det
(
e◦[F ]n×n

)
= −eFn+1

(
eFn−1 − 1

)
det
(
e◦[F ](n−1)×(n−1)

)
; forn ≥ 4.

(3.18)

Proof. For n = 2, 3, determinant of F can be easily calculated by definition of determinant. For
n ≥ 4, we have

det(Hn) = det(e◦[F ]n×n) = det



eF2 eF3 eF4 · · · eFn+1

eF3 − eF2

eF4 − eF2

0
eF4 − eF3

0 · · ·
0 . . .

0
0

...
...

...
...

eFn+1 − eF2 eFn+1 − eF3 eFn+1 − eF4 · · · 0



= (−1)n+1eFn+1
(
eF3 − eF2

) (
eF4 − eF3

) (
eF5 − eF4

)
· · ·
(
eFn+1 − eFn

)
= (−1)n+1eFn+1

∏n
i=2

(
eFi+1 − eFi

)
=
[
(−1)n

(
eF3 − eF2

) (
eF4 − eF3

) (
eF5 − eF4

)
· · ·
(
eFn − eFn−1

)] (
−eFn

[
eFn+1(eFn−1 − 1)

])
= −eFn+1(eFn−1 − 1) det

(
e◦[F ](n−1)×(n−1)

)
.

Theorem 3.13. Let Hn = e◦[F ]n×n be as in (2.11), then Hn is invertible and we have

H−1
2 =

(
e◦[F ]2×2

)−1
=

[
− 1
e2−e

1
e2−e

1
e2−e

1
e3−e2

]
, (3.19)

H−1
3 =

(
e◦[F ]3×3

)−1
=

 −
1

e2−e
1

e2−e 0
1

e2−e − (e+1)
e2(e−1)

1
e3−e2

0 1
e3−e2 − 1

e3(e−1)

 . (3.20)
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And for n ≥ 4 we have

H−1
n =

(
e◦[F ]n×n

)−1
=



−1
e2−e

1
e2−e 0 0 0 · · · 0 0

1
e2−e

−(e+1)
e2−e

1
e3−e2 0 0 · · · 0 0

0 1
e3−e2

e2+e+1
e3−e5

−1
e3−e5 0 · · · 0 0

0 0 −1
e3−e5 D −1

e5−e8 · · · 0 0

... ...
... · · ·

. . . . . . . . . 0

0 0 0 · · · 0 −1
eFn−1−eFn

E −1
eFn−eFn+1

0 0 0 · · · 0 0 −1
eFn−eFn+1

−1
e2−e



,

(3.21)

where

D =
e4 + e3 + e2 + e+ 1
e5(−e4 − e3 + e+ 1)

, E =

∑Fn−1
k=0 ek

eFn

(
−
∑Fn−1
k=Fn−1

ek +
∑Fn−2−1
k=0 ek

) .
Proof. By theorem 3.12, Hn = e◦[F ]n×n is nonsingular. So, it is invertible. For n = 2, 3 the
inversion of Hn = e◦[F ]n×n can be easily computed by definition. We can prove this theorem for
n ≥ 4, by applying similar method which is used in theorem 3.2.

Corollary 3.14. If we set Dn = |det(F )|, in particular D1 = 1, D2 = |det ([F ]2×2)| , . . . , Dn =

|det ([F ]n×n)|, then we have

DnDn−2 =
Fn+1F

2
n−1

F 2
nFn−2

D2
n−1.

Proof. By definition of Dn, we have

DnDn−2 = (Fn+1
∏n
i=2 (Fi+1 − Fi))

(
Fn−1

∏n−2
i=2 (Fi+1 − Fi)

)
= Fn+1Fn−1 (Fn+1 − Fn) (Fn − Fn−1)

(∏n−2
i=2 (Fi+1 − Fi)

)2

=
Fn+1F

2
n−1

F 2
nFn−2

(
F 2
nF

2
n−2

(∏n−2
i=2 (Fi+1 − Fi)

)2
)
=

Fn+1F
2
n−1

F 2
nFn−2

D2
n−1·

Thus, the proof is completed.

Corollary 3.15. Let ∆i denotes the leading principal minors of F ◦(−1). In particular we take
∆1 = 1, . . . , ∆n = det(F ◦(−1)). Then we have

1)∆n∆n−2 ≤ ∆
2
n−1 ,

2)∆n∆n−2 =
F 3
n

F 2
n+1Fn−1

∆
2
n−1,

3)∆1∆2∆3 · · ·∆n =
n+1∏
k=3

1
Fn−k+3
k

=
n+1∏
k=3

F k−3
k

Fnk
·

Proof. By definition of principal minors and theorem 3.7, we have

(1)∆n∆n−2 =
(

1
Fn+1

∏n+1
i=3

1
Fi

)(
1

Fn−1

∏n−1
i=3

1
Fi

)
= 1

Fn−1

1
Fn+1

1
Fn+1

1
Fn

(∏n−1
i=3

1
Fi

)2

≤
(

1
Fn

1
Fn

∏n−1
i=3

1
Fi

)2
= ∆2

n−1·
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Thus, the proof is completed.

(2)∆n∆n−2 =
(

1
Fn+1

∏n+1
i=3

1
Fi

)(
1

Fn−1

∏n−1
i=3

1
Fi

)
= 1

Fn−1

1
F 2

n+1

1
Fn

(∏n−1
i=3

1
Fi

)2

= F 3
n

F 2
n+1Fn−1

(
1
Fn

1
Fn

∏n−1
i=3

1
Fi

)2
= F 3

n

F 2
n+1Fn−1

(
1
Fn

∏n
i=3

1
Fi

)2
= F 3

n

F 2
n+1Fn−1

∆2
n−1·

Thus, the proof is completed.
Proof of (3) is straightforward by multiplying all ∆k for k = 1, · · · , n.
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