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Abstract We introduces the concept of dual Rickart (Baer) modules in relation to the cosin-
gular submodule. The paper demonstrates that a module is considered to be Z-dual Rickart
only if its submodule, Z (M ), is a dual Rickart direct summand of the module M. Additionally,
it is proven that a module is considered dual Baer with respect to Z(M) only when it is dual
Rickart with respect to Z (M), and the module has the strong summand sum property for direct
summands included in Z(M). Lastly, we present a characterization of right Z-dual Baer rings.

1 Introduction

All rings considered in this paper will be associative with an identity element and all modules
will be unitary right modules unless otherwise stated. Let R be a ring and M an R-module.
S = Endr(M) will denote the ring of all R-endomorphisms of M. We will use the notation
N < M to indicate that N is small in M (i.e. VL < M,L + N # M). A module M is called
hollow if every proper submodule of M is small in M. The notation N <® M denotes that
N is a direct summand of M. N < M means that NN is a fully invariant submodule of M (i.e.,
V¢ € Endr(M), ¢(N) C N). Rad(M) and Soc(M) denote the radical and the socle of a
module M, respectively.

Let L C K < M. We say that K lies above L in M if K/L < M/L. A module M is called
lifting if every submodule A of M lies above a direct summand D of M ([2]).

Let M be a module. Following [5], M is called (dual) Rickart in case for every endomor-
phism ¢ of M, (Imyp) Kery is a direct summand of M. Researchers in module theory discov-
ered the significance of idempotents in the ring of all endomorphisms of a module through the
study of (dual) Rickart modules. A well-known outcome of this research is that a module M is
considered Rickart and dual Rickart only when Endg (M) is a von Neumann regular ring

Several studies have been conducted on dual Rickart modules and their extensions. However,
this particular research delves into the overall characteristics of Z-dual Rickart (Baer) modules.
The paper presents various conditions that can be used to determine whether a module is Z-dual
Rickart (Baer).

The singular submodule of a module M consists of elements m € M such that, for some
essential right ideal I of R, mI = 0. Talebi and Vanaja have introduced the concept of the dual
of the singular submodule, denoted as 7(M ), as the intersection of the kernels of all module
homomorphisms f : M — U such that U is a small right R-module. A module M is referred
to as a cosingular module if Z(M) = 0 and noncosingular if Z(M) = M. A ring R is called a
right V-ring if every simple right R-module is injective, which is equivalent to Rad(M) = 0 for
all right R-modules M. Any unfamiliar terminology can be found in [6] and [11].

A new approach to generalizing lifting modules has been introduced in [1], which involves
utilizing a fixed fully invariant submodule of a given module. In this approach, a module M is
considered Zp-lifting (where F' is a fully invariant submodule of M) if for every endomorphism
g of M, the submodule g(F') is above a direct summand of M. The authors of [1] also investigate
various properties of such modules. Building upon this work, Moniri and Amouzegar study H -
supplemented modules using the same approach in [7]. A module M is Zp-H-supplemented if
for every g € Endg(M), there exists a direct summand D of M such that g(F') + X = M if and
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only if D + X = M, for all submodules X of M. Additionally, the authors provide some condi-
tions for a Zp- H-supplemented module to be Zp-lifting and investigate the relationship between
these and other similar classes of modules. They also study direct sums of Z-H-supplemented
modules. Another related approach is studied in [10], where the authors investigate a version of
@-supplemented modules using a two-sided ideal of the related ring, namely, I-®-supplemented
modules, and utilize fully invariant submodules such as I K (where [ is an ideal of R and K is a
direct summand of M).

2 Z-dual Rickart modules and Z-dual Baer modules

One way to begin the section is by providing the main explanation.

Definition 2.1. Let M be a module. We say M is Z-dual Rickart if for every ¢ € Endg (M), the
submodule p(Z(M)) is a direct summand of M.

It is important to note that a dual Rickart module M might not be dual Rickart with respect
to Z.

Example 2.2. If a module M has a non-zero small submodule Z(M ), then for any endomor-
phism ¢ of M, the submodule ¢(Z(M)) is also a small submodule of M. However, it is possible
that p(Z(M)) is not a direct summand of M for some ¢, which means that M is not a Z-dual
Rickart module. An example of such a module is M = Z4, where Z(M) = J(Z4) = {0,2}.

The following provides an important characterization of Z-dual Rickart modules which will
be used freely throughout the paper.

Theorem 2.3. Let M be a module. Then the following conditions are equivalent:
(1) M is Z-dual Rickart;
(2) M = Z(M) & L where Z(M) is a dual Rickart module.

Proof. (1) = (2) Let M be Z-dual Rickart. Then it is clear that Z(M) is a direct summand of
M. Set M = Z(M) @ L for a submodule L of M. Suppose that g is an endomorphism of Z (M).
Then h = j o g o 7 is an endomorphism of M such that j is the inclusion from Z (M) to M and
7 is the projection of M on Z(M). Being M a Z-dual Rickart module implies h(Z(M)) = Img
is a direct summand of M and hence a direct summand of Z(M) as h(Z(M)) is contained in
Z(M).

(2) = (1) Let M = Z(M) & L such that Z(M) is dual Rickart. Suppose that ¢ is an endo-
morphism of M. Then A = 7 o ¢ o j will be an endomorphism of Z(M ) where j : Z(M) — M

is the inclusion and 7 : M — Z(M) is the projection on Z(M). As \(Z(M)) = ¢(Z(M)) and

Z(M) is a dual Rickart module, then p(Z(M)) is a direct summand of Z(M) and consequently
of M, as required.

Remark 2.4. If we have an indecomposable module M and its submodule Z (M) is not zero,
then M is considered Z-dual Rickart if and only if its submodule Z (M) is the same as the whole
module M and M is dual Rickart. This means that if the submodule Z (M) is nontrivial, then M
cannot be Z-dual Rickart. For example, a module M that is local and has a non-zero submodule
Z(M) that is not equal to M is not Z-dual Rickart. An example of such a module is Z,« where
pis prime and k > 2.

We will now attempt to examine a direct summand of a Z-dual Rickart module inherits the
property.
Proposition 2.5. Let M be a module and N a direct summand of M. If M is Z-dual Rickart,
then N is Z-dual Rickart.

Proof. Set M = N @& K. Consider an arbitrary endomorphism A of N. Then f = j o A o7 will
be an endomorphism of M, so that f(Z(M)) = A(Z(N)) is a direct summand of M as M is a
dual Z-Rickart module. Note that j : N — M is the inclusion and 7 : M — N is the projection
of M on N. It follows that A\(Z(N)) is a direct summand of N, which completes the proof.

Following [4], we present an analogue for dual Baer modules in Z-case.
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Definition 2.6. Let M be a module. We say that M is Z-dual Baer provided for every right ideal
I of Endr(M) the submodule IZ(M) =3_ ., ¢(Z(M)) is a direct summand of M.

The following Theorem introduces some equivalent conditions for a module to be Z-dual
Baer.

Theorem 2.7. Let M be a module. Then the following are equivalent:

(1) M is Z-dual Baer;

(2) Z(M) is a dual Baer direct summand of M;
(3) M is Z-dual Rickart and M has SSSP for direct summands of M contained in Z(M);
(4) For every subset B of Endgr(M), the submodule 3~ .z »(Z(M)) is a direct summand
of M.
Proof. (1) = (2) Consider S = Endg(M) as an ideal of itself. Then by (1), SZ(M) =
> pes P(Z(M)) = Z(M)is adirect summand of M. Now, let I be arightideal of Endr(Z(M))
and consider the inclusion j : Z(M) — M and the projection TZ0m) P M = Z(M). Consider
the subset Iy = {j o Aomz,, [ A € I} of S. Then J = IpS is a right ideal of S. As
IZ(M) =Y c; <p£7(M)) = Yoes ©(Z(M)) = JZ(M) and M is a Z-dual Baer module,
we conclude that IZ(M) = JZ(M) is a direct summand of M and consequently is a direct
summand of Z (M), as well. It follows from [4, Theorem 2.1], Z(M) is a dual Baer module.

(2) = (1)7Let I be a right ideal of S andﬁB = {mzun) ° Z()| ¥ & I} I\E)te that
J = BEndg(Z(M)) is a right ideal of Endg(Z(M)). Since JZ(M) = IZ(M) and Z(M) is
a dual Baer module, we conclude that JZ (M) is a direct summand of Z() and hence a direct
summand of M. B B B B

(1) = (3) Let p € S. As M is Z-dual Baer and < ¢ > Z(M) = ¢(Z(M)), then o(Z(M))
is a direct summand of M. Let {e, | v € I'} be a set of idempotents of S such that Ime,, C
Z(M) foieach v € I'. Suppose I =< >’  re, > that is an ideal ojS. Now, IZ(M) =
Yoper P(Z(M)) C 37 crey(M). As e, (M) is contained in - ., ¢(Z(M)), it follows that
Yoverey(M) =3 c; 9(Z(M)) = IZ(M) is a direct summand of M (note that M is Z-dual
Baer).

(3) = (4) It follows from the fact that Z (M) is fully invariant in M.

(4) = (1) It is obvious.

By Theorem 2.7, every Z-dual Baer module is Z-dual Rickart.

Proposition 2.8. Ler M be a regular module. If M satisfies SSSP on direct summands of M
contained in Z(M), then M is Z-dual Baer.

Proof. Let ¢ be an arbitrary endomorphism of M. As p(Z(M)) = > vep@Zary) TR, and M is
regular, it follows that ¢(Z(M)) is a direct summand of M.

As a consequence of Theorem 2.7 and Proposition 2.8, if M is a regular Z-dual Baer module
then Z(M) is a semisimple module.
In the light of Theorem 2.7, we have the following remark.

Remark 2.9. Let M be an indecomposable module such that Z(M) # 0. Then M is Z-dual
Baer if and only if Z(M) = M is dual Baer.

We next present an equivalent condition for a module to be Z-dual Baer.

Theorem 2.10. Ler M be a module. Then M is Z-dual Baer if and only if for every direct
summand N of M is Z-dual Baer.

Proof. Let M be Z-dual Baer and M = N & N’ for a submodule N’ of M. Then Z(M) =
Z(N) @ Z(N'). Suppose that A is a subset of Endr(N). Then B = {jopony | ¢ € A} in
which 7w : M — N is the projection of M on N and j is the inclusion from N to M, is a subset
of Endg(M). Itis straightforward to check that AZ(N) = 3~ __, 9(Z(N)) = 3 e s 9(Z(M)).
Being M, a Z-dual Baer module implies that AZ () is a direct summand of M and hence a
direct summand of N. The result follows from Theorem 2.7. The converse is straightforward.

Corollary 2.11. Let M be a module, P a projective module and f : M — P be an epimorphism
such that Kerf is contained in Z(M). Then, if M is Z-dual Baer, then P is Z-dual Baer.
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3 Relatively Z-dual Rickart modules

In this section we shall define relative Z-dual Rickart modules and we will apply this concept to
study finite direct sums of Z-dual Rickart modules.

Definition 3.1. Let M and N be R-modules. We say M is N-Z-dual Rickart if for every homo-
morphism ¢ : M — N, the submodule ¢(Z(M)) is a direct summand of N.

We provide an equivalent condition for relatively Z-dual Rickart modules.

Theorem 3.2. Let M and N be right R-modules. Then M is N —7-duﬁl Rickart if and only if for
every direct summand L of M and every submodule K of N, L is K-Z-dual Rickart.

Proof. Let M be N-Z-dual Rickart. Suppose that L = eM for some e’ = ¢ € Endg(M) and let
K be a submodule of N. Assume that ¢ € Hom/(L, K). Since poe(M) = ¢(L) C K C N and
M is N-Z-dual Rickart, 1 oe(Z(M)) is a direct summand of N. As 1yoe(Z(M)) is contained in
K, we conclude that ¢ o e(Z(M)) is a direct summand of K. We shall prove that ¢)(Z (L)) is a
direct summand of K. Suppose that M = L & L'. Next, we have Z(M) = Z(L) & Z(L'). Then
e(Z(M)) = e(Z(L)) = Z(L). Now v o e(Z(M)) = ¥(Z(L)) combining with M is Z-dual
Rickart relative to N, we come to a conclusion that ¢)(Z(L)) is a direct summand of K.

Proposition 3.3. Let M be a Z-dual Rickart module. Then

(1) If L and K are direct summands of M with L C Z(M), then L + K is a direct summand
of M.

(2) M has SSP for direct summands of M that are contained in Z(M).

Proof. (1) Let K = eM and L = fM for some €? = e € Endg(M) and f?> = f € Endg(M).
Since M = fM & (1— f)M,L= fM C Z(M), wehave Z(M) = fM & Z((1 — f)M). Then
(1 —=e)f)(Z(M)) = (1 —e)fM. As M is a Z-dual Rickart module, ((1 — e)f)(Z(M)) =
(I —e)fM is a direct summand of M. Since (1 —e)fM = (fM +eM)N (1 —e)M, M =
(fM +eM)N (1l —e)M) & T for some T' < M. Hence (1 —e)M = ((fM +eM)N(1—
e M)® (TN (1l —e)M). SoM =eM @ (1 —e)M = eM + ((fM +eM)N (1 —e)M) ®
(TN (1= e)M) = (fM + eM) + (T A (1 — €)M). Since (fM + eM) N (TN (1 - )M) = 0,
M= (eM+ fM)® (TN (1 —e)M). Hence K + L is a direct summand of M.
(2) It is clear by (1).

Theorem 3.4. Let M be a module. Then M is Z-dual Rickart if and only if -, ; $(Z(M)) is a
direct summand of M for every finitely generated right ideal I of Endg(M).

Proof. Assume that I is a finitely generated right ideal of Endr (M) generated by ¢y, . .., ¢n. As
M is Z-dual Rickart, ¢;(Z(M)) is a direct summand of M for each 1 < i < n. By Proposition
3.3, M has SSP for direct summands which are contained in Z(M). Since ¢;(Z(M)) C Z(M),
Ywer P(Z(M)) = ¢1(Z(M)) 4 - + ¢pn(Z(M)) is a direct summand of M. The converse is
obvious.

4 Applications of Z-dual Baer modules to rings

We will now apply the concept of Z-dual Baer, which was initially introduced for modules, to
rings.

Definition 4.1. Let R be a ring. Then R is called a right Z-dual Baer ring if it is Z-dual Baer as
aright R-module.

A left Z-dual Baer ring R is defined similarly. The property of being a Z-dual Baer ring is
not left-right symmetric as the following example shows.

Example 4.2. ([8, Example 3.3]) Let D be a commutative local integral domain with field of
fractions @) (for example, we might take D the localization of the integers Z by a prime number
p, i.e., D is the subring of the field of rational numbers consisting of fractions a/b such that b
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Q
Q

operations. Since D is local it has a unique maximal ideal, say m and the Jacobson radical of R
iR = ™ ¢
0 0

if we suppose that D has zero socle, then R has zero left socle and so Z(Rg) = Soc(gR) = 0.
Hence Rp is Z-dual Baer. But R has non-zero right socle, namely, Z(grR) = Soc(Rg) =

is not divisible by p). Let R = . The operations are given by the ordinary matrix

). Then R/J(R) = (D/m) x Q. Thus R is semilocal. On the other hand,

0
can not be Z-dual Baer.

( 0 g ) It is known that, Z(rR) = Soc(RRg) is essential in r R (see [3]). It follows that p R

It is easy to show that all semisimple rings are right Z-dual Baer. The following provides a
way to describe right Z-dual Baer rings using semisimple direct summands.

Theorem 4.3. Let R be a ring. Then the following are equivalent.
(1) R is right Z-dual Baer:
(2) R = Z(RRr) @ K for some right ideal K of R and Z(Rg) is dual Baer as an R-module.
(3) R = Z(RRg) @ K for some right ideal K of R and Z(RR) is semisimple as an R-module.

Proof. (1) < (2) By Theorem 2.7.

(1) = (3) The ring R has a decomposition R = Z(Rpr) ® K where K is a right ideal of R.
Assume that B is a submodule of Z(Rg). We claim that B is a direct summand of Z(Rpg). Since
B has the form ), ; bR and R is Z-dual Baer, Y, ; bI is a direct summand of R. Therefore,
BZ(Rpg) is a direct summand of R. As B is contained in Z(Rp), we conclude that B = BI is a
direct summand of Z(Rp). It follows that Z(Rp) is semisimple.

(3) = (1) Suppose that R = Z(Rr)® K with arightideal K of R and Z(Rp) is semisimple.
Since Z(Rp) is semisimple, we conclude that Z(Rg) is dual Baer. Therefore, R is Z-dual Baer
by Theorem 2.7.

Theorem 4.4. The following are equivalent for a ring R.
(1) R is right Z-dual Baer: B
(2) Every cyclic projective right R-module M is Z-dual Baer.

Proof. (1) = (2) Suppose that M is a cyclic projective right R-module. Then, M = mR =
R/rr(m) for some m € M. Therefore, rz(m) is a direct summand of R. Hence, R = rg(m)&.J
where J is a right ideal of R. As R is right Z-dual Baer, by Theorem 2.10 J is Z-dual Baer.
Hence M is Z-dual Baer.

(2) = (1) It is obvious.

5 Direct sum of Z-dual Rickart modules and direct sum of Z-dual Baer
modules

This section focuses on exploring the properties of direct sums of Z-dual Rickart modules and
direct sums of Z-dual Baer modules.
We will demonstrate that when the direct sum of Z-Rickart modules that are Z-dual Rickart.

Proposition 5.1. Let M = &} M; and N be modules. If N has SSP for direct summands which
are contained in Z(N), then M is N-Z-dual Rickart if and only if M; is N-Z-dual Rickart for
all1 <i<n.

Proof. The sufficiency is obvious from Theorem 3.2. For the necessity, let ¢ be a homomorphism
from M to N. Then ¢ = (¢;)"_, where ¢; is a homomorphism from M, to N foreach 1 <i < n.
By hypothesis, ¢;(Z(M;)) is a direct summand of N for each 1 < i < n. Since N has SSP for
direct summands which are contained in Z(N), we have

O(Z(M)) = $(D;_, Z(M;)) = 1 (Z(M1)) + ¢2(Z(M2)) + -+ + ¢n(Z(My)) <® N. There-
fore M is N-Z-dual Rickart.
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Corollary 5.2. Let M = &7, M;. Then M is Z-dual Rickart relative to M; (1 < j < n) if and
only if M; is Z-dual Rickart relative to M for each 1 < i < n.

Theorem 5.3. Let {M;}i"_| and N be modules. Assume that for each i > j with 1 <i,j < n,
M; is Mj-projective. Then N is ©}_| M;-Z-dual Rickart if and only if N is M;-Z-dual Rickart
foralll <j<n.

Proof. The sufficiency is obvious from Theorem 3.2. For the necessity, suppose that N is M-
Z-dual Rickart for all 1 < j < n. We prove by induction on n. Assume that n = 2 and N is
Z-dual Rickart relative to M; and M;. Let ¢ be a homomorphism from N to M; & M. Then
¢ = m¢ + mo, where m; is the natural projection from M; & M, to M; (i = 1,2). As N
is Mp-Z-dual Rickart, m¢(Z(N)) is a direct summand of M,. Let My = m@(Z(N)) & M,
for some M) < M,. Hence M; & M, = M; & m¢(Z(N)) & Mj. As M, is M;-projective,
m¢(Z(N)) is M,-projective. Since M + ¢(Z(N)) = M, & m¢(Z(N)) is a direct summand
of My @ M,, there exists T C ¢(Z(N)) such that My + ¢(Z(N)) = M, & T, by [?, Lemma
4.47]. Thus ¢(Z(N)) = (¢(Z(N)) N M;) @ T. Since N is M;-Z-dual Rickart, m1¢(Z(N)) =
M0 (My+ ¢(Z(N))) = My N ¢(Z(N)) is a direct summand of M. Therefore ¢(Z(N)) is a
direct summand of M; & T. Since My & T = M, & ¢(Z(N)) <® My & M, ¢(Z(N)) is a direct
summand of M, @ M,. Thus N is Z-dual Rickart relative to M; & M,. Now, assume that N is Z-
dual Rickart relative to &7_, M;. We show that N is Z-dual Rickart relative to M, & (&7, M;).
Since M, is Mj-projective for each 1 < j < n, M, is @] | M;-projective. As N is M, -
Z-dual Rickart, N is 69?:11 M;-Z-dual Rickart by a similar argument for the case n = 2.

The above theorem incorporates concepts from the proof of Theorem 5.5 in [5].

Corollary 5.4. Let {M;}}_| be modules. Assume that for each i > j with 1 < i,j < n, M; is
M;-projective. Then ®}'_ | M; is Z-dual Rickart if and only if M; is M;-Z-dual Rickart for all
1<4,5<n

Eroof. The sufficiency is obvious from Theorem 3.2. For ihe necessity, assume that M; is M;-
Z-dual Rickart for all 1 < j < n. Now ®2 | M; is ]\jj—Z—dual Rickart for all 1 < j < n by
Corollary 5.2. Therefore, by Theorem 5.3, 7| M; is Z-dual Rickart.

Theorem 5.5. Let M = @' | M, be a module and M; < M forall i € {1,...,n}. Then M is a
F-dual Rickart module if and only if M; is F N M;-dual Rickart for all i € {1,...,n}.

Proof. The necessity follows from Proposition 2.5. Conversely, let M; be a Z-dual Rickart mod-
ule for all i € {1,...,n}. Then Z(M) = &7, Z(M;). Let ¢ = (¢ij)ijeq1,..n} € Endr(M)
be arbitrary, where ¢;; € Hom(M;, M;). Since M; < M foralli € {1,...,n} and Z(M) =

nLZ(M;), 9(Z(M)) = @ ,6i4(Z(M;)). As M; is Z-dual Rickart, ¢;;(Z(M;)) is a direct
summand of M; and so ¢(Z(M)) is a direct summand of M. Therefore M is a Z-dual Rickart
module.

In the following we study some conditions that ensure us direct sums of Z-dual Baer modules
inherit the property.

Theorem 5.6. Let M = @} | M; be a module and M; I M for all i € {1,...,n}. Then M is a
Z-dual Baer module if and only if M; is Z-dual Baer for all i € {1,...,n}.

Proof. The necessity follows from Theorem 2.10. Conversely, let M; be a 7—dua1l3aer module
forall i € {1,...,n} and I be a subset of Endr(M). Then Z(M) = & ,(Z(M;)). Let
¢ = (dij)ijeqt,...ny € Endr(M) be arbitrary, where ¢;; € Hom(M;, M;). Since M; I M for
alli € {1,...,n} and Z(M) = &} ,(Z(M;)), we have ¢(Z(M)) = & ,$:(Z(M;)). Hence
St HZ(M)) = Sy, S116(Z(M) = B, - pey, 6 Z(M,)) where I, = {0l : & €
I} C Endp(M;). As M; is Z-dual Baer for all i € {1,...,n}, 3", ¢ii(Z(M;)) is a direct
summand of M; and so Y° ., ¢(Z(M)) is a direct summand of M. Therefore M is a Z-dual
Baer module.

We can prove the following proposition similar to the proof of Theorem 5.6.
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Proposition 5.7. Let { M, }icz be a class of R-modules for an index set . If for every i € T, M;
is a fully invariant submodule of @, ., M;, then @, _; M; is Z-dual Baer if and only if M; is
Z-dual Baer for every i € T.

We now define relatively Z-dual Baer modules and then we study direct sums of Z-dual Baer
modules applying this definition.

Definition 5.8. Let M and N be R-modules. Then, M is called N -Z-dual Baer if for every
subset I of Homp(M, N), >, ; ¢(Z(M)) is a direct summand of N.

Theorem 5.9. Let M = M, & M, and N be R-modules. If M is N -Z-dual Baer, then for any
direct summand K of N, M; is K-Z-dual Baer fori =1,2.

Proof. As Z(M) is a fully invariant submodule of M, we have Z(M) = Z(M,) & Z(M,).
Suppose that A is a subset of Homg(M;,K). Then B = {jopomy, | ¢ € A} in which
mar, o M — M, is the projection of M on M, and j is the inclusion from K to [V, is a subset of
Hompg(M, N). Itis easy to check that AZ(M;) = 3=, 9(Z(M1)) = 3 5 9(Z(M)). As M
is a N-Z-dual Baer module, AZ(M;) is a direct summand of N and hence a direct summand of
K.

Proposition 5.10. Let {M,};,c7 be a class of R-modules for an index set J, N an R-module.
Then, the following hold.

(1) Let N have the SSP for direct summands which are contained in Z(N) and J be finite.
Then, @,c s M is N-Z-dual Baer if and only if M; is N-Z-dual Baer for all i € 7.

(2) Let N have the SSSP for direct summands which are contained in Z(N), and J be
arbitrary. Then, @, ; M; is N-Z-dual Baer if and only if M; is N-Z-dual Baer for all i € J.

Proof. (1) The sufficiency is obvious from Theorem 5.9. For the necessity, suppose that A is a
subset of Homp (P, ; My, N). Then B; = {¢3j; | ¢ € A} in which j; is the inclusion from M;
to @, 7 M;, is a subset of Hompg(M;, N).

Assume that ¢ is a homomorphism from @, ; M; to N. Then ¢ = (¢;)ics Where ¢; = ¢3;
is a homomorphism from M; to N for eachi € J. By hypothesis, >, 5. ¢ (Z(M,)) is a direct
summand of N for each ¢ € J. Since N has SSP for direct summands which are contained in
Z(N), we have

Ypea ®(Z(M)) =344 d@BL (Z(My) = Yie g Xg,ep, $1(Z(M;)) < N.

Therefore @, ; M; is N-Z-dual Baer.
(2) Similar to (1).

Corollary 5.11. Let {M; }ic 7 be a class of R-modules for an index set J. Then, for each j € J,
Dic s M; is Mj-Z-dual Baer if and only if M; is M;-Z-dual Baer for all i € J.

Proof. It follows from Proposition 5.10 and Theorem 2.7.

Similar to the proof of Theorem 5.3, one can prove the following theorem.

Theorem 5.12. Let {M;}}" | and N be modules. Assume that for each i > j with 1 < i,j <mn,
M; is Mj-projective. Then N is ®} | M;-Z-dual Baer if and only if N is M;-Z-dual Baer for all
1<j<n

Corollary 5.13. Let {M;}!' | be modules. Assume that for each i > j with 1 < i,j < n, M;
is Mj-projective. Then ®}_ | M; is Z-dual Baer if and only if M; is M;-Z-dual Baer for all
1<4,5<n

Proof. The sufficiency is obvious from Theorem 5.9. For the necessity, assume that M; is M;-
Z-dual Rickart for all 1 < j < n. Now &;; M; is M;-Z-dual Rickart for all 1 < j < n by
Corollary 5.11. Therefore, by Theorem 5.12, ®7' ; M; is Z-dual Rickart.
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