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Abstract We introduces the concept of dual Rickart (Baer) modules in relation to the cosin-
gular submodule. The paper demonstrates that a module is considered to be Z-dual Rickart
only if its submodule, Z(M), is a dual Rickart direct summand of the module M . Additionally,
it is proven that a module is considered dual Baer with respect to Z(M) only when it is dual
Rickart with respect to Z(M), and the module has the strong summand sum property for direct
summands included in Z(M). Lastly, we present a characterization of right Z-dual Baer rings.

1 Introduction

All rings considered in this paper will be associative with an identity element and all modules
will be unitary right modules unless otherwise stated. Let R be a ring and M an R-module.
S = EndR(M) will denote the ring of all R-endomorphisms of M . We will use the notation
N � M to indicate that N is small in M (i.e. ∀L � M,L + N 6= M ). A module M is called
hollow if every proper submodule of M is small in M . The notation N ≤⊕ M denotes that
N is a direct summand of M . N �M means that N is a fully invariant submodule of M (i.e.,
∀φ ∈ EndR(M), φ(N) ⊆ N). Rad(M) and Soc(M) denote the radical and the socle of a
module M , respectively.

Let L ⊆ K ≤ M . We say that K lies above L in M if K/L� M/L. A module M is called
lifting if every submodule A of M lies above a direct summand D of M ([2]).

Let M be a module. Following [5], M is called (dual) Rickart in case for every endomor-
phism ϕ of M , (Imϕ) Kerϕ is a direct summand of M . Researchers in module theory discov-
ered the significance of idempotents in the ring of all endomorphisms of a module through the
study of (dual) Rickart modules. A well-known outcome of this research is that a module M is
considered Rickart and dual Rickart only when EndR(M) is a von Neumann regular ring

Several studies have been conducted on dual Rickart modules and their extensions. However,
this particular research delves into the overall characteristics of Z-dual Rickart (Baer) modules.
The paper presents various conditions that can be used to determine whether a module is Z-dual
Rickart (Baer).

The singular submodule of a module M consists of elements m ∈ M such that, for some
essential right ideal I of R, mI = 0. Talebi and Vanaja have introduced the concept of the dual
of the singular submodule, denoted as Z(M), as the intersection of the kernels of all module
homomorphisms f : M → U such that U is a small right R-module. A module M is referred
to as a cosingular module if Z(M) = 0 and noncosingular if Z(M) = M . A ring R is called a
right V -ring if every simple right R-module is injective, which is equivalent to Rad(M) = 0 for
all right R-modules M . Any unfamiliar terminology can be found in [6] and [11].

A new approach to generalizing lifting modules has been introduced in [1], which involves
utilizing a fixed fully invariant submodule of a given module. In this approach, a module M is
considered IF -lifting (where F is a fully invariant submodule of M ) if for every endomorphism
g ofM , the submodule g(F ) is above a direct summand ofM . The authors of [1] also investigate
various properties of such modules. Building upon this work, Moniri and Amouzegar study H-
supplemented modules using the same approach in [7]. A module M is IF -H-supplemented if
for every g ∈ EndR(M), there exists a direct summand D of M such that g(F )+X =M if and
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only if D+X =M , for all submodules X of M . Additionally, the authors provide some condi-
tions for a IF -H-supplemented module to be IF -lifting and investigate the relationship between
these and other similar classes of modules. They also study direct sums of IF -H-supplemented
modules. Another related approach is studied in [10], where the authors investigate a version of
⊕-supplemented modules using a two-sided ideal of the related ring, namely, I-⊕-supplemented
modules, and utilize fully invariant submodules such as IK (where I is an ideal of R and K is a
direct summand of M ).

2 Z-dual Rickart modules and Z-dual Baer modules

One way to begin the section is by providing the main explanation.

Definition 2.1. Let M be a module. We say M is Z-dual Rickart if for every ϕ ∈ EndR(M), the
submodule ϕ(Z(M)) is a direct summand of M .

It is important to note that a dual Rickart module M might not be dual Rickart with respect
to Z.

Example 2.2. If a module M has a non-zero small submodule Z(M), then for any endomor-
phism ϕ of M , the submodule ϕ(Z(M)) is also a small submodule of M . However, it is possible
that ϕ(Z(M)) is not a direct summand of M for some ϕ, which means that M is not a Z-dual
Rickart module. An example of such a module is M = Z4, where Z(M) = J(Z4) = {0, 2}.

The following provides an important characterization of Z-dual Rickart modules which will
be used freely throughout the paper.

Theorem 2.3. Let M be a module. Then the following conditions are equivalent:
(1)M is Z-dual Rickart;
(2)M = Z(M)⊕ L where Z(M) is a dual Rickart module.

Proof. (1) ⇒ (2) Let M be Z-dual Rickart. Then it is clear that Z(M) is a direct summand of
M . Set M = Z(M)⊕L for a submodule L of M . Suppose that g is an endomorphism of Z(M).
Then h = j ◦ g ◦ π is an endomorphism of M such that j is the inclusion from Z(M) to M and
π is the projection of M on Z(M). Being M a Z-dual Rickart module implies h(Z(M)) = Img
is a direct summand of M and hence a direct summand of Z(M) as h(Z(M)) is contained in
Z(M).

(2) ⇒ (1) Let M = Z(M) ⊕ L such that Z(M) is dual Rickart. Suppose that ϕ is an endo-
morphism of M . Then λ = π ◦ ϕ ◦ j will be an endomorphism of Z(M) where j : Z(M)→M
is the inclusion and π : M → Z(M) is the projection on Z(M). As λ(Z(M)) = ϕ(Z(M)) and
Z(M) is a dual Rickart module, then ϕ(Z(M)) is a direct summand of Z(M) and consequently
of M , as required.

Remark 2.4. If we have an indecomposable module M and its submodule Z(M) is not zero,
then M is considered Z-dual Rickart if and only if its submodule Z(M) is the same as the whole
module M and M is dual Rickart. This means that if the submodule Z(M) is nontrivial, then M
cannot be Z-dual Rickart. For example, a module M that is local and has a non-zero submodule
Z(M) that is not equal to M is not Z-dual Rickart. An example of such a module is Zpk where
p is prime and k ≥ 2.

We will now attempt to examine a direct summand of a Z-dual Rickart module inherits the
property.

Proposition 2.5. Let M be a module and N a direct summand of M . If M is Z-dual Rickart,
then N is Z-dual Rickart.

Proof. Set M = N ⊕K. Consider an arbitrary endomorphism λ of N . Then f = j ◦ λ ◦ π will
be an endomorphism of M , so that f(Z(M)) = λ(Z(N)) is a direct summand of M as M is a
dual Z-Rickart module. Note that j : N →M is the inclusion and π : M → N is the projection
of M on N . It follows that λ(Z(N)) is a direct summand of N , which completes the proof.

Following [4], we present an analogue for dual Baer modules in Z-case.
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Definition 2.6. Let M be a module. We say that M is Z-dual Baer provided for every right ideal
I of EndR(M) the submodule IZ(M) =

∑
ϕ∈I ϕ(Z(M)) is a direct summand of M .

The following Theorem introduces some equivalent conditions for a module to be Z-dual
Baer.

Theorem 2.7. Let M be a module. Then the following are equivalent:
(1)M is Z-dual Baer;
(2) Z(M) is a dual Baer direct summand of M ;
(3)M is Z-dual Rickart and M has SSSP for direct summands of M contained in Z(M);
(4) For every subset B of EndR(M), the submodule

∑
ϕ∈B ϕ(Z(M)) is a direct summand

of M .

Proof. (1) ⇒ (2) Consider S = EndR(M) as an ideal of itself. Then by (1), SZ(M) =∑
ϕ∈S ϕ(Z(M)) = Z(M) is a direct summand ofM . Now, let I be a right ideal ofEndR(Z(M))

and consider the inclusion j : Z(M) → M and the projection πZ(M) : M → Z(M). Consider
the subset I0 = {j ◦ λ ◦ πZ(M) | λ ∈ I} of S. Then J = I0S is a right ideal of S. As
IZ(M) =

∑
ϕ∈I ϕ(Z(M)) =

∑
ϕ∈J ϕ(Z(M)) = JZ(M) and M is a Z-dual Baer module,

we conclude that IZ(M) = JZ(M) is a direct summand of M and consequently is a direct
summand of Z(M), as well. It follows from [4, Theorem 2.1], Z(M) is a dual Baer module.

(2) ⇒ (1) Let I be a right ideal of S and B = {πZ(M) ◦ ϕ |Z(M)| ϕ ∈ I}. Note that
J = BEndR(Z(M)) is a right ideal of EndR(Z(M)). Since JZ(M) = IZ(M) and Z(M) is
a dual Baer module, we conclude that JZ(M) is a direct summand of Z(M) and hence a direct
summand of M .

(1) ⇒ (3) Let ϕ ∈ S. As M is Z-dual Baer and < ϕ > Z(M) = ϕ(Z(M)), then ϕ(Z(M))
is a direct summand of M . Let {eγ | γ ∈ Γ} be a set of idempotents of S such that Imeγ ⊆
Z(M) for each γ ∈ Γ. Suppose I =<

∑
γ∈Γ

eγ > that is an ideal of S. Now, IZ(M) =∑
ϕ∈I ϕ(Z(M)) ⊆

∑
γ∈Γ

eγ(M). As eγ(M) is contained in
∑
ϕ∈I ϕ(Z(M)), it follows that∑

γ∈Γ
eγ(M) =

∑
ϕ∈I ϕ(Z(M)) = IZ(M) is a direct summand of M (note that M is Z-dual

Baer).
(3)⇒ (4) It follows from the fact that Z(M) is fully invariant in M .
(4)⇒ (1) It is obvious.

By Theorem 2.7, every Z-dual Baer module is Z-dual Rickart.

Proposition 2.8. Let M be a regular module. If M satisfies SSSP on direct summands of M
contained in Z(M), then M is Z-dual Baer.

Proof. Let ϕ be an arbitrary endomorphism of M . As ϕ(Z(M)) =
∑
x∈ϕ(Z(M)) xR, and M is

regular, it follows that ϕ(Z(M)) is a direct summand of M .

As a consequence of Theorem 2.7 and Proposition 2.8, if M is a regular Z-dual Baer module
then Z(M) is a semisimple module.

In the light of Theorem 2.7, we have the following remark.

Remark 2.9. Let M be an indecomposable module such that Z(M) 6= 0. Then M is Z-dual
Baer if and only if Z(M) =M is dual Baer.

We next present an equivalent condition for a module to be Z-dual Baer.

Theorem 2.10. Let M be a module. Then M is Z-dual Baer if and only if for every direct
summand N of M is Z-dual Baer.

Proof. Let M be Z-dual Baer and M = N ⊕ N ′ for a submodule N ′ of M . Then Z(M) =
Z(N) ⊕ Z(N ′). Suppose that A is a subset of EndR(N). Then B = {j ◦ ϕ ◦ πN | ϕ ∈ A} in
which πN : M → N is the projection of M on N and j is the inclusion from N to M , is a subset
ofEndR(M). It is straightforward to check thatAZ(N) =

∑
ϕ∈A ϕ(Z(N)) =

∑
g∈B g(Z(M)).

Being M , a Z-dual Baer module implies that AZ(N) is a direct summand of M and hence a
direct summand of N . The result follows from Theorem 2.7. The converse is straightforward.

Corollary 2.11. Let M be a module, P a projective module and f : M → P be an epimorphism
such that Kerf is contained in Z(M). Then, if M is Z-dual Baer, then P is Z-dual Baer.
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3 Relatively Z-dual Rickart modules

In this section we shall define relative Z-dual Rickart modules and we will apply this concept to
study finite direct sums of Z-dual Rickart modules.

Definition 3.1. Let M and N be R-modules. We say M is N -Z-dual Rickart if for every homo-
morphism φ : M → N , the submodule φ(Z(M)) is a direct summand of N .

We provide an equivalent condition for relatively Z-dual Rickart modules.

Theorem 3.2. Let M and N be right R-modules. Then M is N -Z-dual Rickart if and only if for
every direct summand L of M and every submodule K of N , L is K-Z-dual Rickart.

Proof. Let M be N -Z-dual Rickart. Suppose that L = eM for some e2 = e ∈ EndR(M) and let
K be a submodule of N . Assume that ψ ∈ Hom(L,K). Since ψ ◦ e(M) = ψ(L) ⊆ K ⊆ N and
M is N -Z-dual Rickart, ψ ◦e(Z(M)) is a direct summand of N . As ψ ◦e(Z(M)) is contained in
K, we conclude that ψ ◦ e(Z(M)) is a direct summand of K. We shall prove that ψ(Z(L)) is a
direct summand of K. Suppose that M = L⊕L′. Next, we have Z(M) = Z(L)⊕Z(L′). Then
e(Z(M)) = e(Z(L)) = Z(L). Now ψ ◦ e(Z(M)) = ψ(Z(L)) combining with M is Z-dual
Rickart relative to N , we come to a conclusion that ψ(Z(L)) is a direct summand of K.

Proposition 3.3. Let M be a Z-dual Rickart module. Then
(1) If L and K are direct summands of M with L ⊆ Z(M), then L+K is a direct summand

of M .
(2)M has SSP for direct summands of M that are contained in Z(M).

Proof. (1) Let K = eM and L = fM for some e2 = e ∈ EndR(M) and f2 = f ∈ EndR(M).
Since M = fM ⊕ (1− f)M , L = fM ⊆ Z(M), we have Z(M) = fM ⊕ Z((1− f)M). Then
((1 − e)f)(Z(M)) = (1 − e)fM . As M is a Z-dual Rickart module, ((1 − e)f)(Z(M)) =
(1 − e)fM is a direct summand of M . Since (1 − e)fM = (fM + eM) ∩ (1 − e)M , M =
((fM + eM) ∩ (1 − e)M) ⊕ T for some T ≤ M . Hence (1 − e)M = ((fM + eM) ∩ (1 −
e)M) ⊕ (T ∩ (1 − e)M). So M = eM ⊕ (1 − e)M = eM + ((fM + eM) ∩ (1 − e)M) ⊕
(T ∩ (1− e)M) = (fM + eM) + (T ∩ (1− e)M). Since (fM + eM) ∩ (T ∩ (1− e)M) = 0,
M = (eM + fM)⊕ (T ∩ (1− e)M). Hence K + L is a direct summand of M .

(2) It is clear by (1).

Theorem 3.4. Let M be a module. Then M is Z-dual Rickart if and only if
∑
φ∈I φ(Z(M)) is a

direct summand of M for every finitely generated right ideal I of EndR(M).

Proof. Assume that I is a finitely generated right ideal ofEndR(M) generated by φ1, . . . , φn. As
M is Z-dual Rickart, φi(Z(M)) is a direct summand of M for each 1 ≤ i ≤ n. By Proposition
3.3, M has SSP for direct summands which are contained in Z(M). Since φi(Z(M)) ⊆ Z(M),∑
φ∈I φ(Z(M)) = φ1(Z(M)) + · · · + φn(Z(M)) is a direct summand of M . The converse is

obvious.

4 Applications of Z-dual Baer modules to rings

We will now apply the concept of Z-dual Baer, which was initially introduced for modules, to
rings.

Definition 4.1. Let R be a ring. Then R is called a right Z-dual Baer ring if it is Z-dual Baer as
a right R-module.

A left Z-dual Baer ring R is defined similarly. The property of being a Z-dual Baer ring is
not left-right symmetric as the following example shows.

Example 4.2. ([8, Example 3.3]) Let D be a commutative local integral domain with field of
fractions Q (for example, we might take D the localization of the integers Z by a prime number
p, i.e., D is the subring of the field of rational numbers consisting of fractions a/b such that b
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is not divisible by p). Let R =

(
D Q

0 Q

)
. The operations are given by the ordinary matrix

operations. Since D is local it has a unique maximal ideal, say m and the Jacobson radical of R

is J(R) =

(
m Q

0 0

)
. Then R/J(R) ∼= (D/m)×Q. Thus R is semilocal. On the other hand,

if we suppose that D has zero socle, then R has zero left socle and so Z(RR) = Soc(RR) = 0.
Hence RR is Z-dual Baer. But R has non-zero right socle, namely, Z(RR) = Soc(RR) =(

0 Q

0 Q

)
. It is known that, Z(RR) = Soc(RR) is essential in RR (see [3]). It follows that RR

can not be Z-dual Baer.

It is easy to show that all semisimple rings are right Z-dual Baer. The following provides a
way to describe right Z-dual Baer rings using semisimple direct summands.

Theorem 4.3. Let R be a ring. Then the following are equivalent.
(1) R is right Z-dual Baer.
(2) R = Z(RR)⊕K for some right ideal K of R and Z(RR) is dual Baer as an R-module.
(3) R = Z(RR)⊕K for some right ideal K of R and Z(RR) is semisimple as an R-module.

Proof. (1)⇔ (2) By Theorem 2.7.
(1) ⇒ (3) The ring R has a decomposition R = Z(RR) ⊕K where K is a right ideal of R.

Assume that B is a submodule of Z(RR). We claim that B is a direct summand of Z(RR). Since
B has the form

∑
b∈B bR and R is Z-dual Baer,

∑
b∈B bI is a direct summand of R. Therefore,

BZ(RR) is a direct summand of R. As B is contained in Z(RR), we conclude that B = BI is a
direct summand of Z(RR). It follows that Z(RR) is semisimple.

(3)⇒ (1) Suppose thatR = Z(RR)⊕K with a right idealK ofR and Z(RR) is semisimple.
Since Z(RR) is semisimple, we conclude that Z(RR) is dual Baer. Therefore, R is Z-dual Baer
by Theorem 2.7.

Theorem 4.4. The following are equivalent for a ring R.
(1) R is right Z-dual Baer.
(2) Every cyclic projective right R-module M is Z-dual Baer.

Proof. (1) ⇒ (2) Suppose that M is a cyclic projective right R-module. Then, M = mR ∼=
R/rR(m) for somem ∈M . Therefore, rR(m) is a direct summand ofR. Hence,R = rR(m)⊕J
where J is a right ideal of R. As R is right Z-dual Baer, by Theorem 2.10 J is Z-dual Baer.
Hence M is Z-dual Baer.

(2)⇒ (1) It is obvious.

5 Direct sum of Z-dual Rickart modules and direct sum of Z-dual Baer
modules

This section focuses on exploring the properties of direct sums of Z-dual Rickart modules and
direct sums of Z-dual Baer modules.

We will demonstrate that when the direct sum of Z-Rickart modules that are Z-dual Rickart.

Proposition 5.1. LetM = ⊕ni=1Mi andN be modules. IfN has SSP for direct summands which
are contained in Z(N), then M is N -Z-dual Rickart if and only if Mi is N -Z-dual Rickart for
all 1 ≤ i ≤ n.

Proof. The sufficiency is obvious from Theorem 3.2. For the necessity, let φ be a homomorphism
fromM toN . Then φ = (φi)ni=1 where φi is a homomorphism fromMi toN for each 1 ≤ i ≤ n.
By hypothesis, φi(Z(Mi)) is a direct summand of N for each 1 ≤ i ≤ n. Since N has SSP for
direct summands which are contained in Z(N), we have

φ(Z(M)) = φ(⊕ni=1Z(Mi)) = φ1(Z(M1))+φ2(Z(M2))+ · · ·+φn(Z(Mn)) ≤⊕ N . There-
fore M is N -Z-dual Rickart.
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Corollary 5.2. Let M = ⊕ni=1Mi. Then M is Z-dual Rickart relative to Mj (1 ≤ j ≤ n) if and
only if Mi is Z-dual Rickart relative to Mj for each 1 ≤ i ≤ n.

Theorem 5.3. Let {Mi}ni=1 and N be modules. Assume that for each i ≥ j with 1 ≤ i, j ≤ n,
Mi is Mj-projective. Then N is ⊕ni=1Mi-Z-dual Rickart if and only if N is Mj-Z-dual Rickart
for all 1 ≤ j ≤ n.

Proof. The sufficiency is obvious from Theorem 3.2. For the necessity, suppose that N is Mj-
Z-dual Rickart for all 1 ≤ j ≤ n. We prove by induction on n. Assume that n = 2 and N is
Z-dual Rickart relative to M1 and M2. Let φ be a homomorphism from N to M1 ⊕M2. Then
φ = π1φ + π2φ, where πi is the natural projection from M1 ⊕ M2 to Mi (i = 1, 2). As N
is M2-Z-dual Rickart, π2φ(Z(N)) is a direct summand of M2. Let M2 = π2φ(Z(N)) ⊕M ′2
for some M ′2 ≤ M2. Hence M1 ⊕M2 = M1 ⊕ π2φ(Z(N)) ⊕M ′2. As M2 is M1-projective,
π2φ(Z(N)) is M1-projective. Since M1 + φ(Z(N)) = M1 ⊕ π2φ(Z(N)) is a direct summand
of M1 ⊕M2, there exists T ⊆ φ(Z(N)) such that M1 + φ(Z(N)) = M1 ⊕ T , by [?, Lemma
4.47]. Thus φ(Z(N)) = (φ(Z(N)) ∩M1) ⊕ T . Since N is M1-Z-dual Rickart, π1φ(Z(N)) =
M1 ∩ (M2 + φ(Z(N))) = M1 ∩ φ(Z(N)) is a direct summand of M1. Therefore φ(Z(N)) is a
direct summand of M1⊕T . Since M1⊕T =M1⊕φ(Z(N)) ≤⊕ M1⊕M2, φ(Z(N)) is a direct
summand of M1⊕M2. Thus N is Z-dual Rickart relative to M1⊕M2. Now, assume that N is Z-
dual Rickart relative to⊕ni=1Mi. We show thatN is Z-dual Rickart relative toMn+1⊕(⊕ni=1Mi).
Since Mn+1 is Mj-projective for each 1 ≤ j ≤ n, Mn+1 is ⊕ni=1Mi-projective. As N is Mn+1-
Z-dual Rickart, N is ⊕n+1

i=1 Mi-Z-dual Rickart by a similar argument for the case n = 2.

The above theorem incorporates concepts from the proof of Theorem 5.5 in [5].

Corollary 5.4. Let {Mi}ni=1 be modules. Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi is
Mj-projective. Then ⊕ni=1Mi is Z-dual Rickart if and only if Mi is Mj-Z-dual Rickart for all
1 ≤ i, j ≤ n.

Proof. The sufficiency is obvious from Theorem 3.2. For the necessity, assume that Mi is Mj-
Z-dual Rickart for all 1 ≤ j ≤ n. Now ⊕ni=1Mi is Mj-Z-dual Rickart for all 1 ≤ j ≤ n by
Corollary 5.2. Therefore, by Theorem 5.3, ⊕ni=1Mi is Z-dual Rickart.

Theorem 5.5. Let M = ⊕ni=1Mi be a module and Mi �M for all i ∈ {1, . . . , n}. Then M is a
F -dual Rickart module if and only if Mi is F ∩Mi-dual Rickart for all i ∈ {1, . . . , n}.

Proof. The necessity follows from Proposition 2.5. Conversely, let Mi be a Z-dual Rickart mod-
ule for all i ∈ {1, . . . , n}. Then Z(M) = ⊕ni=1Z(Mi). Let φ = (φij)i,j∈{1,...,n} ∈ EndR(M)

be arbitrary, where φij ∈ Hom(Mj ,Mi). Since Mi �M for all i ∈ {1, . . . , n} and Z(M) =
⊕ni=1Z(Mi), φ(Z(M)) = ⊕ni=1φii(Z(Mi)). As Mi is Z-dual Rickart, φii(Z(Mi)) is a direct
summand of Mi and so φ(Z(M)) is a direct summand of M . Therefore M is a Z-dual Rickart
module.

In the following we study some conditions that ensure us direct sums of Z-dual Baer modules
inherit the property.

Theorem 5.6. Let M = ⊕ni=1Mi be a module and Mi �M for all i ∈ {1, . . . , n}. Then M is a
Z-dual Baer module if and only if Mi is Z-dual Baer for all i ∈ {1, . . . , n}.

Proof. The necessity follows from Theorem 2.10. Conversely, let Mi be a Z-dual Baer module
for all i ∈ {1, . . . , n} and I be a subset of EndR(M). Then Z(M) = ⊕ni=1(Z(Mi)). Let
φ = (φij)i,j∈{1,...,n} ∈ EndR(M) be arbitrary, where φij ∈ Hom(Mj ,Mi). Since Mi �M for
all i ∈ {1, . . . , n} and Z(M) = ⊕ni=1(Z(Mi)), we have φ(Z(M)) = ⊕ni=1φii(Z(Mi)). Hence∑
φ∈I φ(Z(M)) =

∑
φ∈Ii ⊕

n
i=1φii(Z(Mi)) = ⊕ni=1

∑
φ∈Ii φii(Z(Mi)) where Ii = {φ|Mi

: φ ∈
I} ⊆ EndR(Mi). As Mi is Z-dual Baer for all i ∈ {1, . . . , n},

∑
φ∈Ii φii(Z(Mi)) is a direct

summand of Mi and so
∑
φ∈I φ(Z(M)) is a direct summand of M . Therefore M is a Z-dual

Baer module.

We can prove the following proposition similar to the proof of Theorem 5.6.
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Proposition 5.7. Let {Mi}i∈I be a class of R-modules for an index set I. If for every i ∈ I, Mi

is a fully invariant submodule of
⊕

i∈IMi, then
⊕

i∈IMi is Z-dual Baer if and only if Mi is
Z-dual Baer for every i ∈ I.

We now define relatively Z-dual Baer modules and then we study direct sums of Z-dual Baer
modules applying this definition.

Definition 5.8. Let M and N be R-modules. Then, M is called N -Z-dual Baer if for every
subset I of HomR(M,N),

∑
φ∈I φ(Z(M)) is a direct summand of N .

Theorem 5.9. Let M = M1 ⊕M2 and N be R-modules. If M is N -Z-dual Baer, then for any
direct summand K of N , Mi is K-Z-dual Baer for i = 1, 2.

Proof. As Z(M) is a fully invariant submodule of M , we have Z(M) = Z(M1) ⊕ Z(M2).
Suppose that A is a subset of HomR(M1,K). Then B = {j ◦ ϕ ◦ πM1 | ϕ ∈ A} in which
πM1 : M → M1 is the projection of M on M1 and j is the inclusion from K to N , is a subset of
HomR(M,N). It is easy to check that AZ(M1) =

∑
ϕ∈A ϕ(Z(M1)) =

∑
g∈B g(Z(M)). As M

is a N -Z-dual Baer module, AZ(M1) is a direct summand of N and hence a direct summand of
K.

Proposition 5.10. Let {Mi}i∈J be a class of R-modules for an index set J , N an R-module.
Then, the following hold.

(1) Let N have the SSP for direct summands which are contained in Z(N) and J be finite.
Then,

⊕
i∈J Mi is N -Z-dual Baer if and only if Mi is N -Z-dual Baer for all i ∈ J .

(2) Let N have the SSSP for direct summands which are contained in Z(N), and J be
arbitrary. Then,

⊕
i∈J Mi is N -Z-dual Baer if and only if Mi is N -Z-dual Baer for all i ∈ J .

Proof. (1) The sufficiency is obvious from Theorem 5.9. For the necessity, suppose that A is a
subset of HomR(

⊕
i∈J Mi, N). Then Bi = {φji | φ ∈ A} in which ji is the inclusion from Mi

to
⊕

i∈J Mi, is a subset of HomR(Mi, N).
Assume that φ is a homomorphism from

⊕
i∈J Mi to N . Then φ = (φi)i∈J where φi = φji

is a homomorphism from Mi to N for each i ∈ J . By hypothesis,
∑
φi∈Bi

φi(Z(Mi)) is a direct
summand of N for each i ∈ J . Since N has SSP for direct summands which are contained in
Z(N), we have∑

φ∈A φ(Z(M)) =
∑
φ∈A φ(⊕ni=1(Z(Mi))) =

∑
i∈J

∑
φi∈Bi

φi(Z(Mi)) ≤⊕ N .

Therefore
⊕

i∈J Mi is N -Z-dual Baer.
(2) Similar to (1).

Corollary 5.11. Let {Mi}i∈J be a class of R-modules for an index set J . Then, for each j ∈ J ,⊕
i∈J Mi is Mj-Z-dual Baer if and only if Mi is Mj-Z-dual Baer for all i ∈ J .

Proof. It follows from Proposition 5.10 and Theorem 2.7.

Similar to the proof of Theorem 5.3, one can prove the following theorem.

Theorem 5.12. Let {Mi}ni=1 and N be modules. Assume that for each i ≥ j with 1 ≤ i, j ≤ n,
Mi is Mj-projective. Then N is ⊕ni=1Mi-Z-dual Baer if and only if N is Mj-Z-dual Baer for all
1 ≤ j ≤ n.

Corollary 5.13. Let {Mi}ni=1 be modules. Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi

is Mj-projective. Then ⊕ni=1Mi is Z-dual Baer if and only if Mi is Mj-Z-dual Baer for all
1 ≤ i, j ≤ n.

Proof. The sufficiency is obvious from Theorem 5.9. For the necessity, assume that Mi is Mj-
Z-dual Rickart for all 1 ≤ j ≤ n. Now ⊕ni=1Mi is Mj-Z-dual Rickart for all 1 ≤ j ≤ n by
Corollary 5.11. Therefore, by Theorem 5.12, ⊕ni=1Mi is Z-dual Rickart.
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