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Abstract Frame theory is recently an active research area in mathematics and engineering
with many exciting applications in a variety of different fields. In the current paper, we devoted
to study the invariance of K-frames under the class of semi-regular operators in Hilbert C∗-
module.

1 Introduction and preliminaries

Frames, redundant systems in separable Hilbert spaces, which provide non-unique representa-
tions of vectors, were first introduced by Duffin and Schaeffer[10] and used them as a tool in
the study of nonharmonic Fourier series. They were reintroduced and developed in 1986 by
Daubechies, Grossmann and Meyer[9]. Nowadays, Frames has been a useful tool in many areas
such signal processing [7], sampling theory [27] and so on.

In recent years, research on a special class of frames, named K-frames, were first introduced
by L. Gǎvruta [12] as a generalization of discrete frames due to some potential applications in
sampling theory. Indeed, K-frames reconstruct the elements from the range of a bounded linear
operator K in a separable Hilbert spaces. Frank and Larson [11] introduced the notion of frames
in Hilbert C∗-module as a generalization of frames in Hilbert spaces.

In this section, we first present a brief account of basic definitions and some properties of
Hilbert C∗-modules and their frames. For background material on frame theory and related
topics, we refer to [8, 6, 5, 20].

Definition 1.1. [17] A left Hilbert C∗-module over the unital C∗-Algebra A is a left A-module
H equipped with an A-valued inner product

〈., .〉 : H×H −→ A

satisfying the following conditions:

1. 〈x, x〉A ≥ 0, for all x ∈ H and 〈x, x〉A = 0 if and only if x = 0.

2. 〈ax+ y, z〉A = a〈x, z〉A + 〈y, z〉A, for all a ∈ A and x, y, z ∈ H.

3. 〈x, y〉A = 〈y, x〉∗A, for all x, y ∈ H.

4. H is complete with respect to the norm ||x|| = ||〈x, x〉A||
1
2 .

Let H and K be two Hilbert A-modules. A map T : H → K is said to be adjointable if
there exists a map T ∗ : K → H such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ H and y ∈ K. We
denote End∗A(H,K) for the set of all adjointable operators from H to K and End∗A(H,H) is
abbreviated to End∗A(H). Throughout this paper, we suppose thatH is a Hilbert C∗-module and
J a countable index set of N.

Example 1.2. Let us consider the following set

l2 (A) = {{aj}j∈J ⊆ A :
∑
j∈J

aja
∗
j converge in || . ||}.
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It is easy to see that l2 (A) with pointwise operations and the inner product

〈{aj}, {bj}〉 =
∑
j∈J

ajb
∗
j ,

is a Hilbert C∗-module which is called the standard Hilbert C∗-module over A.

For T ∈ End∗A(H), we denote by R (T ) and N (T ) the range and the kernel subspaces
of T respectively and I is the identity operator. We will say that T is positive, if 〈Tx, x〉 ≥
0, for all x ∈ H [31].

It is well-known that each adjointable operator is necessarily bounded A-linear in the sense
T (ax) = aT (x), for a ∈ A and x ∈ H, but it is important to realize that the converse is false
[17, 19].

Definition 1.3. [11] Let H be a Hilbert A-module. A sequence {xj}j∈J is said to be a frame for
H, if there exist constant α, β > 0 such that

α〈x, x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ β〈x, x〉, for all x ∈ H.

The constants α, β are called frame bounds.
If just the right inequality in the above definition holds, we say that {xj}j∈J is a Bessel sequence.
The operator

Φ : l2 (A)→ H, defined by, Φ (a) =
∑
i∈J

ajxj , a = (ai)j∈J ∈ l
2 (A)

is called synthesis operator. The adjoint operator is given by

Φ∗ : H → l2 (A) defined by, Φ∗ (x) = {〈x, xj〉}j∈J

is called the analysis operator. By composing Φ with its adjoint Φ∗ we obtain the frame operator

S : H → H, S (x) = Φ (Φ∗ (x)) =
∑
j∈J
〈x, xj〉xj

For each x ∈ H, we have
〈Sx, x〉 =

∑
j∈J
〈x, xj〉〈xj , x〉.

Then, S is bounded, positive and self-adjoint. Moreover, S verify

αI ≤ S ≤ βI.

Thus, S is invertible.

Definition 1.4. [25] Let K ∈ End∗A (H). We shall say that {xj}j∈J is a K-frame for H, if there
exist constants α, β > 0 such that

α〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ β〈x, x〉, for all x ∈ H.

Example 1.5. Let {ei}i≥1 be an orthonormal basis for H and K ∈ B (H) be defined as follows

Ke1 = 3e1, Ke2 = e2, Ke3 = e3, Kei = 0, for i ≥ 4.

And
θi = iei, for i = 1, 2, 3, θi = 0, for i ≥ 4.

Obviously, we have

K∗e1 = 3e1, K
∗ei = ei, i = 2, 3 and K∗ei = 0, for i ≥ 4.
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Hence

|| K∗x ||2=||
∑
i≥1

〈x, θi〉K∗ei ||2= 9 | 〈x, θ1〉 |2 + | 〈x, θ2〉 |2 + | 〈x, θ3〉 |2 .

Thus
1
9
|| K∗x ||2≤

∑
i≥1

| 〈x, θi〉 |2≤ 9 || x ||2 .

Which implies that {θi}i≥1 is a K-frame for H.

Lemma 1.6. [25] Let {xj}j∈J be a Bessel sequence in H and K ∈ End∗A (H). Then {xj}j∈J is
a K-frame for H if and only if there exists α > 0 such that

S ≥ αKK∗.

where S is the frame operator for {xj}j∈J.

Lemma 1.7. [26] Let T ∈ End∗A (H) . Then

〈Tx, Tx〉 ≤|| T ||2 〈x, x〉, for all x ∈ H.

Lemma 1.8. [32] Let T,G ∈ End∗A (H). If R(G) is closed, then the following statements are
equivalent:

1. R(T ) ⊆ R(G).

2. α〈T ∗x, T ∗x〉 ≤ 〈G∗x,G∗x〉, for some α > 0.

It is interesting to note that the concept of regularity is at the heart of the Kordula-Müller
axiomatic spectral theory, that is given as follows

Definition 1.9. ([15]) A non-empty subset R of End∗A (H) is called a regularity if the following
two conditions hold :
(i) if T ∈ R and n ≥ 1, then Tn ∈ R;
(ii) if T,G,C,D are mutually commuting operator of End∗A (H) satisfying TC+GD = I. Then

TG ∈ R ⇔ T,G ∈ R.

Proposition 1.10. [23] Let R be a non-empty set of End∗A (H) satisfying

TG ∈ R ⇔ T ∈ R and G ∈ R,

for all commuting elements T,G ∈ End∗A (H) . Then, R is a regularity.

Example 1.11. The set of invertible operators in End∗A (H) is a regularity.

Following Saphar in [30] the algebraic core C (T ) of T , is the greatest subspaceM of H for
which T (M) =M. Obviously, if T is surjective, then C (T ) = H.

Proposition 1.12. [23] Suppose that T,G,C,D are mutually commuting in End∗A (H) such that
TC +GD = I. Then

C (TG) = C (T ) ∩ C (G) .

In addition, we pay attention that the concept of the conorme γ (T ) plays a fundamental role
in the perturbation theory of Fredholm operators.

Definition 1.13. [22] For an operator T ∈ End∗A (H) , the conorme of T is defined by

γ (T ) := inf{|| Tx ||, x ∈ H, dist (x,N (T )) = 1}.

Formally, we set γ (0) :=∞. Clearly γ (T ) > 0 if and only if R (T ) is closed.
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Example 1.14. Let T ∈ B
(
C2
)

be defined as follows

T : C2 −→ C2

(x1, x2) 7−→ (x1, x1) .

We have || Tx ||=
√

2 | x1 | and dist(x,N (T )) =| x1 |, where x = (x1, x2) .

Then γ (T ) =
√

2.

The concept of invertibility admits several generalizations, for instance an operator K ∈
End∗A (H) admits a generalized inverse L ∈ End∗A (H) if :

KLK = K and LKL = L.

In general, the generalized inverse is not unique, [21]
The Moore-Penrose inverse plays an important role in theoretical study and numerical analysis
in many areas, such as the optimization problems and also in statistical problems.

Let us consider the operator

K0 = K/N (K)
⊥ : N (K)

⊥ −→ R (K)

that is clearly bijective. Define K† by{
K†x = K−1

0 x if x ∈ R (K) ,

K†x = 0 if x ∈ R (K)
⊥
.

Then, K† = K−1
0 PR(K) is called Moore-Penrose inverse of K.

Recall from [31], that the Moore-Penrose inverse of an operator K ∈ End∗A (H) with closed
range is a unique operator K+ such that

KK+ (u) = u, for all u ∈ R (K) .

The reader is referred to [29, 13] for more details.
In addition, the notion of semi-regularity of operators in Banach spaces, was originated clas-

sical treatment of perturbation theory owed to Kato [14] and it has been benefited from the work
of many authors in the last years, in particular from the work of M. Mbekhta and Ouahab [22],
Müller [24], Rakocevic̀ [28].

Definition 1.15. [22] An operator T ∈ End∗A (H) is said to be semi-regular if R(T ) is closed
and N (T ) ⊂ R (Tn) , for every n ≥ 1.

Example 1.16. Clearly, all injective operators with closed range and all surjective operators are
semi-regular. Some other examples may be found in [16].

Proposition 1.17. [4] Assume that T ∈ End∗A (H) is semi-regular and L ∈ End∗A (H) such that
TLT = T. Then

TnLnTn = Tn, for all n ≥ 1.

Now, we collect some useful properties of semi-regular operators. We refer to [1], [22], for
further information.

Proposition 1.18. [1] Let T ∈ End∗A(H) be semi-regular. Then we have

1. C (T ) is closed;

2. Tn is semi-regular, for all n ∈ N;

3. T − λI is semi-regular and C (T ) ⊂ C (T − λI), for all |λ| < γ (T ) .

Remark 1.19. [1] If T is semi-regular and C (T ) = {0}, then T is bounded below.
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Recall that the semi-regular resolvent of a bounded operator T is defined by

reg (T ) = {λ ∈ C : T − λI is semi − regular}.

Notice that reg (T ) is an open subset of C. (see[1]) , for more information.
In the following result, we show that the subspaces C (T − λI) are constant as λ ranges through
a component Ω of reg (T ) .

Theorem 1.20. [1] Let T ∈ End∗A (H) and Ω be a connected component Ω of reg (T ) . If
λ0 ∈ Ω, then

C (T − λI) = C (T − λ0I)

for every λ ∈ Ω.

Theorem 1.21. [23] The set of all semi-regular operators is a regularity.

The main purpose of the present paper is to study the invariance of K-frames in Hilbert
C∗-modules under the class of semi-regular operators introduced by M. Mbekhta [22].

2 Main Results

For given T ∈ End∗A(H), We fix the next notations

D (T ) = {λ ∈ C :| λ |< γ (T )}.

Pλ (T ) = Tn − λTn−1, λ ∈ C and n ≥ 1.

and we assume that C (T ) 6= {0}.

Theorem 2.1. Let T,K ∈ End∗A (H) be two semi-regular operators such that KT = TK. Let
{xi}j∈J be a K-frame for H. Then {T (xi)}j∈J is a K-frame for C (T ) with frame operator
defined by ST = TST ∗.

Proof. Let {xj}j∈J be a K-frame for H with frame bounds α and β. Then, for each x ∈ C (T )

α〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉.〈xj , x〉 ≤ β〈x, x〉.

Now, let u ∈ C (T ), then there exists v ∈ C (T ) such that u = T (v).
This give

K (u) = K (Tv) = (KT ) (v) = (TK) (v) .

It follows from Theorem 1.21, that R (KT ) is closed.
By Lemma 1.8, there exists α′ > 0 such that

α′〈K∗x,K∗x〉 ≤ 〈(TK)
∗
x, (TK)

∗
x〉.

This implies that

αα′〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, Txj〉〈Txj , x〉 ≤ β〈T ∗x, T ∗x〉, (x ∈ C (T )) .

Using Lemma 1.7, we have
〈T ∗x, T ∗x〉 ≤|| T ||2 〈x, x〉,

So, there exists A = αα′ > 0 and B = β || T ||2> 0 such that

A〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, Txj〉.〈Txj , x〉 ≤ B〈x, x〉.

Then, {T (xj)}j∈J is a K-frame for C (T ).
On the other hand, we have for every x ∈ C (T )

S (x) =
∑
j∈J
〈x, xj〉.xj
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It follows that

TST ∗ (x) =
∑
j∈J
〈T ∗x, xj〉.Txj =

∑
j∈J
〈x, Txj〉.Txj = ST (x) .

Thus, the frame operator for {T (xj)}j∈J is ST = TST ∗.
This completes the proof.

Remark 2.2. ST is bounded, positive and self-adjoint.

Corollary 2.3. Assume that T ∈ End∗A (H) is semi-regular. Then {Pλ (T ) (xj)}j∈J is aK-frame
for C (T ) , for every λ ∈ D (T ) .

Proof. By Proposition 1.12, we have

C (Pλ (T )) = C
(
Tn−1) ∩ C (T − λI)

= C (T ) ∩ C (T − λI)
= C (T ) .

It follows from Proposition 1.18 and Theorem 1.21, that Pλ (T ) is a semi-regular operator.
Therefore, By Theorem 2.1, we deduce that {(Pλ (T )) (xj)}j∈J is a K-frame for C (T ) .

Under assumptions of the Theorem 1.20, we put C0 (T ) = C (T − λI) .

Corollary 2.4. Let T ∈ End∗A (H) be semi-regular. Then, {(T − λI) (xj)}j∈J is a K-frame for
C0 (T ) , for every λ ∈ Ω.

Proof. It follows immediately from Theorem 1.20 and Theorem 2.1

Motivated by the work of Mbekhta [21], we exhibit some examples for which there is exists
a bounded operator L such that KLK = K.

Example 2.5. Let K,L ∈ B
(
C2
)

defined by:

K =

(
1 −1
0 0

)
and L =

(
1 0
0 0

)
.

Then, it is easy to get KLK = K.

Recall that an operator V is said to be a partial isometry if V V ∗V = V.

Example 2.6. Let K ∈ End∗A(H) such that K = UV U−1 with V is a partial isometry and U an
invertible operator, then

U−1KU = V = V V ∗V = U−1KUU∗K∗U∗−1U−1KU.

Therefore
K = KUU∗K∗U∗−1U−1K = KLK.

where L = (UU∗)K∗ (UU∗)
−1
.

Theorem 2.7. Assume {xj}j∈J is a K-frame for H and K,L ∈ End∗A(H). If L is such that
KLK = K, then {(KL)xj}j∈J is a K-frame for H.

Proof. Suppose that {xj}j∈J is aK-frame forH with frame bounds α and β. Then, for all x ∈ H

α〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ β〈x, x〉,

since
KLK = K,
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hence

α〈K∗L∗K∗x,K∗L∗K∗x〉 ≤
∑
j∈J
〈x, (KL)xj〉〈(KL)xj , x〉 ≤ β〈L∗K∗x, L∗K∗x〉.

By taking β′ = β || KL ||2, we get

α〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, (KL)xj〉〈(KL)xj , x〉 ≤ β′〈x, x〉.

Then {(KL)xj}j∈J is a K-frame for H.

Corollary 2.8. Let K ∈ End∗A(H) be with closed range and L ∈ End∗A(H) be a generalized
inverse of K. If {xj}j∈J is a K-frame for H, then {(KL)xj}j∈J is a K-frame for H.

Proof. Results from Theorem 2.7.

Proposition 2.9. Assume that {xj}j∈J is a K-frame for H. Then, {xj}j∈J is also a Kn-frame
for H, for each n ≥ 1.

Proof. The first, there exist α, β > 0 such that

α〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, xj〉〈xj , x〉 ≤ β〈x, x〉,∀x ∈ H,

By Lemma 1.7, we have

〈Knx,Knx〉 ≤|| Kn−1 ||2 〈Kx,Kx〉,∀x ∈ H.

Thus
α || Kn−1 ||−2 〈Kn∗x,Kn∗x〉 ≤

∑
j∈J
〈x, xj〉〈xj , x〉 ≤ β〈x, x〉.

This complete the proof.

Proposition 2.10. Let K ∈ End∗A(H) be semi-regular and {xj}j∈J be a K-frame for H. If L is
such that KLK = K, then {(KnLn)xj}j∈J is a Kn-frame for H.
Morover, {

(
KnK†n

)
xj}j∈J is also a Kn-frame for H, for every n ≥ 1.

Proof. The result follows from Proposition 1.17, Proposition 2.9 and Theorem 2.7.

Example 2.11. Let {ej}j≥1 be a orthonormal basis of l2 (C) and let K ∈ B
(
l2 (C)

)
defined as

follows
K (x1, x2, ...) = (x2, x3, ...) .

For (yj)j≥1 ∈ l
2 (C), we have

K∗ (y1, y2, ..) = (0, y1, y2, ..) .

Thus
KK∗K (x1, x2, ..) = K (0, x2, x3, ..) = (x2, x3, ..) = K (x1, x2, ..) ,

hence
KK∗K = K and K∗KK∗ = K∗.

Then K∗ = K†.
On the other hand, we have

〈K∗x,K∗x〉 =
∑
j≥1

| xj |2=
∑
j≥1

〈x, ej〉〈ej , x〉.

Thus
〈K∗x,K∗x〉 ≤

∑
j≥1

〈x, ej〉〈ej , x〉 ≤ 〈x, x〉.

Then {ej}j∈N is a K-frame for l2 (C) .
By a simple calculation, we deduce that {

(
KnK†n

)
ej}j≥1 is a Kn-frame for l2 (C) , (∀n ≥ 1) .
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In what follows, we are concerning with the construction of New K-frames. To this interest,
we recall the following definition

Definition 2.12. [3] A sequence of A-modules and A-homomorphisms

...−→Mi−1
Ti−→Mi

Ti+1−→Mi+1 −→ ...

is said to be exact at Mi if R (Ti) = N (Ti+1).The sequence is exact if it is exact at each Mi.

Let us consider the following set

ET = {K ∈ End∗A (H) : H K−→ H T−→ H is a sequence exact at H}

Proposition 2.13. Let T ∈ End∗A (H) be a semi-regular operator andK ∈ ET . Then there exists
a constant αp > 0 such that T pT ∗p ≥ αpKK∗, for every p ≥ 1.

Proof. Let T be semi-regular and K ∈ ET , then R (K) = N (T ). Since R (T p) is closed, we
have

R (K) ⊂ R (T p) , for all p ≥ 1.
Using Lemma 1.8, there exists αp > 0 such that T pT ∗p ≥ αpKK∗.
This complete the proof

Theorem 2.14. Let T ∈ End∗A (H) be semi-regular and K ∈ ET . If {xj}j∈I is a frame for H.
Then {T p (xj)}j∈J is a K-frame for H, for all p ≥ 1.

Proof. Suppose that {xj}j∈J is a frame for H with frame bounds α and β. Then

α〈T p∗x, T p∗x〉 ≤
∑
j∈J
〈x, T pxj〉.〈T pxj , x〉 ≤ β〈T p∗x, T p∗x〉, for all x ∈ H.

By Lemma 1.8, there exists α′ > 0 such that

α′〈K∗x,K∗x〉 ≤ 〈T ∗px, T ∗px〉,

and from Lemma 1.7, we have

〈T ∗px, T ∗px〉 ≤|| T ||2p 〈x, x〉, for all x ∈ H.

Therefore, there exist A = αα′ > 0 and B = β || T ||2p> 0 such that

A〈K∗x,K∗x〉 ≤
∑
j∈J
〈x, T pxj〉.〈T pxj , x〉 ≤ B〈x, x〉, for all x ∈ H.

which implies that {T pxj}j∈J is a K-frame for H.

Corollary 2.15. Let T be semi-regular and positive on H such that || T ||< 1 and K ∈ ET . Let
{xj}j∈J be a frame for H with S frame operator such that ST = TS. Then, {eT (xj)}j∈J is a
K-frame for H, where eT =

∑
p∈N

1
p!T

p.

Proof. Let K ∈ ET , we have

SeT = eTSeT

=
∑
k,p≥0

1
k!

1
p!
T kST p

=
1

(k′!)2STk′ +
∑

k 6=k′,p6=k′

1
k!

1
p!
ST k+p.

So, by Proposition 2.13, there exists λk′ > 0 such that

STk′ ≥ λk′KK∗.

Then
SeT ≥

λk′

(k′!)2KK
∗.

Obviously, {eT (xj)}j∈J is a Bessel sequence for H.
It follows from Lemma 1.6 that {eT (xj)}j∈J is a K-frame for H.
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Remark 2.16. Let {ej}j∈N be an orthonormal basis for l2 (C) . Let T ∈ B
(
l2 (C)

)
be defined as

follows
T (a0, a1, ..) = (a1, a2, ., ., .) .

Obviously, we have
N (T ) = {(b, 0, 0, ., .) : b ∈ C}.

Now, let K ∈ B
(
l2 (C)

)
defined by

K (a0, a1, a2, ..) = (a0, a1, 0, 0, ...) ,

hence
R (K) ' C2 and N (T ) ' C.

Therefore
R (K) 6= N (T ) .

Consequently, we obtain K /∈ ET .
By setting a = (a0, a1, a2, ., .), we get

〈K∗ (a) ,K∗ (a)〉 =| a0 |2 + | a1 |2 .

By some straightforward computations, we obtain that∑
j∈N
〈T p (a) , ej〉.〈ej , T p (a)〉 =

∑
j∈N
〈(ap, ap+1, ..) , ej〉.〈ej , (ap, ap+1, ..)〉

=
∑
j∈N
| ap+j |2 .

We take p ≥ 3 and a = (a0, 0, 0, ..) such that a0 6= 0, we get∑
j∈N
〈T p (a) , ej〉.〈ej , T p (a)〉 < 〈K∗ (a) ,K∗ (a)〉.

Therefore {T p (aj)}j∈N is not a K-frame for H.
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