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Abstract In this work we consider a class of nonlinear viscous transport equations describing
aggregation phenomena in biology. We demonstrate the existence of solutions with initial data
in Morrey spaces. We analyze the asymptotic stability of solutions persistence at large times.

1 Introduction

In this work, we consider the Cauchy problem for the heat equation corrected by the nonlocal
and nonlinear transport term

ut = ∆u−∇ · (u(∇K ∗ u)), x ∈ Rn, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Rn. (1.2)

This model has been used to describe collective motion and aggregation phenomena in bio-
logy and mechanics of continuous media, where the unknown u = u(x, t) represents either the
population density of a species or the density of particles in a granular media. Here, n ≥ 2 and
the Kernel ∇K ∈ L1(Rn) is a given function (the symbol “ ∗ ” denotes the convolution with
respect to the variable x).

In the literature, aggregation equations have been greatly studied. For the case of (1.1) with-
out the diffusion term, Laurent [18] proved several local and global existence results for a class
of Kernels K with different regularity. We refer the reader to [7, 8, 9, 10] and references therein
for results on existence and blowup of solutions to the IVP for the inviscid aggregation equation.

Moreover, we refer the reader to the works [2, 3, 11, 12, 13, 14, 21, 23] for the case of (1.1)
and its generalizations considered either in whole space or in a bounded domain. It is worth
highlighting that (1.1) contains, as a particular case, the elliptical chemotaxis parabolic system,
whose simplified formula is described by

ut = ∆u−∇ · (u∇v), x ∈ Rn, t > 0, (1.3)

0 = ∆v − αv + u, (1.4)

where α > 0 is a given constant. In fact, taking the kernelK = K(x) as the fundamental solution
of the operator −∆ + αId, one can rewrite (1.4) as v = K ∗ u. Then, substitute this formula into
(1.3) we obtain (1.1). We refer the reader to works [5, 6, 17, 19, 22] and to the references therein
for mathematical results on systems modeling chemotaxis. In particular, in [4], it was obtained
a global existence of solutions to the parabolic-elliptic system of chemotaxis on Morrey spaces
framework.

We can also cite [13], where Karch studies the local/global-in-time existence of solutions to
(1.1) − (1.2), with initial data in Lebesgue space, for a class of kernels K : Rn → R strongly
singular, that is, ∇K ∈ Lq′(Rn) for a some q′ ∈ [1, n] and ∇K /∈ Lp(Rn) for all p > n. Notice
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that any functions ∇K satisfying |∇K| ∼ |x|1−n as |x| → 0 and rapidly decreasing if |x| → ∞
is strongly singular when n ≥ 2. Therefore, as we are assuming ∇K ∈ L1(Rn), this kind of
functions are particular examples of admissible Kernels K for our model.

Furthermore, in this work we consider the Cauchy problem (1.1)− (1.2) and show global-in-
time existence of solutions with initial data in Morrey spaces, which makes our problem more
general than those existing in the literature up to the present moment, by our knowledge.

Still in connection with this type of equation, it is worth highlighting that in [15], Karch
developed the general theory to study the Cauchy problem for the parabolic equation

ut = ∆u+B(u, u), (1.5)

u(x, 0) = u0(x), (1.6)

what encompasses a lot of models. Karch showed existence of global in time solutions assuming
some scaling property of the equation as well as of the norm of the Banach space in which the
solutions are constructed. However the bilinear form B(·, ·) in (1.5) has the scaling order less
than 2 (see [15], page 535 for more details). In our work, we got a result of existence where the
bilinear form does not need to be homogeneous, since the only assumption made for the operator
K is that its gradient lies in L1(Rn). In addition, our initial condition belongs to a bigger space
than the Karch’s.

Moreover, we analyze the asymptotic stability of solutions persistence for large times. Quali-
tative aspects, like symmetry of solutions, also are demonstrated. For results of this type for
semilinear fractional heat equations we refer [1].

This manuscript is organized as follows. In the next section we review basic properties about
Morrey spaces and the notion of mild solution for the IVP (1.1) − (1.2). We state our results in
Section 3 (see Theorem 3.1 and Theorem 3.3) and prove them in Section 4.

2 Preliminaries

2.1 Function spaces and definitions

In this section, we review some properties about Morrey spaces. The reader is referred to
[16] for further details about them.

For 1 ≤ p <∞ and 0 ≤ λ < n, the Morrey spaceMp,λ =Mp,λ(Rn) is defined as

Mp,λ = {f ∈ Lploc(R
n) : ‖f‖p,λ <∞}, (2.1)

where
‖f‖p,λ = sup

x0∈Rn, R>0
{R−

λ
p ‖f‖Lp(BR(x0))} (2.2)

and BR(x0) ⊂ Rn is the closed ball with center x0 and radius R. The space Mp,λ endowed
with ‖ · ‖p,λ is a Banach space. In particular, Mp,0 = Lp for p > 1, and also M1,0 is the Ba-
nach space of finite measures, which can also be denoted asM. We include L∞ = L∞(Rn) =
{f : Rn → R : ‖f‖∞ < ∞ a.e. in Rn} between Morrey spaces, taking p = ∞ or λ = n in the
notationMp,λ.

If nq = n−λ
p , we obtain the continuous inclusion

Lq ⊂Mp,λ. (2.3)

We have the following scaling for ‖ · ‖p,λ

‖f(α·)‖p,λ = α−
n−λ
p ‖f‖p,λ, for all α > 0. (2.4)

Hölder inequality holds true in the framework of Morrey spaces. Precisely, if 1 ≤ pi ≤ ∞
and 0 ≤ λi < n with 1

p3
= 1

p1
+ 1

p2
and λ3

p3
= λ2

p2
+ λ1

p1
, then

‖fg‖p3,λ3 ≤ ‖f‖p1,λ1‖g‖p2,λ2 . (2.5)
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Young type inequalities hold true in Morrey spaces, that is, if 1 ≤ p ≤ ∞ e 0 ≤ λ < n, then
for g ∈ L1(Rn) and f ∈Mp,λ

‖g ∗ f‖p,λ ≤ ‖g‖1‖f‖p,λ. (2.6)

The notation ‖ · ‖1 denotes the norm in L1(Rn).

2.2 Mild solutions

The linearization of (1.1)− (1.2) is the Cauchy problem for the linear heat equation

ut − ∆u = 0, x ∈ Rn, t > 0, (2.7)

u(x, 0) = u0(x), x ∈ Rn, (2.8)

which solution is given by
u(t) = G(t)u0,

where G(t) is the convolution operator with kernel g(x, t) = (4πt)−
n
2 e−

|x|2
4t .

Then, according Duhamel’s principle, the problem (1.1)− (1.2) is formally equivalent to the
integral system

u(t) = G(t)u0 +B(u, u)(t), t > 0, (2.9)

where

B(u, v)(t) = −
∫ t

0
∇xG(t− s)(u(∇K ∗ v))(s)ds. (2.10)

Throughout this paper, solutions of (2.9) are called mild ones for (1.1)− (1.2).

3 Results

The aim of this section is to state our results for the Cauchy problem (1.1) − 1.2. We start
by performing a scaling analysis in order to find the correct indexes for Kato-Fujita type norms
based on Morrey spaces. If u is a classical solution for (1.1)− (1.2), then the rescaled function

uα(x, t) := αu(αx, α2t), for all α > 0, (3.1)

is also solution since the ∇K is a homogeneous function of degree −n. With this motivation,
the scaling map of (1.1)− (1.2) can be defined as

u −→ uα. (3.2)

We observe that a solution u is called self-similar when it is invariant by (3.2), that is, u ≡ uα
for all α > 0.

Formally, making t → 0+ in (3.2), one obtains the scaling map associated to the initial
condition

u0(x) −→ αu0(αx). (3.3)

We want that initial data u0 be in a Morrey spaces such that its norm is invariant for (3.2).
Then, from the last observation, we choose the spaceMp,λ, with p = n− λ.

Let n ∈ N, n ≥ 2, 0 ≤ λ < n− 1, 1 < p < q < ∞. Consider the parameters p = n− λ and
η = 1

2 −
n−λ

2q , and let BC((0,∞), X) stand for the class of continuous and bounded functions
from (0,∞) to a Banach space X . Global-in-time solution u = u(x, t) will be sought in the
scaling-invariant Kato-Fujita class

Eq = {u ∈ BC((0,∞),Mp,λ); tηu ∈ BC((0,∞),Mq,λ)}, (3.4)

which is a Banach space with the norm

‖u‖Eq = sup
t>0
‖u(·, t)‖p,λ + sup

t>0
tη‖u(·, t)‖q,λ. (3.5)

Our well-posedness result reads as follows.
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Theorem 3.1. Assume that n ∈ N, n ≥ 2, 0 ≤ λ < n − 1, ∇K ∈ L1, 1 < p < q < ∞, with
1 < q

2 , p = n− λ, 1
p +

1
q < 1 and η = 1

2 −
n−λ

2q . Suppose that u0 ∈ Mp,λ. Let M1, M2 be as in
Lemma 4.3, M = max{M1,M2} and 0 < ε < 1

4M .

(i) (Existence and uniqueness) There exists δ = δ(ε) > 0 such that (1.1)−(1.2) has a global
solution u ∈ Eq provided ‖u0‖p,λ ≤ δ. This solution is the unique one satisfying ‖u‖Eq ≤ 2ε.

(ii) (Continuous dependence) The solution u depends continuously on initial data u0. Moreover,
u(·, t)⇀ u0(·) in D′(Rn) when t→ 0+.

(iii) (Symmetry) The solution u is odd (even) in Rn, t > 0, whenever u0 and K are odd (even).

It is observed that, in this case, the solution u is not self-similar (u = uα), otherwise, K
would be homogeneous of degree 1− n, which implies ∇K (belonging to L1) as homogeneous.
This would be incongruous, since Lp spaces does not contain homogeneous functions.

Remark 3.2. (i) (Local-in-time well-posedness) In order to obtain a local-in-time version of
Theorem 3.1, the smallness hypothesis on the initial condition must be replaced by that on
existence time T > 0.

Here, the space Eq previously defined must also be redefined by the following local spaces:

Eq,T = {u ∈ BC((0, T ),Mp,λ); lim sup
t→0+

tη‖u(·, t)‖q,λ = 0}.

Moreover, the initial data u0 ∈Mp,λ is such that

lim sup
t→0+

tη‖G(t)u0‖q,λ = 0. (3.6)

However, in particular, u0 satisfies (3.6) when it belongs to subspace M̈p,λ (Mp,λ, which
is defined by the following condition

f ∈ M̈p,λ ⇔ lim
y→0
‖τyf − f‖p,λ = 0,

where τy indicates the translation τy(x) = f(x− y) for y ∈ Rn.

Since that the semigroup {G(t)}t≥0 is not strongly continuous at t = 0+ on Mp,λ we
need to restrict ourselves to M̈p,λ, which is the maximal closed subspace ofMp,λ, where
{τy}y∈Rn is strongly continuous (see [16], Lemma 3.1).

(ii) (Alternative blow up) As discuss in (i), the local-in-time version of Theorem 3.1 is obtained
considering the initial data u0 ∈ M̈p,λ, which implies the existence of the solution u in the
space C([0, Tmax),Mp,λ), where Tmax > 0 stands for the maximal existence time.

Moreover, if Tmax <∞ then we have the solution blows up at finite time, i.e., ‖u(·, t)‖p,λ →
∞when t→ T−max; otherwise we have Tmax =∞, and the solution u is global-in-time. We
can cite [1, 24, 25, 26] for more results about blow up for nonlinear diffusion equations.

Theorem 3.3. (Asymptotic stability) Under the hypotheses of Theorem 3.1, let u and v be two
solutions as in the Theorem 3.1 with initial data u0 and v0, respectively. We have that

lim
t→+∞

‖G(t)(u0 − v0)‖p,λ = lim
t→+∞

tη‖G(t)(u0 − v0)‖q,λ = 0 (3.7)

if and only if

lim
t→+∞

‖u(·, t)− v(·, t)‖p,λ = lim
t→+∞

tη‖u(·, t)− v(·, t)‖q,λ = 0. (3.8)
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4 Proofs of the results

In this part, we prove the results that were stated in the previous section. Initially, we will
start by recalling an abstract fixed point lemma which will be useful for our ends. For a proof,
see e.g. [20].

Lemma 4.1. Let X be a Banach space with norm ‖ · ‖X and B : X ×X → X be a continuous
bilinear map, that is, there N > 0 such that

‖B(x1, x2)‖X ≤ N‖x1‖X‖x2‖X , for all x1, x2 ∈ X. (4.1)

Let y ∈ X , y 6= 0 and ‖y‖X ≤ ε. If 0 < ε < 1
4N , then exists a unique solution x ∈ E2ε = {x ∈

X : ‖x‖X ≤ 2ε} for equation x = y + B(x, x). The solution is the limit in X of the iterated
sequence x1 = y and xn+1 = y +B(xn, xn), n ≥ 1.

4.1 Estimates for G(t) and ∇xG(t) in Morrey spaces

The next lemma provides us estimates for G(t) and ∇xG(t) in Morrey spaces, whose proof
can be seen e.g. [16].

Lemma 4.2. Let 1 ≤ p1, p2 < ∞ and 0 ≤ λ1, λ2 < n. If n ≥ n−λ1
p1
≥ n−λ2

p2
≥ 0, there exists a

constant C = C(p1, p2, λ1, λ2) > 0, such that

‖G(t)f‖p2,λ2 ≤ Ct
− 1

2

(
n−λ1
p1
−n−λ2

p2

)
‖f‖p1,λ1 , (4.2)

and
‖∇xG(t)f‖p2λ2 ≤ Ct

− 1
2

(
1+n−λ1

p1
−n−λ2

p2

)
‖f‖p1,λ1 , (4.3)

for all f ∈Mp1,λ1 , and all t > 0.

4.2 Bilinear estimates

As already seen in this work, we use the following bilinear operator notation appearing in
(2.9)

B(u, v)(t) = −
∫ t

0
∇xG(t− s)(u(∇K ∗ v))(s)ds.

Lemma 4.3. Under the hypotheses of the Theorem 3.1 and considering r > 1 satisfying 1
p +

1
q =

1
r , there exist constants M1,M2 > 0 such that

sup
t>0
‖B(u, v)(t)‖p,λ ≤M1 sup

t>0
tη‖u(t)‖q,λ sup

t>0
‖v(t)‖p,λ (4.4)

and
sup
t>0

tη‖B(u, v)(t)‖q,λ ≤M2 sup
t>0

tη‖u(t)‖q,λ sup
t>0

tη‖v(t)‖q,λ, (4.5)

for all u, v ∈ Eq.

Proof. By Lemma 4.2, we have

‖B(u, v)(t)‖p,λ ≤
∫ t

0
‖∇xG(t− s)(u(∇K ∗ v))(s)‖p,λ ds

≤ C

∫ t

0
(t− s)−

1
2−

n−λ
2r +n−λ

2p ‖(u(∇K ∗ v))(s)‖r,λ ds. (4.6)

Therefore, Hölder inequality (2.5) and then Young inequality (2.6) yield

‖(u(∇K ∗ v))(s)‖r,λ ≤ ‖u(s)‖q,λ ‖(∇K ∗ v)(s)‖p,λ
≤ ‖u(s)‖q,λ ‖∇K‖1 ‖v(s)‖p,λ. (4.7)
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Inserting (4.7) into (4.6) and since n−λ
2p + n−λ

2q = n−λ
2r , we get

‖B(u, v)(t)‖p,λ ≤ C ‖∇K‖1

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(s)‖q,λ ‖v(s)‖p,λ ds

≤ C ‖∇K‖1 sup
t>0

tη‖u(t)‖q,λ sup
t>0
‖v(t)‖p,λ

∫ t

0
(t− s)−

1
2−

n−λ
2q s−ηds

= C ‖∇K‖1 sup
t>0

tη‖u(t)‖q,λ sup
t>0
‖v(t)‖p,λ

∫ 1

0
(1− s)−

1
2−

n−λ
2q s−

1
2+

n−λ
2q ds

= M1 sup
t>0

tη‖u(t)‖q,λ sup
t>0
‖v(t)‖p,λ. (4.8)

Then, from (4.8) we have

sup
t>0
‖B(u, v)(t)‖p,λ ≤M1 sup

t>0
tη‖u(t)‖q,λ sup

t>0
‖v(t)‖p,λ.

The estimate (4.5) follows at once from Lemma 4.2 and inequalities (2.5) and (2.6), in fact

tη‖B(u, v)(t)‖q,λ ≤ tη
∫ t

0
‖∇xG(t− s)(u(∇K ∗ v))(s)‖q,λds

≤ Ctη
∫ t

0
(t− s)

− 1
2−

n−λ
2 q2

+n−λ
2q ‖(u(∇K ∗ v))(s)‖ q

2 ,λ
ds

≤ Ctη
∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(s)‖q,λ ‖(∇K ∗ v)(s)‖q,λ ds

≤ C‖∇K‖1t
η

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(s)‖q,λ ‖v(s)‖q,λ ds

≤ C‖∇K‖1t
η sup
t>0

tη‖u(t)‖q,λ sup
t>0

tη‖v(t)‖q,λ
∫ t

0
(t− s)−

1
2−

n−λ
2q s−2ηds

= C‖∇K‖1t
η sup
t>0

tη‖u(t)‖q,λ sup
t>0

tη‖v(t)‖q,λ
∫ 1

0
(1− s)−

1
2−

n−λ
2q s−1+n−λ

q ds

= M2 sup
t>0

tη‖u(t)‖q,λ sup
t>0

tη‖v(t)‖q,λ. (4.9)

By (4.9), we obtain

sup
t>0

tη‖B(u, v)(t)‖q,λ ≤M2 sup
t>0

tη‖u(t)‖q,λ sup
t>0

tη‖v(t)‖q,λ.

4.3 Proof of Theorem 3.1

Part (i) (Existence and uniqueness): TakeX = Eq defined by (3.4). We denoteM = max{M1,M2},
y = G(·)u0. For u, v ∈ Eq, recalling (3.5), Lemma 4.3 yields

‖B(u, v)‖Eq = sup
t>0
‖B(u, v)(t)‖p,λ + sup

t>0
tη‖B(u, v)(t)‖q,λ

≤ M sup
t>0

tη‖u(t)‖q,λ(sup
t>0
‖v(t)‖p,λ + sup

t>0
tη‖v(t)‖q,λ)

≤ M‖u‖Eq‖v‖Eq . (4.10)

Applying the Lemma 4.2 and recalling that n− λ = p, we obtain

‖y‖Eq = sup
t>0
‖G(t)u0‖p,λ + sup

t>0
tη‖G(t)u0‖q,λ

≤ C1‖u0‖p,λ + C2 sup
t>0

tηt−
1
2 (
n−λ
p −

n−λ
q )‖u0‖p,λ

≤ C3‖u0‖p,λ ≤ ε (4.11)
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provided that ||u0||p,λ ≤ δ = ε
C3

. If 0 < ε < 1
4M then Lemma 4.1 implies that there is a unique

solution u ∈ Eq of (2.9) such that ‖u‖Eq ≤ 2ε.

Part (ii)(Continuous dependence on initial data): Let u and v be two solutions as in Part (i)
with initial data u0 and v0, respectively. We have

‖u− v‖Eq = ‖G(·)u0 +B(u− v, u)−G(t)v0 +B(v, u− v)‖Eq
≤ ‖G(·)(u0 − v0)‖Eq + ‖u− v‖Eq(M‖u‖Eq +M‖v‖Eq)
≤ ‖G(·)(u0 − v0)‖Eq + 4Mε‖u− v‖Eq ,

and hence
(1− 4Mε)‖u− v‖Eq ≤ ‖G(·)(u0 − v0)‖Eq .

From (4.11) it follows that ‖G(·)u0‖Eq ≤ C3‖u0‖p,λ, then

(1− 4Mε)‖u− v‖Eq ≤ C3‖u0 − v0‖p,λ.

This complete the proof of continuous dependence.
We will prove that u(·, t)⇀ u0(·) as t→ 0+ in D′(Rn). Firstly we show that G(t)u0 ⇀ u0.
Let w ∈ D(Rn). Since g(x− y, t) = g(y − x, t), then 〈G(t)u0, w〉 = 〈u0, G(t)w〉. Therefore

G(t)u0 ⇀ u0 ⇔ 〈u0, G(t)w − w〉 → 0.
Let R > 0 such that supp(w) ⊂ BR(0) and let p′ such that 1

p′ +
1
p = 1. We have

R−λ〈u0, G(t)w − w〉 ≤ R−λ
∫
BR(0)

|(G(t)w − w)(x)u0(x)|dx

≤ R
−λ
p′ (

∫
BR(0)

|(G(t)w − w)(x)|p
′
dx)

1
p′R

−λ
p (

∫
BR(0)

|u0(x)|pdx)
1
p

≤ ‖G(t)w − w‖p′,λ‖u0‖p,λ. (4.12)

For (2.3), given p′ exists s such that Ls ⊂Mp′,λ, then ‖G(t)w − w‖p′,λ ≤ ‖G(t)w − w‖Ls .
The family {g(x, t)}t>0 indexed at t is an approximation of the identity in Ls, ergo ‖G(t)w −
w‖Ls → 0, when t → 0+. Therefore ‖G(t)w − w‖p′,λ‖u0‖p,λ → 0 when t → 0+. Recalling R
is fixed, it follows that G(t)u0 ⇀ u0.
Hence, we need to show that B(u, u)(t) ⇀ 0 as t → 0+ in D′(Rn). For every w ∈ D(Rn), let
R > 0 such that supp(w) ⊂ BR(0). Then, we have

R−λ|〈B(u, u)(t), w〉| ≤
∫ t

0
R−λ

∫
Rn
|∇xG(t− s)(u(∇K ∗ u))(x, s)w(x)|dxds

=

∫ t

0
R−λ

∫
BR(0)

|∇xG(t− s)(u(∇K ∗ u))(x, s)w(x)|dxds. (4.13)

Let l′ > 0 such that 1
l′ +

1
l = 1, with 1 < l = p

γ+1 and 0 < γ < p
q . By Holder inequality we

obtain

R−λ
∫
BR(0)

|∇xG(t− s)(u(∇K ∗ u))(x, s)w(x)|dx

≤ R−λ

(∫
BR(0)

|∇xG(t− s)(u(∇K ∗ u))(x, s)|ldx

) 1
l
(∫

BR(0)
|w(x)|l

′
dx

) 1
l′

≤ ‖∇xG(t− s)(u(∇K ∗ u))(s)‖l,λ‖w‖l′,λ.

Let r > 1 such that 1
p +

1
q = 1

r and since γ < p
q we have 1 < r < l. By (4.3), (2.5) and (2.6)

we obtain

‖∇xG(t− s)(u(∇K ∗ u))(s)‖l,λ ≤ C(t− s)− 1
2−

n−λ
2r +n−λ

2l ‖u(s)‖q,λ‖∇K‖1‖u(s)‖p,λ. (4.14)

Hence, by (4.13) and (4.14), we have

R−λ|〈B(u, u), w〉| ≤ LI‖w‖l′,λ,
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where L = C‖∇K‖1 sup
t>0

tη‖u‖q,λ sup
t>0
‖u‖p,λ and

I =

∫ t

0
(t− s)− 1

2−
n−λ

2r +n−λ
2l s−ηds

= t−
1
2−

n−λ
2r +n−λ

2l

∫ 1

0
(1− s)− 1

2−
n−λ

2r +n−λ
2l (ts)−ηtds

= Ct
n−λ

2l −
n−λ

2p .

Since n−λ
2l −

n−λ
2p > 0 and R is fixed, we concluded that B(u, u)(t)⇀ 0 as t→ 0+ in D′(Rn).

Part (iii)(Symmetry): Because Lemma 4.1 was used in the proof of Part (i), we have that
solution u is the limit of the Picard sequence

u1(·, t) = G(t)u0(·) and un+1(·, t) = u1(·, t) +B(un, un)(t), where n ∈ N.

As g(x, t) is even and by hypothesis u0 is odd (even) thus u1 is odd (even).
Now, an induction argument demonstrates that uk is odd (even), for k ≥ 1. Indeed, by

changing variables, a calculation shows that

B(uk, uk)(−x, t) = −B(uk, uk)(x, t) (B(uk, uk)(−x, t) = B(uk, uk)(x, t)),

because K is for hypothesis odd (oven).
Therefore, since

−u(x, t) = − lim
k→∞

uk(x, t) = lim
k→∞

uk(−x, t) = u(−x, t)

(u(x, t) = lim
k→∞

uk(x, t) = lim
k→∞

uk(−x, t) = u(−x, t)),

it follows from the uniqueness of the limit that u is odd (even).

�

4.4 Proof of Theorem 3.3

By hypothesis, we have
u(t) = G(t)u0 +B(u, u)(t) (4.15)

and
v(t) = G(t)v0 +B(v, v)(t). (4.16)

Subtracting the equations (4.15) and (4.16), taking the norms tη‖ · ‖q,λ and ‖ · ‖p,λ, we obtain the
respective inequalities

tη‖u(·, t)− v(·, t)‖q,λ ≤ tη‖G(t)(u0 − v0)‖q,λ + tη‖B(u− v, u)(t) +B(v, u− v)(t)‖q,λ
:= H0(t) +H1(t) (4.17)

and

‖u(·, t)− v(·, t)‖p,λ ≤ ‖G(t)(u0 − v0)‖p,λ + ‖B(u− v, u)(t) +B(v, u− v)(t)‖p,λ
:= H2(t) +H3(t). (4.18)

From (4.9) and (4.8), the terms H1 and H3 can be estimated as

H1(t) ≤ Ctη‖∇K‖1

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(·, s)− v(·, s)‖q,λ(‖u(·, s)‖q,λ + ‖v(·, s)‖q,λ)ds

≤ 4ε‖∇K‖1Ct
η

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(·, s)− v(·, s)‖q,λs−ηds

= 4ε‖∇K‖1C

∫ 1

0
(1− s)−

1
2−

n−λ
2q s−2η(ts)η‖u(·, ts)− v(·, ts)‖q,λds (4.19)
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and

H3(t) ≤ C‖∇K‖1

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(·, s)− v(·, s)‖p,λ(‖u(·, s)‖q,λ + ‖v(·, s)‖q,λ)ds

≤ 4ε‖∇K‖1C

∫ t

0
(t− s)−

1
2−

n−λ
2q ‖u(·, s)− v(·, s)‖p,λs−ηds

= 4ε‖∇K‖1C

∫ 1

0
(1− s)−

1
2−

n−λ
2q ‖u(·, ts)− v(·, ts)‖p,λs−ηds, (4.20)

respectively, because

sη‖u(·, s)‖q,λ ≤ sup
s>0

sη‖u(·, s)‖q,λ + sup
s>0
‖u(·, s)‖p,λ = ‖u‖Eq ≤ 2ε,

i.e., ‖u(·, s)‖q,λ ≤ 2εs−η. Analogously ‖v(·, s)‖q,λ ≤ 2εs−η. Let us set

A = lim sup
t→∞

tη‖u(·, t)− v(·, t)‖q,λ and B = lim sup
t→∞

‖u(·, t)− v(·, t)‖p,λ.

Computing lim sup
t→∞

in (4.17)−(4.18) and using (3.7), it follows that

A ≤ lim sup
t→∞

H0(t) + lim sup
t→∞

H1(t)

≤ 4ε‖∇K‖1C

∫ 1

0
(1− s)−

1
2−

n−λ
2q s−2ηdsA = 4εM2A ≤ 4εMA

and

B ≤ lim sup
t→∞

H2(t) + lim sup
t→∞

H3(t)

≤ 4ε‖∇K‖1C

∫ 1

0
(1− s)−

1
2−

n−λ
2q s−ηdsB ≤ 4εM1B ≤ 4εMB.

By the conditions of Theorem 3.1, we have that 4εM < 1 and as A,B ≥ 0, we obtain that
A = B = 0, i.e, lim

t→+∞
‖u(·, t)− v(·, t)‖p,λ = lim

t→+∞
tη‖u(·, t)− v(·, t)‖q,λ = 0.

In order to prove the reciprocal, subtracting the equations (4.15) and (4.16) similarly to the
above proof, we get

tη‖G(t)(u0 − v0)‖q,λ + ‖G(t)(u0 − v0)‖p,λ
≤ tη‖u(·, t)− v(·, t)‖q,λ + tη‖B(u− v, u)(t) +B(v, u− v)(t)‖q,λ

+‖u(·, t)− v(·, t)‖p,λ + ‖B(u− v, u)(t) +B(v, u− v)(t)‖p,λ
= tη‖u(·, t)− v(·, t)‖q,λ + ‖u(·, t)− v(·, t)‖p,λ +H1(t) +H3(t). (4.21)

Considering (4.19) and (4.20), we obtain (3.7) after taking lim sup
t→∞

in (4.21) and using (3.8).

�
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