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Abstract Two numerical methods based on Laguerre and Touchard polynomials are de-
scribed in this paper to solve both the fractional integral equations of the first kind and the
second kind (FIEs-1K and FIEs-2K, respectively). The fractional integrals are described in the
Erdélyi-Kober sense. Both the integral equations are transformed into an algebraic system of
linear equations using the Laguerre and Touchard matrices. All the steps of the algorithm are
given to find the solutions. Also, the accuracy of the solutions has been demonstrated. Five
examples are provided to interpret the methods. The accuracy of solutions is compared for both
methods. MATLAB program is used to perform all computations and graphs.

1 Introduction

The subject of fractional calculus has flourished over the last decade due to engineering ap-
plications in the fields of feedback control, systems theory, signals processing and many other
areas of sciences. Fractional operators have been extensively analyzed, both analytically and
numerically.

In the literature, several techniques for solving integral equations have been proposed. Some
of these methods are Babenko’s method and Abel integrals [14], Adomian decomposition method
[16], Fixed point methods [5], the product integration and Haar Wavelet approaches, for an ap-
proximate solutions of the fractional Volterra integral equations of the second type [9], Spectral
method based on Chebyshev polynomials [7], Galerkin weight residual numerical method with
Touchard polynomials as trial functions for Volterra-Fredholm integral equations [23]. Numeri-
cal method for the solutions of Volterra–Fredholm fractional integral equations [2]. Also several
ways for solving fractional integral equations have been proposed in recent years [1, 3, 4, 15, 17,
19, 20, 21, 26, 27, 30, 32, 36, 37].

Various modifications and generalizations of classical fractional integration operators are
known and are widely used both in theory and applications. In this paper, we will focus on gen-
eralized Erdélyi-Kober fractional integral operator which is typically used to describe mediums
with non-integer mass dimensions, and other applications of fractional integrals of the Erdé-
lyi–Kober type may be found in porous media, viscoelasticity, and electrochemistry [8, 10, 12,
22, 24, 28, 29, 33, 39].

The generalized Erdélyi-Kober fractional integral operator J η,δ
β of order δ > 0 for a real-

valued continuous function u(r) is defined as [11]:

J η,δ
β u(r) =

r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβη u(x) d(xβ), (1.1)

where δ > 0, β > 0, η ∈ R and Γ(δ) =
∫∞

0 xδ−1e−x dx.

According to Kiryakova [11], the generalized Erdélyi-Kober fractional integral operator (1.1),
possess the advantage that a number of generalized integration and differentiation operators hap-
pen to be the particular cases of this operator. Some important special cases of the integral
operator J η,δ

β are mentioned below:



Approximate solutions of fractional integral equations via L.P. & T.P. 417

(a) For η = 0, δ = n (n ∈ N) and β = 1, the Eq. (1.1) yields the following ordinary n-fold
integration:

In{u(r)} = rnJ 0,n
1 {u(r)} =

1
(n− 1)!

∫ r

0
(r − x)n−1u(x) dx.

(b) If we set η = 0 and β = 1, the operator (1.1) reduces to the Riemann-Liouville fractional
integral operators with the following relationship:

Rδ{u(r)} = rδJ 0,δ
1 {u(r)} =

1
Γ(δ)

∫ r

0
(r − x)δ−1u(x) dx.

(c) Again, for η = 0, δ = 1, and β = 1, the operator (1.1) leads to the Hardy-Littlewood (see
Cesaro) integration operator:

L1,0{u(r)} = J 0,1
1 {u(r)} =

1
r

∫ r

0
u(x) dx.

and its generalization for integers n > m− 1 (when η = n, δ = 1 and β = 1), we have

Lm,n{u(r)} = rn−m+1J n,1
1 {u(r)} = r−m

∫ r

0
xnu(x) dx.

(d) When β = 1, δ > 0 and η ∈ R, operator (1.1) reduces to the fractional integral operator,
which was originally considered by Kober [13] and Erdélyi [6]:

Iη,δ{u(r)} = J η,δ
1 {u(r)} =

r−δ−η

Γ(δ)

∫ r

0
(r − x)δ−1xnu(x) dx.

(e) Also for β = 2, the operator (1.1) yields the Erdélyi-Kober fractional integral operator Iη,δ
(Sneddon [33]):

Iη,δ = J η,δ
2 {u(r)} =

2r−2(η+δ)

Γ(δ)

∫ r

0
(r2 − x2)δ−1x2η+1u(x) dx.

(f) Further, if we set η = −1/2, β = 2 and δ is replaced by δ+ 1
2 , the Uspensky integral transform

[11] can easily be obtained as follows:

P δ{u(r)} =
1
2
J− 1

2 ,δ+
1
2

2 {u(r)} =
1

Γ(δ + 1
2)

∫ 1

0
(1 − x2)δ−

1
2 u(rx) dx.

For a detailed information about fractional integral operator (1.1) and its more special cases one
may refer the book [11].
Sometimes, it is difficult to find the exact solution to these equations explicitly. As a result, we
use numerical techniques to get an approximation of the solution. Thus, the current article’s
goal is to use the Laguerre and Touchard polynomials to obtain approximate numerical solutions
for FIEs-1K and FIEs-2K involving the Erdélyi-Kober fractional integral operator. In order to
achieve this goal, we develop a numerical scheme to solve the FIEs-1K and FIEs-2K. Further-
more, to illustrate the proposed algorithm, we provide five examples.

This paper is organized as follows: In Section 2 some preliminary information is given. Section
3 describes the matrix representation and approximation function for the Laguerre and Touchard
polynomials. In Section 4, we discussed numerical solutions for FIEs-1K and FIEs-2K using
the Laguerre and Touchard polynomials. Also, we summarized the algorithm for the solutions
in this Section. Accuracy of solutions and convergence rate are discussed in Section 5. Some
numerical experiments and figures are shown in Section 6 to demonstrate the applicability and
accuracy of the presented methods. Finally, conclusions and future work are given in Section 7.
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2 Preliminaries

Some basic knowledge is provided for the readers’ convenience.

By following Eq. (1.1) the generalized Erdélyi-Kober fractional integral operator J η,δ
β of

order δ > 0 for a real-valued continuous function u(r) can be written as [11]:

J η,δ
β u(r) =

β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1u(x) dx, (2.1)

where δ > 0, β > 0, η ∈ R and Γ(δ) =
∫∞

0 xδ−1e−x dx.

In light of these considerations, the generalized Erdélyi-Kober fractional integral formulation
can be used to define the FIEs-1K and FIEs-2K as follows:

g(r) = J η,δ
β u(r)

=
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1u(x) dx, r ∈ [0, τ ].

(2.2)

u(r) = g(r) + J η,δ
β u(r)

= g(r) +
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1u(x) dx, r ∈ [0, τ ],

(2.3)

where δ > 0, β > 0, η ∈ R, Γ(δ) =
∫∞

0 xδ−1e−x dx and g : [0, τ ] −→ R is a known function.

In this paper, our discussion will be focused on the Eq. (2.2) and Eq. (2.3).

2.1 Laguerre Polynomials

Laguerre polynomials consist of a polynomial sequence of binomial type defined on the interval
[0,∞) and of the following form [31, 35]:

Ln(r) =
n∑

m=0

(−1)m
1
m!

(
n

m

)
rm, (2.4)

where m and n are the polynomial index and degree, respectively and (nm) is a binomial coeffi-
cient.

The first six polynomials of the Laguerre polynomials are given below:

L0(r) = 1,
L1(r) = 1 − r,
L2(r) =

1
2(2 − 4r + r2),

L3(r) =
1
6(6 − 18r + 9r2 − r3),

L4(r) =
1
24(24 − 96r + 72r2 − 16r3 + r4),

L5(r) =
1

120(120 − 600r + 600r2 − 2003 + 25r4 − r5).

2.2 Touchard Polynomials

Touchard polynomials consists of a polynomial sequence of binomial type defined on the interval
[0, 1] and of the following form [18, 23, 25, 38]:

Tn(r) =
n∑

m=0

(
n

m

)
rm, (2.5)
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where m and n are the polynomial index and degree, respectively and (nm) is a binomial coeffi-
cient.

The first six polynomials of the Touchard polynomials are :

T0(r) = 1,
T1(r) = 1 + r,
T2(r) = 1 + 2r + r2,
T3(r) = 1 + 3r + 3r2 + r3,
T4(r) = 1 + 4r + 6r2 + 4r3 + r4,
T5(r) = 1 + 5r + 10r2 + 10r3 + 5r4 + r5.

3 Approximation Function and Matrix Representation

In this section, we will consider the approximate function by using Laguerre and Touchard poly-
nomials to determine the approximate numerical solutions of Eq. (2.2) and Eq. (2.3).

3.1 For Laguerre Polynomials

For determining the approximate numerical solutions of Eq. (2.2) and Eq. (2.3), assume that the
function Jn(r) is approximated by the Laguerre polynomials as folllows,

Jn(r) = s0 · L0(r) + s1 · L1(r) + ......+ sn · Ln(r) =
n∑

m=0

(sm · Lm(r)), 0 ≤ r < ∞, (3.1)

where the function {Lm(r)}nm=0 denotes the Laguerre basis polynomials of n-th degree,
defined in Eq. (2.4). We have to determine the unknown Laguerre coefficients sm, (m =
0, 1, ..., n).
Now rewriting Eq. (3.1) as,

Jn(r) =
[
L0(r) L1(r) . . . Ln(r)

]
·


s0

s1
...
sn

 · (3.2)

Again, Eq. (3.2) can be converted as,

Jn(r) = [1 r r2 . . . rn] ·



γ00 γ01 γ02 . . . γ0n

0 γ11 γ12 . . . γ1n

0 0 γ22 . . . γ2n
...

...
...

. . .
...

0 0 0 . . . γnn

 ·



s0

s1

s2
...
sn

 , (3.3)

where {γmm}nm=0 , (m = 0, 1, . . . , n) are the constants of the power basis, used to obtain the
Laguerre polynomials, this matrix is upper triangular and is certainly invertible. Now for n = 1,
2 and 3, the operational matrices will be shown in the Eq. (3.4), Eq. (3.5), Eq. (3.6) respectively:

J1(r) =
[
1 r

]
·

[
1 1
0 −1

]
·

[
s0

s1

]
, (3.4)

J2(r) = [1 r r2] ·

1 1 1
0 −1 −2
0 0 1/2

 ·

s0

s1

s2

 , (3.5)
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J3(r) = [1 r r2 r3] ·


1 1 1 1
0 −1 −2 −3
0 0 1/2 3/2
0 0 0 −1/6

 ·


s0

s1

s2

s3

 . (3.6)

3.2 For Touchard Polynomials

For determining the approximate numerical solutions of Eq. (2.2) and Eq. (2.3), assume that the
function Θn(r) is approximated by the Touchard polynomials as follows,

Θn(r) = a0 · T0(r) + a1 · T1(r) + ......+ an · Tn(r) =
n∑

m=0

(am · Tm(r)), 0 ≤ r ≤ 1, (3.7)

where the function {Tm(r)}nm=0 denotes the Touchard basis polynomials of n-th degree,
defined in Eq. (2.5). We have to determine the unknown Touchard coefficients am, (m =
0, 1, ..., n).
Now rewriting Eq. (3.7) as,

Θn(r) =
[
T0(r) T1(r) . . . Tn(r)

]
·


a0

a1
...
an

 · (3.8)

Again, Eq. (3.8) can be converted as,

Θn(r) = [1 r r2 . . . rn] ·



σ00 σ01 σ02 . . . σ0n

0 σ11 σ12 . . . σ1n

0 0 σ22 . . . σ2n
...

...
...

. . .
...

0 0 0 . . . σnn

 ·



a0

a1

a2
...
an

 , (3.9)

where {σmm}nm=0 , (m = 0, 1, . . . , n) are the constants of the power basis, used to obtain the
Touchard polynomials, this matrix is upper triangular and is certainly invertible. Now for n = 2,
3 and 4, the operational matrices will be shown in the Eq. (3.10), Eq. (3.11) and Eq. (3.12)
respectively:

Θ2(r) = [1 r r2] ·

1 1 1
0 1 2
0 0 1

 ·

a0

a1

a2

 , (3.10)

Θ3(r) = [1 r r2 r3] ·


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 ·


a0

a1

a2

a3

 , (3.11)

Θ4(r) = [1 r r2 r3 r4] ·


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 ·


a0

a1

a2

a3

a4

 . (3.12)
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4 The Numerical Solutions

In this section, we will use the Laguerre and Touchard polynomials to determine the approximate
numerical solutions for the FIEs-2K and then consider FIEs-1K.

4.1 Solution of the FIEs-2K via Laguerre Polynomials

Noted that the Eq. (2.3) is in the form

u(r) = g(r) + J η,δ
β u(r)

= g(r) +
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1u(x) dx, r ∈ [0, τ ].

(4.1)

Now to approximate the unknown function in Eq. (4.1), by using Eq. (3.1), let

u(r) ∼= Jn(r) =
n∑

m=0

(sm · Lm(r)). (4.2)

Now, substituting the Eq. (4.2) into the Eq. (4.1), we get

n∑
m=0

(sm · Lm(r)) = g(r) +
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

(
n∑

m=0

(sm · Lm(x)

)
dx.

(4.3)
Therefore, the Eq. (4.3) becomes by using Eq. (3.2) as follows:

[
L0(r) L1(r) . . . Ln(r)

]
·


s0

s1
...
sn



= g(r) +
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1


[
L0(x) L1(x) . . . Ln(x)

]
·


s0

s1
...
sn


 dx.

(4.4)
Again, by using Eq. (3.3), the Eq. (4.4) converts to the form:

[1 r r2 . . . rn] ·



γ00 γ01 γ02 . . . γ0n

0 γ11 γ12 . . . γ1n

0 0 γ22 . . . γ2n
...

...
...

. . .
...

0 0 0 . . . γnn

 ·



s0

s1

s2
...
sn


= g(r) +

β · r−β(η+δ)

Γ(δ)

·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

[1 x x2 . . . xn] ·



γ00 γ01 γ02 . . . γ0n

0 γ11 γ12 . . . γ1n

0 0 γ22 . . . γ2n
...

...
...

. . .
...

0 0 0 . . . γnn

 ·



s0

s1

s2
...
sn



 dx.

(4.5)
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Thus, after finding the integrations of the Eq. (4.5) we have to calculate the values of unknown
constants sm, (m = 0, 1, 2, . . . , n) of the Laguerre polynomials, for this purpose we need (n+1)
equations.
Now by choosing ri, (i = 0, 1, 2, . . . , n) in the interval [0, τ ], a system of (n+1) equations can be
obtained. After solving these equations the unknown coefficients (s0, s1, . . . , sn) have uniquely
determined. Therefore, by substituting the values of coefficients into the Eq. (3.1) getting the
approximate numerical solution to n selecting.

4.2 Solution of the FIEs-1K via Laguerre Polynomials

By following the same techniques that we have used for FIEs-2K, using the equality Eq. (4.2),
one can approximate the FIEs-1K provided in Eq. (2.2) . That means from Eq. (2.2) we get,

g(r) =
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

(
n∑

m=0

(sm · Lm(x)

)
dx. (4.6)

Then, by reorganizing the preceding equation and applying the same concept as before, we
may write:

g(r) =
β · r−β(η+δ)

Γ(δ)

·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

[1 x x2 . . . xn] ·



γ00 γ01 γ02 . . . γ0n

0 γ11 γ12 . . . γ1n

0 0 γ22 . . . γ2n
...

...
...

. . .
...

0 0 0 . . . γnn

 ·



s0

s1

s2
...
sn



 dx.

(4.7)

Therefore, by following the same procedure, one can be obtained easily the approximate numer-
ical solution of FIEs-1K .

Remark 4.1. The same procedure can be applied to the Eq. (2.2) and Eq. (2.3) when using the
Touchard polynomials.

4.3 Algorithm for Solutions

In this part, the steps of the algorithm are summarized to find the approximate numerical solu-
tions for FIEs-1K and FIEs-2K when using Laguerre polynomials.

4.3.1 Algorithm for FIEs-2K via Laguerre Polynomial

Step 1: Choose a degree n for the Laguerre polynomials

Ln(r) =
n∑

m=0

(−1)m
1
m!

(
n

m

)
rm, (4.8)

Step 2: Now we have to use Eq. (2.3), (3.3) and (4.2).

Step 3: Substitute Eq. (3.3) into Eq. (2.3).

Step 4: Compute all the integrations obtained in Step 3.

Step 5: Compute s0, s1, s2, . . . , sn, by choosing ri ∈ [0, τ ], where i = 0, 1, 2, . . . , n.
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4.3.2 Algorithm for FIEs-1K via Laguerre Polynomials

The same algorithm can be given for FIEs-1K as follows:

Step 1: Choose a degree n for the Laguerre polynomials in Eq. (4.8).

Step 2: Now we have to use Eq. (2.2), Eq. (3.3) and Eq. (4.2).

Step 3: Substitute Eq. (3.3) into Eq. (2.2).

Step 4: Compute all the integrations obtained in Step 3.

Step 5: Compute s0, s1, s2, . . . , sn, by choosing ri ∈ [0, τ ], where i = 0, 1, 2, . . . , n.

Remark 4.2. The algorithm will be the same for Eq. (2.2) and Eq. (2.3) when using Touchard
polynomials.

5 Accuracy of Solutions:

Accuracy of the proposed methods is verified in this section [35].

5.1 For FIEs-2K via Laguerre Polynomials

Since Eq. (4.3) and Eq. (3.1) have the following forms given by Eq. (5.1) and Eq. (5.2)
respectively:

n∑
m=0

(sm · Lm(r)) = g(r) +
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

(
n∑

m=0

(sm · Lm(x)

)
dx,

(5.1)

Jn(r) = s0 · L0(r) + s1 · L1(r) + ......+ sn · Ln(r) =
n∑

m=0

(sm · Lm(r)), 0 ≤ r < ∞, (5.2)

and the unknown coefficients (s0, s1, . . . , sn) are determined by using Eq. (4.5). Also, by
using Eq. (4.2), we have:

u(r) ∼= Jn(r) =
n∑

m=0

(sm · Lm(r)), (5.3)

thus, Eq. (5.3) is the unique approximate solution for Eq. (5.1), and is substituted into Eq.
(5.1).
Now, assume that r = rk ∈ [0, 1], k = 0, 1, 2, . . . , n, and then, the error function:

Λ(rk) =

∣∣∣∣∣
n∑

m=0

(sm · Lm(rk))− g(rk)−
β · r−β(η+δ)

k

Γ(δ)

∫ rk

0

(
rβk − xβ

)δ−1
xβ(η+1)−1

n∑
m=0

(sm · Lm(x))dx

∣∣∣∣∣ ∼= 0,

then Λ(rk) ≤ ϵ, for every rk ∈ [0, 1] and ϵ > 0.
Then, at each point rk, the difference for error function Λ(rk) will be less than any positive inte-
ger ϵ > 0.
Thus, the following relation can be used to determine the error function, i.e.,

Λn(r) =
n∑

m=0

(sm·Lm(r))−g(r)−β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1(

n∑
m=0

(sm·Lm(x)) dx.

Hence, Λn(r) ≤ ϵ.
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5.2 For FIEs-1K via Laguerre Polynomials

Since Eq. (4.6) and Eq. (3.1) have the following forms given by Eq. (5.4) and Eq. (5.5)
respectively:

g(r) =
β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

(
n∑

m=0

(sm · Lm(x)

)
dx, (5.4)

Jn(r) = s0 · L0(r) + s1 · L1(r) + ......+ sn · Ln(r) =
n∑

m=0

(sm · Lm(r)), 0 ≤ r < ∞, (5.5)

and the unknown coefficients (s0, s1, . . . , sn) are determined by using Eq. (4.7). Also, by
using Eq. (4.2), we have:

u(r) ∼= Jn(r) =
n∑

m=0

(sm · Lm(r)), (5.6)

thus, Eq. (5.6) is the unique approximate solution for Eq. (5.4), and is substituted into Eq.
(5.4).
Now, assume that r = rk ∈ [0, 1], k = 0, 1, 2, . . . , n, and then, the error function:

Λ(rk) =

∣∣∣∣∣g(rk)− β · r−β(η+δ)
k

Γ(δ)

∫ rk

0

(
rβk − xβ

)δ−1
xβ(η+1)−1

n∑
m=0

(sm · Lm(x)) dx

∣∣∣∣∣ ∼= 0,

then Λ(rk) ≤ ϵ, for every rk ∈ [0, 1] and ϵ > 0.
Then, at each point rk, the difference for error function Λ(rk) will be less than any positive inte-
ger ϵ > 0.
Thus, the following relation can be used to determine the error function, i.e.,

Λn(r) = g(r)− β · r−β(η+δ)

Γ(δ)
·
∫ r

0

(
rβ − xβ

)δ−1
xβ(η+1)−1

(
n∑

m=0

(sm · Lm(x)

)
dx.

Hence, Λn(r) ≤ ϵ.

5.3 Convergence Rate:

In this section, the error function can be defined by the following form [35, 26]:

∥Λn∥ =

(∫ 1

0
Λ

2
n(x)dx

)1/2

,

where ∥Λn∥, is an arbitrary vector norm of error function, Λn(r) = u(r)− Jn(r), where the
exact numerical solution is u(r), and the approximate numerical solution is Jn(r).

Remark 5.1. The same procedure is also suitable for Eq. (2.2) and Eq. (2.3) via Touchard
polynomials.

6 Numerical Applications and Discussions:

In this section, five numerical examples have been given to illustrate the efficiency and accuracy
of the presented techniques used to find the approximate numerical solutions. Examples 6.1,
6.2, 6.3 and 6.4 are related to FIEs-2K and Example 6.5 is related to FIEs-1K. The approximate
numerical solutions have been compared for both the methods and the convergence of solutions
have been shown in the graphs.
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Example 6.1. Consider the following example of FIE-2K :

u(r) =

(
1 − 531441

407550
· 1

Γ(1/3)

)
· r + r−

16
9

3 · Γ(1/3)
·
∫ r

0

(
r1/3 − x1/3

)− 2
3
xu(x) dx, r ∈ [0, 1],

(6.1)
where the exact solution is u(r) = r .

Comparing with Eq. (2.3), we get g(r) =
(

1 − 531441
407550 · 1

Γ(1/3)

)
· r, δ = 1

3 , β = 1
3 , η = 5.

Now applying the algorithm for n = 2.

Solving via Touchard polynomials :

Substituting Eq. (3.10) into Eq. (6.1), we have,

[
1 r r2

]
·

1 1 1
0 1 2
0 0 1

 ·

a0

a1

a2


=

(
1 − 531441

407550
· 1

Γ(1/3)

)
· r

+
r−

16
9

3 · Γ(1/3)
·
∫ r

0

(
r1/3 − x1/3

)− 2
3
x

[1 x x2
]
·

1 1 1
0 1 2
0 0 1

 ·

a0

a1

a2


 dx.

(6.2)

Which can be written as,

a0 + a1(1 + r) + a2(1 + 2r + r2)

=

(
1 − 531441

407550
· 1

Γ(1/3)

)
· r

+
r−

16
9

3 · Γ(1/3)
·
∫ r

0

(
r1/3 − x1/3

)− 2
3
x
(
a0 + a1(1 + x) + a2(1 + 2x+ x2)

)
dx.

(6.3)

Therefore from Eq. (6.3), after computing the integrations and by choosing r0 = 0.1, r1 = 0.2,
r2 = 0.3 in the given interval [0, 1], we are getting three equations:
0.4393a0 + 0.4906a1 + 0.5475a2 = 0.0513,
0.4393a0 + 0.5419a1 = 0.6670a2 = 0.1026,
0.4393a0 + 0.5933a1 + 0.7976a2 = 0.1540.
After solving these equations, we get
a0 = −1, a1 = 1, a2 = 0 .

Now substituting these values in Eq. (3.7) and the approximate solution is:

Θ2(r) = (−1) · T0(r) + 1 · T1(r) + 0 · T2(r) = r. (6.4)

Solving via Laguerre polynomials :

Substituting Eq. (3.5) into Eq. (6.1) we have,
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[
1 r r2

]
.

1 1 1
0 −1 −2
0 0 1/2

 .

s0

s1

s2


=

(
1 − 531441

407550
· 1

Γ(1/3)

)
· r

+
r−

16
9

3 · Γ(1/3)
·
∫ r

0

(
r1/3 − x1/3

)− 2
3
x

[1 x x2
]
.

1 1 1
0 −1 −2
0 0 1/2

 .

s0

s1

s2


 dx.

(6.5)

This can be written as,

s0 + s1(1 − r) + s2(1 − 2r +
1
2
r2)

=

(
1 − 531441

407550
· 1

Γ(1/3)

)
· r

+
r−

16
9

3 · Γ(1/3)
·
∫ r

0

(
r1/3 − x1/3

)− 2
3
x

(
s0 + s1(1 − x) + s2(1 − 2x+

1
2
x2)

)
dx.

(6.6)

Therefore from Eq. (6.6), after computing the integrations and by choosing r0 = 0.1, r1 = 0.2,
r2 = 0.3 in the given interval [0, 1], we are getting three equations:
0.4393s0 + 0.3880s1 + 0.3394s2 = 0.0513,
0.4393s0 + 0.3367s1 + 0.2452s2 = 0.1026,
0.4393s0 + 0.2853s1 + 0.1565s2 = 0.1540.
After solving these equations, we get
s0 = 1, s1 = −1, s2 = 0 .

Now substituting these values in Eq. (3.1) and the approximate solution is:

J2(r) = 1 · L0(r) + (−1) · L1(r) + 0 · L2(r) = r. (6.7)

The comparison of the approximate solutions shows that both solutions are same for both the
proposed methods. Also this comparison shows that for n = 2 the approximate solution is equal
to the exact solution. Figure 1 shows the comparison for n = 2 with the exact solution. The
error functions are zero in this case for both presented methods.
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Figure 1. Graphical Representation of Exact Solution and Approx. Solution for Example 6.1

Example 6.2. Consider the following example for FIE-2K:

u(r) = g(r) +
2 · r−7

Γ(3)
·
∫ r

0

(
r2 − x2)2

x2 u(x) dx, r ∈ [0, 1], (6.8)
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with

g(r) =
(
1 − 720 · r−6 + 72 · r−4) sin r −

(
720 · r−7 − 312 · r−5 + 8 · r−3) cos r

+
(
720 · r−7 + 48 · r−5 + 2 · r−3) .

The exact solution of this problem is u(r) = sin r.

Comparing with Eq. (2.3), we get δ = 3, β = 2, η = 1
2 .

Now, by applying the same algorithm for n = 2, 3 and by choosing r0 = 0.1, r1 = 0.2,
r2 = 0.3, r3 = 0.4 in the given interval [0, 1] and computing all steps, we get the approximate
solutions as follows:

For Touchard polynomials method :
u(r) ∼= Θ2(r) = (−1.1139) · T0(r) + (1.2095) · T1(r)− (0.0964) · T2(r),
u(r) ∼= Θ3(r) = (−0.8409) · T0(r) + (0.5205) · T1(r) + (0.4818) · T2(r)− (0.1614) · T3(r).

For Laguerre polynomials method :
u(r) ∼= J2(r) = (0.8175) · L0(r)− (0.6187) · L1(r)− (0.1998) · L2(r),
u(r) ∼= J3(r) = (0.2199) · L0(r) + (1.2731) · L1(r)− (2.1963) · L2(r) + (0.7024) · L3(r).

In this example, the best approximation has been observed for n = 3 using Touchard polyno-
mials. Also by using Laguerre polynomials, approximate solution has been observed for n = 3.
The error function provides the value for Touchard polynomials is 0.0016 and for Laguerre poly-
nomials the value of the error function is 0.0027. Figure 2 shows the comparison for the both
presented methods and the figures are seem to be identical.
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Figure 2. Graphical Representation of Exact Solution and Approx. Solution for Example 6.2

Example 6.3. Consider the following example for FIE-2K :

u(r) =

(
Γ(1/5)− 78125

24024

)
· r + r−

8
5

2 · Γ(1/5)
·
∫ r

0

(
r1/2 − x1/2

)− 4
5
xu(x) dx, r ∈ [0, 1],

(6.9)
whose exact solution is u(r) = Γ(1/5) · r .

Comparing with Eq. (2.3), we have g(r) =
(
Γ(1/5)− 78125

24024

)
· r, δ = 1

5 , β = 1
2 , η = 3.

Now, by applying the same algorithm for n = 2 and by choosing r0 = 0.1, r1 = 0.2, r2 = 0.3
in the given interval [0, 1] and computing all steps, we get the approximate solutions for Touchard
polynomials method and Laguerre polynomials method respectively as follows:
u(r) ∼= Θ2(r) = (−4.5836) · T0(r) + (4.5856) · T1(r) + 0 · T2(r),



428 S.K. Paul, L.N. Mishra, V.N. Mishra

u(r) ∼= J2(r) = (4.7092) · L0(r)− (4.8541) · L1(r) + (0.1471) · L2(r).

In this example, the best approximation has been observed for n = 2 using Touchard polyno-
mials. Also by using Laguerre polynomials, approximate solution has been observed for n = 2.
The error function gives the value for Touchard polynomials is 0.0016 and for Laguerre poly-
nomials the value of the error function is 0.0175. Figure 3 shows the comparison for the both
presented methods and the figures are seem to be identical.
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Figure 3. Graphical Representation of Exact Solution and Approx. Solution for Example 6.3

Example 6.4. Consider the following example for FIE-2K :

u(r) =

(
1 − 1953125

638352
· 1

Γ(1/5)

)
· r2 +

r−
8
5

2 · Γ(1/5)
·
∫ r

0

(
r1/2 − x1/2

)− 4
5
xu(x) dx, r ∈ [0, 1],

(6.10)
whose exact solution is u(r) = r2

Comparing with Eq. (2.3), we have g(r) =
(

1 − 1953125
638352 · 1

Γ(1/5)

)
· r2, δ = 1

5 , β = 1
2 , η = 3.

Now, by applying the same algorithm for n = 2 and by choosing r0 = 0.1, r1 = 0.2, r2 = 0.3
in the given interval [0, 1] and computing all steps, we get the approximate solutions for Touchard
polynomials method and Laguerre polynomials method respectively as follows:
u(r) ∼= Θ2(r) = (1.0203) · T0(r)− (2.0355) · T1(r) + (1.0152) · T2(r),
u(r) ∼= J2(r) = (2.1282) · L0(r)− (4.2855) · L1(r) + (2.1602) · L2(r).

In this example, the best approximation has been observed for n = 2 using Touchard polyno-
mials. Also by using Laguerre polynomials, approximate solution has been observed for n = 2.
The error function gives the value for Touchard polynomials is 0.0040 and for Laguerre poly-
nomials the value of the error function is 0.0188. Figure 4 shows the comparison for the both
presented methods. It can be observed from the figure and error function is that, the approx-
imate numerical solutions for Touchard polynomials method is highly accurate than Laguerre
polynomials method for the same degree of polynomials.

Example 6.5. Consider the following example for FIE-1K :(
1

495 · Γ(3)

)
· r = r−

8
3

3 · Γ(3)
·
∫ r

0

(
r1/3 − x1/3

)2
xu(x) dx, r ∈ [0, 1], (6.11)

whose exact solution is u(r) = r .

Comparing with Eq. (2.2), we have g(r) =
(

1
495·Γ(3)

)
· r, δ = 3, β = 1

3 , η = 5.
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Figure 4. Graphical Representation of Exact Solution and Approx. Solution for Example 6.4
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Figure 5. Graphical Representation of Exact Solution and Approx. Solution for Example 6.5

Now, by applying the same algorithm for n = 1 and by choosing r0 = 0.1, r1 = 0.001 in
the given interval [0, 1] and computing all steps, we get the approximate solutions for Touchard
polynomials method and Laguerre polynomials method respectively as follows:
u(r) ∼= Θ1(r) = (−0.9997) · T0(r) + (1.0000) · T1(r),
u(r) ∼= J1(r) = (1.0003) · L0(r)− (1.0000) · L1(r).

In this example, the best approximation has been observed for n = 1 using Touchard polyno-
mials. Also by using Laguerre polynomials, approximate solution has been observed for n = 1.
The error functions give the same value for both the presented methods and the value of the error
function is 3.0000e−04. Figure 5 shows the comparison for the both presented methods and the
figures are seem to be identical.

7 Conclusions and Future Work

In this study, two effective methods based on the Laguerre polynomials and Touchard polyno-
mials have been used to get approximate numerical solutions for both FIEs-1K and FIEs-2K.
Fractional integrals are stated in the sense of generalized Erdélyi–Kober fractional integral. We
have provided five examples to compare the accuracy of solutions for both presented methods.
In Example 6.1, the approximate solutions were exactly the same as exact solution for both
methods. It was observed that, for Example 6.5 the value of the error function is same for both
methods. Example 6.2 to Example 6.4 have shown that Touchard polynomials method is better
than Laguerre polynomials method as the error is less for Touchard polynomials method than
Laguerre polynomials method. Also, the comparisons of approximate solutions with the exact
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solution were shown by the relevant figures, and all figures seemed to be identical for both the
presented methods. Moreover, we realized that when we increase the degree of these polynomi-
als, there is less error. This method is simple and effective.
In the future, one can be investigate by using these two methods for the approximate solutions of
Volterra-Fredholm type fractional integral equations. Also, one can apply to examine the effec-
tiveness of these proposed methods for the solutions of generalized fractional integral operator,
i.e., (k, s)-fractional integral operator [34].
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