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Abstract In this paper we wish to establish some results relating to the growths of composi-
tion of two p-adic entire functions with their corresponding left and right factors on the basis of
their generalized relative order (α, β) and generalized relative lower order (α, β), where α and
β are continuous non-negative functions defined on (−∞,+∞).

1 Introduction, Definitions and Notations

Let us consider an algebraically closed field K of characteristic zero complete with respect
to a p-adic absolute value |·| (example Cp) . For any ξ ∈ K and R ∈]0,+∞[, the closed disk
{x ∈ K : |x − ξ| ≤ R} and the open disk {x ∈ K : |x − ξ| < R} are denoted by d (ξ,R) and
d (ξ,R−) respectively. Also C(ξ, r) denotes the circle {x ∈ K : |x − ξ| = r}. Moreover A (K)
represent the K-algebra of analytic functions in K i.e. the set of power series with an infinite
radius of convergence. For the most comprehensive study of analytic functions inside a disk or
in the whole field K, we refer the reader to the books [21, 22, 23, 25]. During the last several
years the ideas of p-adic analysis have been studied from different aspects and many important
results were gained (see [2] to [6], [9] to [20]).

Let f ∈ A (K) and r > 0, then we denote by |f | (r) the number sup {|f (x) | : |x| = r}
where |·| (r) is a multiplicative norm on A (K) . Moreover, if f is not a constant, the |f | (r) is
strictly increasing function of r and tends to +∞ with r, therefore there exists its inverse function
|̂f | : (|f (0)| ,∞)→ (0,∞) with lim

s→∞
|̂f | (s) =∞.

For x ∈ [0,∞) and k ∈ N, we define log[k] x = log
(

log[k−1] x
)

and exp[k] x =

exp
(
exp[k−1] x

)
where N is the set of all positive integers. We also denote log[0] x = x and

exp[0] x = x. Throughout the paper, log denotes the Neperian logarithm. Taking this into ac-
count the (p, q)-th order and (p, q)-th lower order of an entire function f ∈ A (K) are defined as
follows:

Definition 1.1. [11] Let f ∈ A (K) and p, q are any two positive integers. Then the (p, q)-th
order %(p,q) (f) and (p, q)-th lower order λ(p,q) (f) of f are respectively defined as:

%(p,q) (f) = lim sup
r→+∞

log[p] |f | (r)
log[q] r

and λ(p,q) (f) = lim inf
r→+∞

log[p] |f | (r)
log[q] r

.

Definition 1.1 avoids the restriction p ≥ q of the original definition of (p, q)-th order
(respectively (p, q)-th lower order) of entire functions introduced by Juneja et al. [24] in complex
context.

When q = 1, we get the definitions of generalized order and generalized lower order
of an entire function f ∈ A (K) which symbolize as %(p) (f) and λ(p) (f) respectively. If p = 2
and q = 1 then we write %(2,1) (f) = % (f) and λ(2,1) (f) = λ (f) where % (f) and λ (f) are
respectively known as order and lower order of f ∈ A (K) introduced by Boussaf et al. [17].



Growth properties of composite p-adic Entire functions · · · 433

Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and α((1 + o(1))x) =
(1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and α(cx) = (1 + o(1))α(x) as
x0 ≤ x→ +∞ for each c ∈ (0,+∞), i.e., α is a slowly increasing function. Clearly L0 ⊂ L.

The concept of generalized order (α, β) of entire function in complex context was in-
troduced by Sheremeta [26] where α, β ∈ L. In complex context, several authors made close
investigations on the properties of entire functions related to generalized order (α, β) in some
different direction. For the purpose of further applications of generalized order (α, β) of entire
function in complex context, Biswas et al. [7, 11] rewrite the definition of generalized order
(α, β) of an entire function considering α, β ∈ L0. For details about generalized order (α, β)
and generalized lower order (α, β), one may see [7, 11]. Considering the ideas developed by
Biswas et al. [7, 11], one can define the generalized order (α, β) and generalized lower order
(α, β) of an entire function f ∈ A (K) respectively in the following way:

Definition 1.2. [5] Let f ∈ A (K) and α, β ∈ L0. The generalized order (α, β) and generalized
lower order (α, β) of f denoted by %(α,β)[f ] and λ(α,β)[f ] respectively are defined as:

%(α,β)[f ] = lim sup
r→+∞

α(|f |(r))
β(r)

and λ(α,β)[f ] = lim inf
r→+∞

α(|f |(r))
β(r)

.

If α(r) = log[p] r and β(r) = log[q] r, then Definition 1.1 is a special case of Definition
1.2.

The notion of relative order was first introduced by Bernal [1]. In order to make some
progresses in the study of p-adic analysis, Biswas [10] introduced the definitions of relative order
%g (f) and relative lower order λg (f) of entire function f ∈ A (K) with respect to another entire
function g ∈ A (K) in the following way:

%g (f) = lim sup
r→+∞

log |̂g| (|f | (r))
log r

and λg (f) = lim inf
r→+∞

log |̂g| (|f | (r))
log r

.

In the case of relative order, it therefore seems reasonable to define suitably the gener-
alized relative order (α, β) of entire function belonging to A (K). With this in view one may
introduce the definitions of generalized relative order (α, β) and generalized relative lower order
(α, β) of an entire function f ∈ A (K) with respect to another entire function g ∈ A (K) denoted
by %(α,β)[f ]g and λ(α,β)[f ]g respectively, in the follows way:

Definition 1.3. [4] Let f, g ∈ A (K) and α, β ∈ L0. The generalized relative order (α, β) and
generalized relative lower order (α, β) of f with respect to g denoted by %(α,β)[f ]g and λ(α,β)[f ]g
respectively are defined as:

%(α,β)[f ]g = lim sup
r→+∞

α(|̂g|(|f |(r)))
β(r)

and λ(α,β)[f ]g = lim inf
r→+∞

α(|̂g|(|f |(r)))
β(r)

.

The main aim of this paper is to establish some newly developed results related to the
growth rates of composition of two p-adic entire functions on the basis of generalized relative
order (α, β) and generalized relative lower order (α, β) where α, β ∈ L0. Further we assume
that throughout the present paper α1, α2, α3, α4, β1, β2, β3 and β4 always denote the functions
belonging to L0.

2 Lemma

In this section we present the following lemma which can be found in [16] or [17] and will
be needed in the sequel.

Lemma 2.1. Let f, g ∈ A (K). Then for all sufficiently large positive numbers of r the following
equality holds

|f(g)| (r) = |f | (|g| (r)) .
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3 Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f, g, h, k ∈ A (K) be such that %(α1,β1)[f(g)]h < ∞ and λ(α3,β3)[g]k > 0.
Then

lim
r→+∞

{α1(|̂h|(|f(g)|(β−1
1 (log r))))}2

α3(|̂k|(|g|(β−1
3 (log r)))) · α3(|̂k|(|g|(β−1

3 (r))))
= 0.

Proof. For arbitrary positive ε we have for all sufficiently large values of r that

α1(|̂h|(|f(g)|(β−1
1 (log r)))) ≤ (%(α1,β1)[f(g)]h + ε) log r. (3.1)

Again for all sufficiently large values of r we get

α3(|̂k|(|g|(β−1
3 (log r))) ≥ (λ(α3,β3)[g]k − ε) log r. (3.2)

Similarly for all sufficiently large values of r we have

α3(|̂k|(|g|(β−1
3 (r)))) ≥ (λ(α3,β3)[g]k − ε)r. (3.3)

From (3.1) and (3.2) we have for all sufficiently large values of r that

α1(|̂h|(|f(g)|(β−1
1 (log r))))

α3(|̂k|(|g|(β−1
3 (log r)))

≤
(%(α1,β1)[f(g)]h + ε) log r
(λ(α3,β3)[g]k − ε) log r

.

As ε(> 0) is arbitrary we obtain from above that

lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
1 (log r))))

α3(|̂k|(|g|(β−1
3 (log r)))

≤
%(α1,β1)[f(g)]h

λ(α3,β3)[g]k
. (3.4)

Again from (3.1) and (3.3) we get for all sufficiently large values of r that

α1(|̂h|(|f(g)|(β−1
1 (log r))))

α3(|̂k|(|g|(β−1
3 (r))))

≤
(%(α1,β1)[f(g)]h + ε) log r

(λ(α3,β3)[g]k − ε)r
.

Since ε(> 0) is arbitrary it follows from above that

lim
r→+∞

α1(|̂h|(|f(g)|(β−1
1 (log r))))

α3(|̂k|(|g|(β−1
3 (r))))

= 0. (3.5)

Thus the theorem follows from (3.4) and (3.5).

Theorem 3.2. Let f, g, h, k, l, m ∈ A (K) be such that %(α1,β1)[f ]l < +∞, λ(α3,β3)[h]m > 0,
λ(α4,β4)[k] > 0 and %(α2,β2)[g] < λ(α4,β4)[k]. Also let C and D be any two positive constants.
(i) Any one of the following four conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and β3(r) = D exp(α4(r));
(b) β1(r) = C(exp(α2(r))) and β3(r) > exp(α4(r));
(c) exp(α2(r)) > β1(r) and β3(r) = D exp(α4(r));
(d) exp(α2(r)) > β1(r) and β3(r) > exp(α4(r)); then

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞.

(ii) Any one of the following two conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r))) and α4(β

−1
3 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α4(β
−1
3 (r)) ∈ L0; then

lim
r→+∞

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞.
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(iii) Any one of the following two conditions are assumed to be satisfied:
(a) β3(r) = D exp(α4(r)) and α2(β

−1
1 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α2(β
−1
1 (r)) ∈ L0; then

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
=∞.

(iv) If α2(β
−1
1 (r)) ∈ L1 and α4(β

−1
3 (r)) ∈ L0, then

lim
r→+∞

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
=∞.

Proof. Since |̂h|(r) is an increasing function of r, it follows from Lemma 2.1 and for all suffi-
ciently large values r that

α1(|̂l|(|f(g)|(β−1
2 (log r)))) 6 (%(α1,β1)[f ]l + ε)β1(|g|(β−1

2 (log r))). (3.6)

Case I. Let β1(r) = C(exp(α2(r))). Then we have from (3.6) for all sufficiently large values of
r that

α1(|̂l|(|f(g)|(β−1
2 (log r)))) 6 C(%(α1,β1)[f ]l + ε)r(%(α2,β2)

[g]+ε). (3.7)

Case II. Let exp(α2(r)) > β1(r). Then we have from (3.6) for all sufficiently large values of
r that

α1(|̂l|(|f(g)|(β−1
2 (log r)))) 6 (%(α1,β1)[f ]l + ε)r(%(α2,β2)

[g]+ε). (3.8)

Case III. Let α2(β
−1
1 (r)) ∈ L0. Then we get from(3.6) for all sufficiently large values of r that

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r))))))) 6 r(%(α2,β2)
[g]+ε). (3.9)

Further in view of Lemma 2.1 for all sufficiently large values r that

α3(|̂m|(|h(k)|(β−1
4 (log r)))) ≥ (λ(α3,β3)[h]m − ε)β3(|̂k|(β−1

4 (log r))). (3.10)

Case IV. Let β3(r) = D exp(α4(r)) Then from (3.10) it follows for all sufficiently large values
of r that

α3(|̂m|(|h(k)|(β−1
4 (log r)))) ≥ D(λ(α3,β3)[h]m − ε)r

(λ(α4,β4)
[k]−ε). (3.11)

Case V.Let β3(r) > exp(α4(r)). Now from (3.10) it follows for all sufficiently large values of r
that

α3(|̂m|(|h(k)|(β−1
4 (log r)))) > (λ(α3,β3)[h]m − ε)r

(λ(α4,β4)
[k]−ε). (3.12)

Case VI. Let α4(β
−1
3 (r)) ∈ L0. Then from (3.10) we obtain for all sufficiently large values of r

that
exp(α4(β

−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r))))))) > r(λ(α4,β4)
[k]−ε). (3.13)

Since %(α2,β2)[g] < λ(α4,β4)[k] we can choose ε(> 0) in such a way that

%(α2,β2)[g] + ε < λ(α4,β4)[k]− ε. (3.14)

Now combining (3.7) of Case I and (3.11) of Case IV it follows for all sufficiently large
values of r that

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

≥
D(λ(α3,β3)[h]m − ε)r

(λ(α4,β4)
[k]−ε)

C(%(α1,β1)[f ]l + ε)r(%(α2,β2)
[g]+ε)

.

So from (3.14) and above we obtain that

lim inf
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞. (3.15)
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Similarly combining (3.7) of Case I and (3.12) of Case V we get that

lim inf
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞. (3.16)

Analogously combining (3.8) of Case II and (3.11) of Case IV, we obtain that

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞. (3.17)

Likewise combining (3.8) of Case II and (3.12) of Case V it follows that

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞. (3.18)

Hence the first part of the theorem follows from (3.15), (3.16), (3.17) and (3.18).
Again combining (3.7) of Case I and (3.13) of Case VI we obtain for all sufficiently large

values of r that

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

≥ r(λ(α4,β4)
[k]−ε)

C(%(α1,β1)[f ]l + ε)r(%(α2,β2)
[g]+ε)

So from (3.14) and above we obtain that

lim
r→+∞

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

α1(|̂l|(|f(g)|(β−1
2 (log r))))

=∞.

Similarly combining (3.8) of Case II and (3.13) of Case VI we also get same conclusion.
Therefore the second part of the theorem is established.

Again combining (3.9) of Case III and (3.11) of Case IV it follows for all sufficiently large
values of r that

α3(|̂m|(|h(k)|(β−1
4 (log r))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
≥
D(λ(α3,β3)[h]m − ε)r

(λ(α4,β4)
[k]−ε)

r(%(α2,β2)
[g]+ε)

. (3.19)

Now in view of (3.14) we obtain from (3.19) that

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
=∞. (3.20)

Similarly combining (3.9) of Case III and (3.12) of Case V we get that

lim
r→+∞

α3(|̂m|(|h(k)|(β−1
4 (log r))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
=∞. (3.21)

Hence the third part of the theorem follows from (3.20) and (3.21).
Further combining (3.9) of Case III and (3.13) of Case VI we obtain for all sufficiently large

values of r that

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
≥ r(λ(α4,β4)

[k]−ε)

r(%(α2,β2)
[g]+ε)

.

Now in view of (3.14) we obtain from above that

lim
r→+∞

exp(α4(β
−1
3 (α3(|̂m|(|h(k)|(β−1

4 (log r)))))))

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))
=∞.

This proves the fourth part of the theorem.
Thus the theorem follows.
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Theorem 3.3. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞ and
%(α2,β2)[g] > 0. If α2(β

−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≥
%(α2,β2)[g]

%(α1,β1)[f ]h
.

Proof. From the definition of %(α1,β1)[f ]h, we get for all sufficiently large values of r that

α1(|̂h|(|f |(β−1
1 (r)))) ≤ (%(α1,β1)[f ]h + ε)r. (3.22)

Further in view of Lemma 2.1, it follows for all sufficiently large values of r that

α1(|̂h|(|f(g)|(β−1
2 (r)))) ≥ (λ(α1,β1)[f ]h − ε)β1(|g|(β−1

2 (r))).

Since α2(β
−1
1 (r)) ∈ L0, we obtain from above for a sequence of values of r tending to infinity

that

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r)))))) ≥ (1 + o(1))α2(|g|(β−1
2 (r)))

i.e., α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r)))))) ≥ (1 + o(1))(%(α2,β2)[g]− ε)r.

Now combining (3.22) and above we get that

lim sup
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r)))))

α1(|̂h|(|f |(β−1
1 (r))))

≥
%(α2,β2)[g]

%(α1,β1)[f ]h
.

Hence the theorem follows.

Theorem 3.4. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞ and
λ(α2,β2)[g] > 0. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≥
λ(α2,β2)[g]

%(α1,β1)[f ]h
.

Theorem 3.5. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h < +∞ and λ(α2,β2)[g] > 0. If
α2(β

−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≥
λ(α2,β2)[g]

λ(α1,β1)[f ]h
.

The proofs of Theorem 3.4 and Theorem 3.5 would run parallel to that of Theorem 3.3.
We omit the details.

Theorem 3.6. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞ and
%(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≤
%(α2,β2)[g]

λ(α1,β1)[f ]h
.

Proof. From the definition of λ(α1,β1)[f ]h, we get for all sufficiently large values of r that

α1(|̂h|(|f |(β−1
1 (r)))) ≥ (λ(α1,β1)[f ]h − ε)r. (3.23)

Further in view of Lemma 2.1, we obtain for all sufficiently large values of r that

α1(|̂h|(|f(g)|(r))) 6 (%(α1,β1)[f ]h + ε)β1(|g|(r)). (3.24)
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Since α2(β
−1
1 (r)) ∈ L0, we obtain from above for all sufficiently large values of r that

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r)))))) ≤ (1 + o(1))α2(|g|(β−1
2 (r)))

i.e., α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r)))))) ≤ (1 + o(1))(%(α2,β2)[g] + ε)r.

Now combining (3.23) and above we get that

lim sup
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≤
%(α2,β2)[g]

λ(α1,β1)[f ]h
.

Hence the theorem follows.

Theorem 3.7. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞ and
λ(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≤
λ(α2,β2)[g]

λ(α1,β1)[f ]h
.

Theorem 3.8. Let f, g, h ∈ A (K) be such that 0 < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h < +∞ and
%(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(|̂h|(|f(g)|(β−1

2 (r))))))

α1(|̂h|(|f |(β−1
1 (r))))

≤
%(α2,β2)[g]

%(α1,β1)[f ]h
.

The proofs of Theorem 3.7 and Theorem 3.8 would run parallel to that of Theorem 3.6.
We omit the details.

Theorem 3.9. Let f, g, h ∈ A (K) be such that %(α2,β2)[g] < λ(α1,β1)[f ]h ≤ %(α1,β1)[f ]h. Also let
C be any positive constant.
(i) Any one of the following two conditions are assumed to be satisfied:
(a) β1(r) = C(exp(α2(r)));
(b) exp(α2(r)) > β1(r); then

lim sup
r→+∞

{α1(|̂h|(|f(g)|(β−1
2 (log r))))}2

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))
= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r))))))) · α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))
= 0.

Proof. From the definition of generalized relative lower order (α1, β1) of f with respect to h, we
have for arbitrary positive ε and for all sufficiently large values of r that

exp(α1(|̂h|(|f |(β−1
1 (log r)))) ≥ r(λ(α1,β1)

[f ]h−ε). (3.25)

As %(α2,β2)[g] < λ(α1,β1)[f ]h we can choose ε(> 0) in such a way that

%(α2,β2)[g] + ε < λ(α1,β1)[f ]h − ε. (3.26)

Now in view of (3.7) of Case I and (3.25) we have for all large positive numbers of r,

α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

≤
C(%(α1,β1)[f ]h + ε)r(%(α2,β2)

[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

In view of (3.26) we get from above that

lim
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

= 0. (3.27)
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Again in view of (3.8) of Case II and (3.25) it follows for all sufficiently large positive
numbers of r that

α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

≤
(%(α1,β1)[f ]h + ε)r(%(α2,β2)

[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

Now in view of (3.26) we obtain from above that

lim
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

= 0. (3.28)

Further in view of (3.9) of Case III and (3.25) it follows for all sufficiently large positive
numbers of r that

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

≤ r(%(α2,β2)
[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

So in view of (3.26) we obtain from above that

lim
r→+∞

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

= 0. (3.29)

Now in view of (3.6) we get that

lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

β1(|g|(β−1
2 (log r)))

≤ %(α1,β1)[f ]h. (3.30)

From (3.27) and (3.30) we obtain for all sufficiently large values of r that

lim sup
r→+∞

{α1(|̂h|(|f(g)|(β−1
2 (log r))))}2

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))

= lim
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

· lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

β1(|g|(β−1
2 (log r)))

≤ 0 · %(α1,β1)[f ]h = 0. (3.31)

Similarly from (3.28) and (3.30) we obtain that

lim sup
r→+∞

{α1(|̂h|(|f(g)|(β−1
2 (log r))))}2

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))
= 0.

Therefore the first part of the theorem follows from (3.31) and above.
Again from (3.29) and (3.30) we get for all large values of r that

lim sup
r→+∞

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r))))))) · α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))

= lim
r→+∞

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r)))))))

exp(α1(|̂h|(|f |(β−1
1 (log r))))

· lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r))))

β1(|g|(β−1
2 (log r)))

≤ 0 · %(α1,β1)[f ]h = 0.

i.e., lim
r→+∞

exp(α2(β
−1
1 (α1(|̂l|(|f(g)|(β−1

2 (log r))))))) · α1(|̂h|(|f(g)|(β−1
2 (log r))))

exp(α1(|̂h|(|f |(β−1
1 (log r)))) · β1(|g|(β−1

2 (log r)))
= 0.

Thus the second part of the theorem is established.
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Theorem 3.10. Let f, g, h, l, k ∈ A (K) be such that λ(α1,β1)[f ]h < ∞, λ(α2,β2)[g]k > 0 and
%(α3,β3)[f(g)]l <∞. Then

lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r)))) · α3(|̂l|(|f(g)|(β−1

3 (r)))

β1(|g|(β−1
2 (log r))) · α2(|̂k|(|g|(β−1

2 (r)))
≤
%(α3,β3)[f(g)]l · %(α1,β1)[f ]h

λ(α2,β2)[g]k
.

Proof. For all sufficiently large values of r we have

α3(|̂l|(|f(g)|(β−1
3 (r))) ≤ (%(α3,β3)[f(g)]l + ε)r. (3.32)

Again for all sufficiently large values of r it follows that

α2(|̂k|(|g|(β−1
2 (r))) ≥ (λ(α2,β2)[g]k − ε)r. (3.33)

Now combining (3.32) and (3.33) we have for all sufficiently large values of r that

α3(|̂l|(|f(g)|(β−1
3 (r)))

α2(|̂k|(|g|(β−1
2 (r)))

≤
%(α3,β3)[f(g)]l + ε

λ(α2,β2)[g]k − ε
.

As ε(> 0) is arbitrary we get from above that

lim sup
r→+∞

α3(|̂l|(|f(g)|(β−1
3 (r)))

α2(|̂k|(|g|(β−1
2 (r)))

≤
%(α3,β3)[f(g)]l

λ(α2,β2)[g]k
. (3.34)

Now from(3.30) and (3.34) we obtain that

lim sup
r→+∞

α1(|̂h|(|f(g)|(β−1
2 (log r)))) · α3(|̂l|(|f(g)|(β−1

3 (r)))

β1(|g|(β−1
2 (log r))) · α2(|̂k|(|g|(β−1

2 (r)))

≤ lim sup
r→+∞

α1(|f(g)|(β−1
2 (log r)))

β1(|g|(β−1
2 (log r)))

· lim sup
r→+∞

α3(|f(g)|(β−1
3 (r)))

α2(|g|(β−1
2 (r)))

≤
%(α3,β3)[f(g)]l · %(α1,β1)[f ]h

λ(α2,β2)[g]k
.

Hence the theorem follows.

Theorem 3.11. Let f, g, h, k ∈ A (K) be such that %(α1,β1)[f ]h < ∞ and λ(α3,β3)[f(g)]k = ∞.
Then

lim
r→+∞

α3(|̂k|(|f(g)|(r)))
α1(|̂h|(|f |(β−1

1 (β3(r)))))
=∞.

Proof. Let us suppose that the conclusion of the theorem do not hold. Then we can find a
constant η > 0 such that for a sequence of values of r tending to infinity

α3(|̂k|(|f(g)|(r))) ≤ η · α1(|̂h|(|f |(β−1
1 (β3(r))))). (3.35)

Again from the definition of %(α1,β1)[f ]h, it follows for all sufficiently large values of r that

α1(|̂h|(|f |(β−1
1 (β3(r))))) ≤ (%(α1,β1)[f ]h + ε)β3(r). (3.36)

Thus from (3.35) and (3.36), we have for a sequence of values of r tending to infinity that

α3(|̂k|(|f(g)|(r))) ≤ η(%(α1,β1)[f ]h + ε)β3(r)

i.e.,
α3(|̂k|(|f(g)|(r)))

β3(r)
≤
η(%(α1,β1)[f ]h + ε)β3(r)

β3(r)

i.e., lim inf
r+∞

α3(|̂k|(|f(g)|(r)))
β3(r)

= λ(α3,β3)[f(g)]k <∞.

This is a contradiction.
Thus the theorem follows.
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Remark 3.12. Theorem 3.11 is also valid with “limit superior” instead of “limit” if λ(α3,β3)[f(g)]k =
∞ is replaced by %(α3,β3)[f(g)]k =∞ and the other conditions remain the same.

Analogously one may also state the following theorem without its proof as it may be
carried out in the line of Theorem 3.11.

Theorem 3.13. Let f, g, h, k ∈ A (K) be such that %(α1,β1)[g]h < ∞ and %(α3,β3)[f(g)]k = ∞.
Then

lim sup
r→+∞

α3(|̂k|(|f(g)|(r)))
α1(|̂h|(|g|(β−1

1 (β3(r)))))
=∞.

Remark 3.14. Theorem 3.13 is also valid with “limit” instead of “limit superior” if %(α3,β3)[f(g)]k =
∞ is replaced by λ(α3,β3)[f(g)]k =∞ and the other conditions remain the same.
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