On Endomorphism of *FI*-**Semi-Injective Modules**

S. Chase and M. K. Patel

Communicated by Mohammad Ashraf

MSC 2010 Classifications: 16D50, 16D60, 16D70, 16D80.

Keywords and phrases: FI - M-p-injective modules; FI- semi-injective modules; Co-Hopfian modules; semi local rings; Endomorphism rings.

Acknowledgment: M. K. Patel would like to thank National Board for Higher Mathematics, D.A.E., with file No.: 02211/3/2019 NBHM (R.P.) RD-II/1439, for financial assistantship. The authors are thankful to the referee for their valuable suggestions, which helps to improve the quality of the paper.

Abstract: In this article, we study the properties of endomorphism ring of FI-semi injective modules. As a result, we observed that, finite-dimensional FI-Semi injective module has a semi local endomorphism ring and endomorphism ring of an epi-retractable R-module M, whose submodules are FI - M-principally injective, is right principally projective. Further we prove that, extending FI-semi-injective module M is co-Hopfian if and only if it satisfies the cancellation property.

1 Introduction

Structures and various properties of principally injective rings and principally injective modules has been studied in detail by many authors ([11], [14]), in the past. It may be recalled, for a ring R, if each homomorphism from a principal right ideal of R to R is given by a multiplication by an element of R on the left, then R is called principally injective. Along the same line, a module M is called principally injective if each homomorphism $f : aR \to M, a \in R$, extends to R. This notion was extended to modules by Sanh et.al. [15], and they came up with M-principal injectivity for a given right R-module M as a generalization to the idea of principal injectivity. It may be recalled that for a right R-module N, if every homomorphism from an M-cyclic submodule s(M) of M to N can be extended to a homomorphism from M to N, then it is called M-principally injective. If M is M-principally injective, it is called semi injective (see [13], [15], [18]). In our study, we shall consider those M-cyclic submodule s(M) of M that are fully invariant. This will further extend the concept to FI-semi-injective modules from semi-injective modules. Similarly, the concept of FI - M-principally injective (FI-semi-injective) module are introduced as a proper generalization of M-principally injective (semi-injective) module respectively. Thus the class of FI-semi-injective module is larger than that of the semi-injective modules, and the following implication is obtained:

Injective \Rightarrow Quasi-injective \Rightarrow Semi-injective \Rightarrow FI-semi-injective module

In the following discussion, R will denote an associative ring with unity and the R-modules are unitary right R-modules. We shall use the notation $N \subseteq M$ to mean that N is a submodule of M. For $N \subseteq M$, if $N \cap L = 0$ implies L = 0, then N is known as an essential submodule of M, denoted by $N \subseteq_e M$. For a nonzero module M if every submodule of M, other than the zero submodule, is essential in M, then it is called uniform. If there exists an epimorphism from $M^{(I)}$ to N, where I is any index set, then N is called M-generated. N is called finitely M-generated in the case when I is finite. More particularly, N is called an M-cyclic submodule of M if the index set I is a singleton set, equivalently if $N \cong M/L$ for some submodule L of M. If $s(K) \subseteq K$ for all $s \in End(M_R)$, then K is called fully invariant. A module is termed as duo if all of its submodules are fully invariant. A ring is called a duo ring if the ring, considered as a module over itself, is a duo module. A module which generates all its submodules is called a self generator module. When submodules of a module are totally ordered by inclusion, then the module is called a unisesrial module. A module is called Hopfian (resp., co-Hopfian), if every surjective (resp., injective) endomorphism of the module is an automorphism. If a module is such that every injective endomorphism is essential, then the module is called weakly co-Hopfian.

From [10], the following conditions may be recalled for an R-module M:

 (C_1) In a direct summand of M, every submodule of M is essential or large.

 (C_2) A submodule of M is a direct summand of M whenever it is isomorphic to a direct summand of M.

 (C_3) Direct sum of two zero intersection direct summands is a direct summand of M.

An *R*-module *M* is called extending (or CS) if and only if every proper direct summand of *M* is a closed submodule or it satisfies (C_1) , continuous if it satisfies (C_1) with (C_2) and quasi-continuous if it satisfies (C_1) with (C_3) . An *R*-module *M* satisfies (C_4) if, whenever *H* and *K* are submodules of *M* with $M = H \oplus K$ and $f : H \to K$ is an *R*-homomorphism with $kerf \subseteq^{\oplus} H$, then $Imf \subseteq^{\oplus} K$. If an *R*-module *M* satisfies (C_4) , it is called a C_4 -module. An extending C_4 -module is called a pseudo-continuous module.

2 FI-M – Principal Injectivity

If there is an extended homomorphism from M to K for every homomorphism from s(M) to $K, s \in End(M_R)$ and s(M) is an M-cyclic submodule of M that is fully invariant, then K is termed fully invariant–M-principally injective (briefly, FI - M-principally injective or FI - M-p-injective).

That is to say that, K is FI - M-p-injective, whenever s(M) is an M-cyclic submodule of M which is also fully invariant, every homomorphism $f : s(M) \to K$, can be splitted as $f = g \circ i$, where the homomorphism from M to K is denoted by g and the inclusion map to Mfrom s(M) is denoted by i. If K is FI - R-principally injective then K is called FI-principally injective. As examples, we may take \mathbb{Z}_4 and \mathbb{Z}_6 as modules over \mathbb{Z} . It can be verified that \mathbb{Z}_4 is $FI - \mathbb{Z}_6$ -p-injective and \mathbb{Z}_6 is $FI - \mathbb{Z}_4$ -p-injective. If M is FI - M-p-injective, then M is called FI-semi-injective. For a ring R, if R_R is FI - R-p-injective then R is called right FI-self-p-injective modules, whereas \mathbb{Z} is not FI-semi-injective over itself. In fact, examples of FI- semi-injective modules consists of modules that are simple, semisimple, semi-injective, quasi-injective, FI-self-p-injective rings and direct summands of these.

Proposition 2.1. A uniserial duo FI-semi injective module is co-Hopfian.

Proof: Suppose M is a uniserial duo FI-semi injective module. Let us consider an injective endomorphism f on M. As M is duo FI-semi-injective, f splits i.e., $f(M) \subset^{\oplus} M$. Since M is uniserial, M is indecomposable and hence f(M) = M, therefore f is automorphism and hence M is co-Hopfian.

Corollary 2.2. A uniserial duo FI-semi-injective module is weakly co-Hopfian.

Proposition 2.3. For a duo FI-semi-injective module M, M is non-co-Hopfian if and only if there exists a decomposition $M = N_r \oplus (\bigoplus_{i=1}^r M_i)$ for all $r \in \mathbb{Z}^+$, where $N_r \cong M$ and $M_i \neq 0$ for i = 1, 2, 3, ..., r.

Proof: Firstly, consider that M is non-co-Hopfian then we have a homomorphism $f: M \to M$ which is a monomorphism but not an isomorphism. Let $N_1 = f(M), N_1 \neq M$ and $g: N_1 \to M$ be an isomorphism. Then by FI-semi-injectivity of M, g can be extended to a homomorphism $h: M \to M$ such that $h|_{N_1} = g$. Therefore $M = N_1 \oplus Ker(h) = N_1 \oplus M_1$ where $M_1 = Ker(h) \neq 0$. Again, since N_1 is non-co-Hopfian, by similar argument we get $N_1 = N_2 \oplus M_2$ with $N_2 \cong N_1$ and $M_2 \neq 0$, thus $M = N_2 \oplus (M_1 \oplus M_2)$. Now using the principal of mathematical induction and definition of co-Hopfian module, we reach the desired result $M = N_r \oplus (\bigoplus_{i=1}^r M_i)$ for $r \in \mathbb{Z}^+$, where $N_r \cong M$ and $M_i \neq 0$ for i = 1, 2, ..., r. Conversely, assume that $M = N_r \oplus (\bigoplus_{i=1}^r M_i)$ where $N_r \cong M$ and $M_i \neq 0$ then M is non-co-Hopfian as it is not directly finite.

Proposition 2.4. If M is extending FI-semi-injective module, then M is co-Hopfian if and only if it satisfies the cancellation property.

Proof: Assume that M is co-Hopfian, so is directly finite (Proposition 1.33 [12]). Then by Corollary 1.19 [12] M satisfies cancellation property. Conversely, let M be non-co-Hopfian, then by Proposition 2.4, there exists decomposition of $M = M \oplus 0 = N_1 \oplus M_1$ where $N_1 \cong M$ and $M_1 \neq 0$. By assumption M has cancellation property, so we get $M_1 = 0$ which is a contradiction to our assumption $M_1 \neq 0$. Hence, assumption that M is non-co-Hopfian is wrong.

Proposition 2.5. Any FI-semi-injective module satisfies (C_4) condition.

Proof: By Proposition 1.17 [12] FI-semi-injective module satisfies (C_2) and (C_3) conditions and we know $(C_2) \Rightarrow (C_3) \Rightarrow (C_4)$, thus we get the desired result.

Proposition 2.6. Following statements are equivalent for extending FI-semi-injective module:

- *i. M* is a clean module.
- *ii. M* has finite exchange property.
- *iii. M* has full exchange property

Proof: Proof follows in the light of Theorem 4.3 of [3] and remark 1.18 of [12].

The concept of epi-retractable module came into being in 2009 through Ghorbani and Vedadi gave [6]. If every submodule of M is M-cyclic, then the R-module M is called epi-retractable.

Lemma 2.7. For an FI-semi injective and epi-retractable module M and $S = End(M_R)$, $S = \{f \in S | f(M) \subseteq^{\oplus} M\}$ if and only if every submodule of M is FI – M-Principally injective.

Proof: Let $f \in S$, then $f(M) \subseteq^{\oplus} M$ and so it is FI - M-principally injective. Conversely, Let $A \subseteq M$, $s \in S$ and let $g : s(M) \to A$ be any homomorphism. By assumption, $s(M) \subseteq^{\oplus} M$. Set $f = g\pi$, where π is the natural projection from M to s(M). Then $f|_{s(M)} = g$. Hence, A is FI - M-principally injective.

Proposition 2.8. The endomorphism ring of a finite-dimensional FI-semi injective module is a semi local ring.

Proof: Let the finite-dimensional FI-semi injective module be M. If M is finite-dimensional, from a result by Camps and Dicks in [4] it suffices to show that every monomorphism f on M is an isomorphism. By hypothesis M is FI-semi-injective, so M satisfies (C_2) hence $M \cong f(M)$. It follows that $f(M) \subseteq^{\oplus} M$. Also, since M is finite dimensional, $f(M) \subseteq_e M$. Hence, f(M) = M, showing that f is an isomorphism.

If the right annihilator of every element of a ring R is generated by an idempotent, then the ring R is called right principally projective

Proposition 2.9. If M is an epi-retractable R-module whose submodules are FI-M-principally injective, then its endomorphism ring S is right principally projective.

Proof: A submodule of an FI-semi-injective is a direct summand of M, since it is an M-cyclic submodule of M. If f(M) is an M-cyclic submodule of M for some $f \in S$, there exist an idempotent $e \in S$ with Im(f) = f(M) = e(M). For the S-homomorphism $g: S \to fS$, g(s) = sf, we have Ker(g) = (1-e)S. For this (1-e)f(M) = (1-e)e(M) = 0 and so $(1-e)S \subseteq Ker(g)$. Next, $a \in Ker(g)$ implies that ae(M) = af(M) = 0 implies that ae = 0 this shows that $a \in (1-e)S$.

Let J(M) denote the Jacobson radical of M, which is nothing but the intersection of all maximal submodules of M_R . If M has no maximal submodule, then we define J(M) = M. Let $W(S) = \{w \in S | Ker(w) \subset_e M\}$ where $S = End(M_R)$. It is known that W(S) is a right, as well as a left ideal in S [10]. It can be seen that $W(S) \subseteq \{w \in S | 1 - sw \text{ is a monomorphism for all } s \in S\}$ since $Ker(w) \cap Ker(1 - sw) = 0$ for all $s \in S$.

Lemma 2.10. For two R-modules M and N, N is FI-M-principally injective if and only if for each fully invariant endomorphism s, $Hom_R(M, N)s = \{f \in Hom_R(M, N) | f(Ker(s)) = 0\}$.

Proof : Proof is similar to the proof of Proposition 1.9 [12].

Proposition 2.11. Let M be FI-semi-injective then $J(S) = \{s \in S | 1 - ts \text{ is a monomorphism for all } t \in S\}$, where $S = End(M_R)$.

Proof: Let $s \in J(S)$ and $t \in S$, $g(1-ts) = 1_M$ for some $g \in S$. Hence, Ker(1-ts) = 0, implying that $J(S) \subseteq \{s \in S | 1 - ts \text{ is a monomorphism for all } t \in S\}$. Conversely, if Ker(1-ts) = 0, then $l_S(Ker(1-ts)) = S$. From the above Lemma, we then have S = S(1-ts) implying that $1_M = g(1-ts)$ for some $g \in S$. Hence, $s \in J(S)$.

Proposition 2.12. If S is local, where $S = End(M_R)$ and M is FI- semi injective, then $J(S) = \{s \in S | s \text{ is fully invariant endomorphism and } Ker(s) \neq 0\}$

Proof: If S is local, $Ss \neq S$ for any fully invariant endomorphism $s \in J(S)$. If s is a monomorphism, then $\alpha : s(M) \to M$ given by $\alpha(s(M)) = m, m \in M$, is an *R*-homomorphism. An extension of α to M exist, say $\beta \in S$, since M is FI-semi-injective. But this implies that $\beta s = 1_M$ so Ss = S, which is a contradiction, showing that $J(S) \subseteq \{s \in S | s \text{ is fully invariant endomorphism and } Ker(s) \neq 0\}$. The other inclusion is clear.

References

- [1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- [2] G. F. Birkenmeier, B. J. Muller and S. T. Rizvi, *Modules in which every fully invariant submodule is essential in a direct summand*, Communication in Algebra, Vol. 30, 2002, 1395-1415.
- [3] V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, Y. Zhou, *Continuous modules are clean*, J. Algebra, 304 (1),(2006), 94–111
- [4] R. Camps, W. Dicks, On semilocal rings, Israel J. Math. 81 (1993), no. 1-2, 203–211
- [5] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [6] A. Ghorbani, M. R. Vedadi, *Epi-retractable modules and some applications*, Bulletin of the Iranian Mathematical Society, 35(1), 2009, 155-166.
- [7] V. Kumar, A. J. Gupta, B. M. Pandeya, M. K. Patel, *C-pseudo injective modules*, East-West J. of Mathematics: Vol. 14, No 1. 2012, 68-76.
- [8] V. Kumar, A. J. Gupta, B. M. Pandeya, M. K. Patel, *M-SP-Injective module*, Asian European Joural of Mathematics, Vol 5, 2011, 1-11.
- [9] R. P. Kurshan, *Rings whose cyclic module has finitely generated socle*, Journal of Algebra : Vol. 15, 1970, 376-386.
- [10] S. H. Mohamed, B. J. Muller, Continuous and Discrete module, Cambridge University Press, 1990.
- [11] W. K. Nicholson, M. F. Yousif, Principally Injective Rings, Journal of Algebra, 174, 1995, 77-93.
- [12] M. K. Patel, S. Chase, FI- Semi-Injective Modules, Palestine Journal of Mathematics, Vol. 11(1), 2022, 182-190.

- [13] M. K. Patel, B. M. Pandeya, A. J. Gupta, V. Kumar, *Quasi-P-Injective modules*, International J. of Algebra, Vol. 4, 2010, 1255-1259.
- [14] G. Puninski, R. Wisbauer, M. F. Yousif, On P-injective ring, Glasgow Math. Journal, Vol. 37, 1995, 373-378.
- [15] N. V. Sanh, K. P. Shum, S. Dhompongsa, S. Wongwai, On Quasi Principally Injective Modules, Algebra Colloquium, 6(3), 1999, 269-276.
- [16] K. Varadarajan, Properties of endomorphism rings, Acta Math. Hunger., 74(1-2), 1997, 83-92.
- [17] R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach, London-tokyo, (1991).
- [18] S. Wongwai, *On the endomorphism ring of a semi-injective module*, Acta. Math. Univ. Comenianae, Vol. 71, 2002, 27-33.

Author information

S. Chase and M. K. Patel, Department of Mathematics, National Institute of Technology Nagaland, Dimapur-797103, Nagaland, India.

E-mail: sedevikho.chase@gmail.com, mkpitb@gmail.com

Received: 2022-08-03. Accepted: 2022-11-06.