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Abstract This paper deals with the asymptotic behavior of solutions to a class of semi-
canonical third-order delay differential equations with a superlinear neutral term. First, we
transform the semi-canonical equation into canonical type and then by applying a Riccati type
transformation and integral conditions, we obtain some new sufficient conditions ensuring that
every solution of the studied equation either oscillates or converges to zero asymptotically. The
results are illustrated via two examples.

1 Introduction

In this paper, we study the oscillation and asymptotic behavior of solutions to the semi-canonical
third-order delay differential equations with a superlinear neutral term of the form

(r2(t)(r1(t)(z
′(t))α)′)′ + q(t)yλ(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = y(t) + p(t)yβ(τ(t)), and the constants α, β and λ are the ratios of odd positive
integers with β ≥ 1. In the sequel, without further mention, we assume that:

(C1) r2, r1, p, q : [t0,∞) → R are continuous functions with r2(t) > 0, r1(t) > 0, p(t) ≥ 1,
p(t) 6≡ 1 for large t, q(t) ≥ 0, and q(t) is not identically zero for large t;

(C2) τ, σ : [t0,∞) → R are continuous functions such that τ(t) ≤ t, σ(t) ≤ τ(t), τ is strictly
increasing, and limt→∞ τ(t) = limt→∞ σ(t) =∞;

(C3) equation (1.1) is in semi-canonical form, i.e.,∫ ∞
t0

1
r2(t)

dt <∞ and
∫ ∞
t0

1

r
1/α
1 (t)

dt =∞. (1.2)

We note that if assumption (1.2) in (C3) is replaced by∫ ∞
t0

1
r2(t)

dt =

∫ ∞
t0

1

r
1/α
1 (t)

dt =∞,

we say that equation (1.1) is in canonical form.
By a solution of (1.1), we mean a function y ∈ C([ty,∞),R) for some ty ≥ t0 such that

z ∈ C1([ty,∞),R), r1(z′)α ∈ C1([ty,∞),R), r2(r1(z′)α)′ ∈ C1([ty,∞),R) and y satisfies
(1.1) on [ty,∞). We only consider those solutions y of (1.1) that exist on some half-line [ty,∞)
and satisfy the condition

sup{|y(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ ty;

further, we tacitly assume that (1.1) possesses such solutions. Such a solution y(t) of (1.1) is
said to be oscillatory if it has arbitrarily large zeros on [ty,∞), and it is called nonoscillatory
otherwise.



474 Natarajan Prabaharan, Ethiraju Thandapani and Ercan Tunç

The investigation of qualitative properties of solutions of neutral type differential equations
is not only of theoretical interest but also has important practical applications. This is due to the
fact that such equations arise in number of applied problems in natural sciences, engineering and
control. For instance, see [10, 23] for some particular applications of differential equations with
a nonlinear neutral term.

Oscillatory and asymptotic behavior of solutions to various classes of third-order neutral type
differential equations have attracted great interest of researches; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8,
9, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the references cited therein. A commonly used
assumption is that the neutral term is linear, that is, β = 1, see, e.g., [1, 2, 3, 4, 9, 12, 14, 15, 18,
20, 22] and the references therein for more details. However, very few results are available for
equations with nonlinear neutral term (i.e., β 6= 1). For the results concerned with a sublinear
neutral term (i.e., 0 < β < 1), see [6, 7, 19]; and for a superlinear neutral term (i.e., β > 1), see
[8, 16, 21].

Very recently in [16], the authors studied the equation(
a(t)

[
(x(t) + p(t)xβ(τ(t)))′′

]α)′
+ q(t)xδ(σ(t)) = 0 (1.3)

under the assumption ∫ t

t0

1
a1/α(s)

ds <∞ as t→∞, and β ≥ 1, (1.4)

without changing the form of the equation.
Therefore, our aim in this paper is first to transform (1.1) into canonical type equation and

then use a Riccati type transformation as well as integral criteria to analyze the behavior of its
solutions. To the best of our knowledge, there are no results for (1.1) using the above mentioned
technique, and so this paper contributes further in the oscillation theory of third-order neutral
differential equations.

While considering nonoscillatory solutions, we deal only with eventually positive solutions
of (1.1) due to the fact, under our assumptions on α, β and λ, if y is a solution, so is −y.

Lemma 1.1. Assume that y is an eventually positive solution of (1.1). Then there exists a t1 ≥ t0
such that, for t ≥ t1, the corresponding function z satisfies one of the following three possibili-
ties:

(N0): z(t) > 0, z′(t) < 0, (r1(t)(z′(t))α)′ > 0, (r2(t)(r1(t)(z′(t))α)′)′ ≤ 0,

(N1): z(t) > 0, z′(t) > 0, (r1(t)(z′(t))α)′ < 0, (r2(t)(r1(t)(z′(t))α)′)′ ≤ 0,

(N2): z(t) > 0, z′(t) > 0, (r1(t)(z′(t))α)′ > 0, (r2(t)(r1(t)(z′(t))α)′)′ ≤ 0,

Proof. Let y(t) be an eventually positive solution of (1.1), say y(t) > 0, y(τ(t)) > 0 and
y(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from (1.1) that

(r2(t)(r1(t)(z
′(t))α)′)′ = −q(t)yλ(σ(t)) ≤ 0

for t ≥ t1. Then, r2(t)(r1(t)(z′(t))α)′ is decreasing for t ≥ t1. Therefore, (r1(t)(z′(t))α)′

and z′(t) are eventually of one sign. Then, there exists a sufficiently large t2 ≥ t1 so that
(r1(t)(z′(t))α)′ and z′(t) are of fixed sign for t ≥ t2. Therefore, we consider the following
cases:

(i) (r1(t)(z′(t))α)′ < 0 and z′(t) < 0;

(ii) (r1(t)(z′(t))α)′ < 0 and z′(t) > 0;

(iii) (r1(t)(z′(t))α)′ > 0 and z′(t) < 0;

(iV) (r1(t)(z′(t))α)′ > 0 and z′(t) > 0,

for t ≥ t2. For the case (i), we see that

z(t) = z(t2) +

∫ t

t2

(r1(s)(z′(s))α)1/α

r
1/α
1 (s)

ds ≤ z(t2) + (r1(t2)(z
′(t2))

α)1/α
∫ t

t2

1

r
1/α
1 (s)

ds.

Hence, by (1.2), we see that limt→∞ z(t) = −∞, which contradicts the fact that z is a positive,
and so the case (i) is impossible. This completes the proof.
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So, if we want to obtain oscillation criteria for (1.1), we have to eliminate the above men-
tioned three classes (N0)-(N2), which may lead to three conditions. To reduce the above men-
tioned classes to two, we assume a simple condition that yields to a canonical form and this
essentially simplifies the investigation of (1.1).

2 Main Results

To prove our main theorems, we require the following lemmas. To present the results in a
compact form, we adopt the following notation:

Π(t) :=
∫ ∞
t

1
r2(s)

ds, d(t) := r2(t)Π
2(t), c(t) :=

r1(t)

Π(t)
, F (t) := Π(t)q(t);

µ(t, t1) :=
∫ t

t1

1
d(s)

ds for t ≥ t1 ≥ t0, η(t, t2) :=
∫ t

t2

(
µ(s, t1)

c(s)

)1/α

ds for t ≥ t2 ≥ t1;

Q(t) :=


1, if λ

β − α = 0,
d1, if λ

β − α > 0,
d2η

λ
β−α(t, t2), if λ

β − α < 0,

for all constants d1 > 0 and d2 > 0;

G1(t) :=
1

p(τ−1(t))

(
1− m

1
β−1

p1/β(τ−1(τ−1(t)))

)
≥ 0, (2.1)

for all constants m > 0;

G2(t) :=
1

p(τ−1(t))

[
1− η(τ−1(τ−1(t)), t2)

η(τ−1(t), t2)

1
p1/β(τ−1(τ−1(t)))

]
≥ 0, (2.2)

for sufficiently large t2 ≥ t1 ≥ t0 and for sufficiently large t;

Ω(t) := g(t)F (t)Gλ/β2 (σ(t))Q(δ(t))

for some nondecreasing function g ∈ C1([t0,∞), (0,∞)), where δ(t) := τ−1(σ(t)).

Lemma 2.1 ([11]). If X > 0 and 0 < γ ≤ 1, then

Xγ ≤ γX + (1− γ),

and equality holds when γ = 1.

Lemma 2.2. Assume that ∫ ∞
t0

(
Π(t)

r1(t)

)1/α

dt =∞. (2.3)

Then the semi-canonical operator

Lz = (r2(t)(r1(t)(z
′(t))α)′)′

has the following unique canonical representation

Lz = 1
Π(t)

(d(t)(c(t)(z′(t))α)′)′.

Proof. The proof is similar to Theorems 2.1 in [17] and hence the details are omitted.

Now it follows from Lemma 2.2 that (1.1) can be written in the canonical form as below

(d(t)(c(t)(z′(t))α)′)′ + F (t)yλ(σ(t)) = 0, (2.4)

and the following result is immediate.
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Theorem 2.3. Assume (2.3) holds. Then semi-canonical equation (1.1) possesses a solution y(t)
if and only if canonical equation (2.4) has the solution y(t).

Corollary 2.4. Assume that (2.3) holds. Then semi-canonical equation (1.1) has an eventually
positive solution if and only if canonical equation (2.4) has an eventually positive solution.

From Corollary 2.4, it is clear that the investigation of the oscillation of (1.1) is reduced to
that of (2.4), and therefore, if y is an eventually positive solution of (1.1), then from Kiguradze’s
lemma [13] the corresponding function z satisfies one of the following two cases:

(N ∗0 ): z(t) > 0, c(t)(z′(t))α < 0, d(t)(c(t)(z′(t))α)′ > 0, (d(t)(c(t)(z′(t))α)′)′ ≤ 0,

(N ∗2 ): z(t) > 0, c(t)(z′(t))α > 0, d(t)(c(t)(z′(t))α)′ > 0, (d(t)(c(t)(z′(t))α)′)′ ≤ 0,

for sufficiently large t.

Lemma 2.5. Let condition (2.3) holds and assume that y is an eventually positive solution of
(1.1) and z ∈ (N ∗0 ). If, for all constants m > 0,∫ ∞

t0

F (t)Gλ/β1 (σ(t))dt =∞, (2.5)

or ∫ ∞
t0

F (t)Gλ/β1 (σ(t))dt <∞ (2.6)

and ∫ ∞
t0

1
c1/α(v)

(∫ ∞
v

1
d(u)

∫ ∞
u

F (s)Gλ/β1 (σ(s))dsdu

)1/α

dv =∞, (2.7)

then limt→∞ y(t) = limt→∞ z(t) = 0.

Proof. Let y(t) be an eventually positive solution of (1.1), say y(t) > 0, y(τ(t)) > 0 and
y(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, by Corollary 2.4, y(t) is also an eventually
positive solution of (2.4). From the definition of z, we see that p(t)yβ(τ(t)) ≤ z(t) and so

yβ(τ(t)) ≤ z(t)

p(t)
. (2.8)

From (2.8) and the fact that τ is strictly increasing, it is easy to see that

y(τ−1(t)) ≤ z1/β(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))
.

Using this in the definition of z, we obtain

yβ(t) ≥ 1
p(τ−1(t))

[
z(τ−1(t))− z1/β(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))

]
. (2.9)

From the fact that τ(t) ≤ t and τ is strictly increasing, we observe that τ−1 is increasing and
t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)). (2.10)

Since z is positive and decreasing, it follows from (2.10) that

z
(
τ−1(t)

)
≥ z

(
τ−1(τ−1(t))

)
.

Using this in (2.9), we obtain

yβ(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1− z

1
β−1(τ−1(t))

p1/β(τ−1(τ−1(t)))

]
. (2.11)

Since z is positive and decreasing, there exists a constant ` such that

lim
t→∞

z(t) = ` <∞,
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where ` ≥ 0. If ` := m > 0, then there exists t2 ≥ t1 such that

z(t) ≥ ` for t ≥ t2. (2.12)

From (2.11) and (2.12), we observe that

yβ(t) ≥ G1(t)z(τ
−1(t)).

Using this in (2.4) gives

(d(t)(c(t)(z′(t))α)′)′ ≤ −F (t)Gλ/β1 (σ(t))zλ/β(δ(t)) ≤ −`λ/βF (t)Gλ/β1 (σ(t)) (2.13)

for t ≥ t3 for some t3 ≥ t2. Integrating (2.13) from t3 to∞ yields∫ ∞
t3

F (t)Gλ/β1 (σ(t))dt ≤ d(t3)(c(t3)(z′(t3))α)′

`λ/β
<∞,

which contradicts (2.5), and so we have ` = 0. Therefore, limt→∞ z(t) = 0. Since 0 < y(t) ≤
z(t) on [t1,∞), we easily deduce that limt→∞ y(t) = 0.

Now we consider the case (2.5) is not satisfied, i.e., (2.6) holds. Then, integrating (2.13) from
t ≥ t3 to∞ consecutively two times, we are lead to

1
c1/α(t)

(∫ ∞
t

1
d(u)

∫ ∞
u

F (s)Gλ/β1 (σ(s))dsdu

)1/α

≤ − z′(t)

`λ/αβ
.

One more integration of the last inequality from t3 to∞ yields∫ ∞
t3

(
1
c(v)

∫ ∞
v

1
d(u)

∫ ∞
u

F (s)Gλ/β1 (σ(s))dsdu

)1/α

dv ≤ z(t3)

`λ/αβ
,

which contradicts (2.7), and thus ` = 0. This completes the proof of the lemma.

Lemma 2.6. Let y(t) be an eventually positive solution of (2.4) with the corresponding function
z ∈ (N ∗2 ). Then the following:

(i) z′(t) ≥
(
µ(t,t1)
c(t)

)1/α
(d(t)(c(t)(z′(t))α)′)

1/α for t ≥ t1,

(ii) c1/α(t)z′(t)
µ1/α(t,t1)

is decreasing for t ≥ t2 ,

(iii) z(t) ≥ c1/α(t)z′(t)
µ1/α(t,t1)

η(t, t2) for t ≥ t2,

(iv) z(t)
η(t,t2)

is decreasing for t ≥ t3

hold for all sufficiently large t1 ≥ t0 and for t3 > t2 > t1.

Proof. Let y(t) be an eventually positive solution of (2.4), say t ≥ t1 for some t1 ≥ t0. Since
z ∈ (N ∗2 ), we see that

c(t)(z′(t))α ≥
∫ t

t1

d(s)(c(s)(z′(s))α)′

d(s)
ds ≥ µ(t, t1)d(t)(c(t)(z′(t))α)′. (2.14)

From (2.14), we have

z′(t) ≥
(
µ(t, t1)

c(t)

)1/α

(d(t)(c(t)(z′(t))α)′)
1/α for t ≥ t1,

i.e., (i) holds. From (2.14), we see that, for t ≥ t2 > t1,(
c(t)(z′(t))α

µ(t, t1)

)′
=
µ(t, t1)d(t)(c(t)(z′(t))α)′ − c(t)(z′(t))α

d(t)µ2(t, t1)
≤ 0,
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i.e., c(t)(z′(t))α/µ(t, t1) is decreasing, and so c1/α(t)z′(t)/µ1/α(t, t1) is decreasing, i.e., (ii)
holds. Using the fact that c1/α(t)z′(t)/µ1/α(t, t1) is decreasing, we get, for t ≥ t2,

z(t) ≥
∫ t

t2

z′(s)ds ≥
∫ t

t2

µ1/α(s, t1)

c1/α(s)

c1/α(s)z′(s)

µ1/α(s, t1)
ds ≥ c1/α(t)z′(t)

µ1/α(t, t1)
η(t, t2), (2.15)

i.e., (iii) holds. From (2.15), we see that, for t ≥ t3 > t2,(
z(t)

η(t, t2)

)′
=
c1/α(t)z′(t)η(t, t2)− µ1/α(t, t1)z(t)

c1/α(t)η2(t, t2)
≤ 0,

i.e., (iv) holds. This complete the proof.

Lemma 2.7. Let condition (2.3) holds and assume that y is an eventually positive solution of
(1.1) and z ∈ (N ∗2 ). Then for all sufficiently large t1 ∈ [t0,∞), for some t2 ∈ [t1,∞), and
t3 ∈ [t2,∞), the following inequality, for t ≥ t3,

(d(t)(c(t)(z′(t))α)′)′ + F (t)Gλ/β2 (σ(t))Q(δ(t))zα(δ(t)) ≤ 0 (2.16)

holds.

Proof. Let y(t) be an eventually positive solution of (1.1), say y(t) > 0, y(τ(t)) > 0 and
y(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, by Corollary 2.4, y(t) is also an eventually
positive solution of (2.4) for t ≥ t1. As in the proof of Lemma 2.5, we again see that (2.8) and
(2.10) hold. Applying Lemma 2.1 to (2.8), we have

y(τ(t)) ≤
1
β z(t) + (1− 1

β )

p1/β(t)
.

Using this in the definition of z, we get

yβ(t) ≥ 1
p(τ−1(t))

z(τ−1(t))−
1
β z(τ

−1(τ−1(t))) +
(

1− 1
β

)
p1/β(τ−1(τ−1(t)))

 . (2.17)

Since z ∈ (N ∗2 ), we have from Lemma 2.6 (iv) and (2.10) that

z(τ−1(τ−1(t))) ≤ η(τ−1(τ−1(t)), t2)

η(τ−1(t), t2)
z(τ−1(t)) (2.18)

for t ≥ t3 for some t3 ≥ t2 ≥ t1. Also from (2.3), we see that z(t)→∞ as t→∞, and therefore
there exists t2 ≥ t1 such that z(τ−1(τ−1(t)) > 1 for t ≥ t2. Using this in (2.17), we get

yβ(t) ≥ 1
p(τ−1(t))

z(τ−1(t))−
1
β z(τ

−1(τ−1(t))) +
(

1− 1
β

)
z(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))


=

1
p(τ−1(t))

[
z(τ−1(t))− z(τ−1(τ−1(t)))

p1/β(τ−1(τ−1(t)))

]
. (2.19)

From (2.18) and (2.19), we observe that

yβ(t) ≥ G2(t)z(τ
−1(t)) for t ≥ t3. (2.20)

Since limt→∞ σ(t) = ∞, we can choose t4 ≥ t3 such that σ(t) ≥ t3 for all t ≥ t4. Thus, from
(2.20) we have

yβ(σ(t)) ≥ G2(σ(t))z(δ(t))) for t ≥ t4. (2.21)

Substituting (2.21) in (2.4), we get

(d(t)(c(t)(z′(t))α)′)′ + F (t)Gλ/β2 (σ(t))zλ/β−α(δ(t))zα(δ(t)) (2.22)
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for t ≥ t4. Since z(t) is increasing and z(t)
η(t,t2)

is decreasing, there exist constants M1 > 0 and
M2 > 0 such that

z(t) ≥M1 and z(t) ≤M2η(t, t2) (2.23)

for t ≥ t3. Combining (2.22) and (2.23), there exist two constants d1 > 0 and d2 > 0 such that
for t ≥ t4, inequality (2.22) can be written as

(d(t)(c(t)(z′(t))α)′)′ + F (t)Gλ/β2 (σ(t))Q(δ(t))zα(δ(t)) ≤ 0, (2.24)

i.e., inequality (2.16) holds. This completes the proof of the lemma.

Theorem 2.8. Let (2.3) holds and σ be nondecreasing, and assume that either (2.5) or (2.6) and
(2.7) hold for all constantsm > 0. If there exists a nondecreasing function g ∈ C1([t0,∞), (0,∞))
such that for all constants d1 > 0, d2 > 0, for all sufficiently large t1 ≥ t0, for some t2 ∈ [t1,∞),
and T ∈ [t2,∞),

lim sup
t→∞

∫ t

T

[
Ω(s)

ηα(δ(s), t2)

µ(s, t1)
− g′(s)

µ(s, t1)

]
ds =∞, (2.25)

then every solution y of (1.1) either oscillates or satisfies limt→∞ y(t) = 0.

Proof. Assume that y is an eventually positive of (1.1), say y(t) > 0, y(τ(t)) > 0 and y(σ(t)) >
0 for t ≥ t1 for some t1 ≥ t0. Then, by Corollary 2.4, y is also an eventually positive solution of
(2.4) and the corresponding function z ∈ (N ∗0 ) or z ∈ (N ∗2 ) for all t ≥ t1

If z ∈ (N ∗0 ), by Lemma 2.5, we see that y(t) → 0 as t → ∞. Next, we consider the case
z ∈ (N ∗2 ). Then Lemma 2.6 (i), (iii) and (iv), and (2.24) hold for all t ≥ t4 . For t ≥ t4, let us
define

w(t) = g(t)
d(t)(c(t)(z′(t))α)′

c(t)(z′(t))α
. (2.26)

Clearly, w(t) > 0, and by (2.24) and (2.26), we get

w′(t) ≤ g′(t)d(t)(c(t)(z
′(t))α)′

c(t)(z′(t))α
−Ω(t)

zα(δ(t))

c(t)(z′(t)α
− g(t)d(t)((c(t)(z′(t))α)′)2

(c(t)(z′(t))α)2 . (2.27)

It follows from Lemma 2.6 (i) and (2.27) that

w′(t) ≤ g′(t)

µ(t, t1)
−Ω(t)

zα(δ(t))

zα(t)

zα(t)

c(t)(z′(t))α
. (2.28)

Since δ(t) ≤ t, it follows from Lemma 2.6 (iv) that

z(δ(t))

z(t)
≥ η(δ(t), t2)

η(t, t2)
. (2.29)

Combining the inequalities Lemma 2.6 (iii), (2.28) and (2.29), we get

w′(t) ≤ g′(t)

µ(t, t1)
−Ω(t)

ηα(δ(t), t2)

µ(t, t1)
.

Integrating the latter inequality from t4 ≥ t3 to t, we arrive at∫ t

t4

[
Ω(s)

ηα(δ(s), t2)

µ(s, t1)
− g′(s)

µ(s, t1)

]
ds ≤ w(t4),

which contradicts (2.25). This completes the proof of the theorem.

Theorem 2.9. Let (2.3) holds and σ be nondecreasing, and assume that either (2.5) or (2.6) and
(2.7) hold for all constantsm > 0. If there exists a nondecreasing function g ∈ C1([t0,∞), (0,∞))
such that for all constants d1 > 0, d2 > 0, for all sufficiently large t1 ≥ t0, for some t2 ∈ [t1,∞),
and T ∈ [t2,∞),

lim sup
t→∞

∫ t

T

[
Ω(s)

ηα(δ(s), t2)

µ(s, t1)
− (g′(s))2d(s)

4g(s)

]
ds =∞, (2.30)

then every solution y of (1.1) either oscillates or satisfies limt→∞ y(t) = 0.
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Proof. Assume that y is an eventually positive of (1.1), say y(t) > 0, y(τ(t)) > 0 and y(σ(t)) >
0 for t ≥ t1 for some t1 ≥ t0. Then, by Corollary 2.4, y is also an eventually positive solution
of (2.4) and the corresponding function z ∈ (N ∗0 ) or z ∈ (N ∗2 ) for all t ≥ t1. The proof of
z ∈ (N ∗0 ) is the same as in Theorem 2.8. Next consider z ∈ (N ∗2 ). Defining again w by (2.26)
and proceeding as in the proof of Theorem 2.8, we again arrive at (2.27). In view of (2.26),
inequality (2.27) becomes

w′(t) ≤ g′(t)

g(t)
w(t)−Ω(t)

zα(δ(t))

c(t)(z′(t))α
− w2(t)

g(t)d(t)
(2.31)

for t ≥ t4. Since z ∈ (N ∗2 ), Lemma 2.6 (iii) and (2.29) hold. Using these in (2.31), we have for
t ≥ t4,

w′(t) ≤ g′(t)

g(t)
w(t)−Ω(t)

ηα(δ(t), t2)

µ(t, t1)
− w2(t)

g(t)d(t)
. (2.32)

Applying the completing the square in (2.32), we get

w′(t) ≤ −Ω(t)
ηα(δ(t), t2)

µ(t, t1)
+

(g′(t))2d(t)

4g(t)
.

Integrating the latter inequality from t4 to t, yields∫ t

t4

[
Ω(s)

ηα(δ(s), t2)

µ(s, t1)
− (g′(s))2d(s)

4g(s)

]
ds ≤ w(t4),

which contradicts (2.30). The proof is complete.

Remark 2.10. We would like to note that the results of this paper can be applied to the case
where p(t)→∞ as t→∞ for β > 1, and to the cases where p(t) is a bounded function and/or
p(t)→∞ as t→∞ for β = 1.

3 Examples

In this section, we provide two examples to illustrate the importance of our results.

Example 3.1. Consider the third-order semi-canonical differential equation with a superlinear
neutral term t2

1
t

[(
y(t) + 222ty3

(
t

2

))′]1/3
′′ + 8ty3

(
t

4

)
= 0, t ≥ 1. (3.1)

Here r2(t) = t2, r1(t) = 1/t, p(t) = 222t, q(t) = 8t, τ(t) = t/2, σ(t) = t/4, α = 1/3, β = 3
and λ = 3. A simple calculation shows that conditions (C1)− (C3) hold, and

Π(t) = 1/t, d(t) = c(t) = 1, F (t) = 8, µ(t, 1) = t− 1, δ(t) = t/2,

η(t, 1) = (t− 1)4/4, Q(t) = d1 > 0, τ−1(t) = 2t, τ−1(τ−1(t)) = 4t.

The transformed equation is[(y(t) + 222ty3
(
t

2

))′]1/3
′′ + 8y3

(
t

4

)
= 0, t ≥ 1,

which is clearly canonical. Now,

G1(t) =
1

223t

(
1− 1

m2/328t1/3

)
, G2(t) =

1
223t

(
1−

(
4t− 1
2t− 1

)4 1
28t1/3

)
.
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Since (4t− 1)4/(2t− 1)4 is decreasing, G2(t) can be written as

G2(t) ≥
1

223t

(
1− 34

28t1/3

)
for large t.

Condition (2.3) is clearly satisfied. Condition (2.5) becomes∫ ∞
1

1
218t

(
1− 1

m2/3222/3t1/3

)
dt =∞.

Letting g(t) = 1, condition (2.30) becomes

lim sup
t→∞

∫ t

T

[
Ω(s)

ηα(δ(s), t2)

µ(s, t1)
− (g′(s))2d(s)

4g(s)

]
ds

≥ lim sup
t→∞

∫ t

T

d1

220s

(
1− 34

222/3s1/3

)
(s− 2)4/3

(s− 1)
ds =∞,

that is, condition (2.30) holds. Now, all assumptions of Theorems 2.9 are fulfilled. Therefore,
by Theorem 2.9, every solution y of (3.1) is either oscillatory or satisfies limt→∞ y(t) = 0.

Example 3.2. Consider the third-order semi-canonical differential equation with a superlinear
neutral term t2

1
t

[(
y(t) + 32y

(
t

3

))′]5
′′ + 16ty5

(
t

6

)
= 0, t ≥ 1. (3.2)

Here r2(t) = t2, r1(t) = 1/t, p(t) = 32, q(t) = 16t, τ(t) = t/3, σ(t) = t/6, α = 5, β = 1 and
λ = 5. A simple calculation shows that conditions (C1)− (C3) hold,

τ−1(t) = 3t, τ−1(τ−1(t)) = 9t, δ(t) = t/2, Π(t) = 1/t, d(t) = c(t) = 1,

F (t) = 16, µ(t, 1) = t− 1, η(t, 1) =
5
6
(t− 1)6/5, Q(t) = 1.

The transformed equation is[(y(t) + 32y
(
t

3

))′]5
′′ + 16y5

(
t

6

)
= 0, t ≥ 1,

which is clearly canonical. Now

G1(t) =
1

32

(
1− 1

32

)
, G2(t) =

1
32

(
1−

(
9t− 1
3t− 1

)6/5 1
32

)
.

Since (9t− 1)6/5/(3t− 1)6/5 is decreasing, G2(t) can be written as

G2(t) ≥
1

32

(
1− 212/5

32

)
.

As in the Example 3.1, it is easy to see that all conditions of Theorem 2.8 are satisfied. Therefore,
by Theorem 2.8, every solution y of (3.2) is either oscillatory or satisfies limt→∞ y(t) = 0.

4 Conclusion

In this paper, we have established new type of oscillation criteria for third-order semi-canonical
differential equations with a superlinear neutral term by transforming it to canonical type equa-
tions. Our results simplify the examination of semi-canonical type third-order differential equa-
tions. Further our results are new from that of in [8, 16, 21] since our equation is different. We
provide two examples to illustrate the main results. It would be interest to investigate (1.1) with
different assumptions on the neutral coefficient. Further our results ensure only that every solu-
tion of (1.1) is either oscillatory or converges to zero as t → ∞. Therefore, it is interesting to
obtain criteria which guarantee that every solution of (1.1) is just oscillatory. These interesting
problems open at the moment.
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