Spectral properties for classes of operators related to Perinormal operators

M.H.M.Rashid ${ }^{1}$, T. Prasad ${ }^{2}$ and Atsushi Uchiyama ${ }^{3}$
Communicated by Fuad Kittaneh
MSC 2020 Classifications: Primary 47B20, 47A10, Secondary 47A11.
Keywords and phrases: Perinormal operator, Paranormal operators, k-quasi-*-Paranormal operators, Riesz Idempotent, tensor product.

The authors thank the referee for his insightful criticism and useful recommendations.

Abstract

In this paper, we give several examples of n-perinormal operators for each $n \geq 3$ such as (1) n-perinormal whose restriction to its invariant subspace is not n perinormal, (2) n-perinormal which is not $(n-1)$-perinormal and (3) an invertible n perinormal operator whose inverse is not n-perinormal. There are several papers studying n-perinormal operators which are using the assertions that a restriction of n-perinormal operator to its invariant subspace, the inverse of n-perinormal operator is also n-perinormal even if $n \geq 3$. We remark that if $n=2$ then 2-perinormal is equal to quasihyponormal, and since a restriction of quasihyponormal to any invariant subspace is always quasihyponormal, so it is 2-perinormal. And every invertible 2-perinormal is invertible hyponormal, so the inverse of it is also hyponormal and 2-perinormal. We also show that Weyl's theorem holds for every n-perinormal and some results related to the Riesz idempotent of n-perinormal. Moreover, We study fundamental structural characteristics of class of (n, k)-quasiperinormal operators. Also, we show that, if T is (n, k)-quasiperinormal, then $T-\lambda$ has finite ascent for all $\lambda \in \mathbb{C}$. Further, we give a necessary and sufficient condition for $T \otimes S$ to be in a class of (n, k)-quasiperinormal

1 Introduction

Let \mathcal{H} be a complex (separable) infinite dimensional Hilbert space and $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be hyponormal iff $T^{*} T \geq T T^{*}, p$-hyponormal for a $p>0$ iff $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$. An operator T is called to be n-perinormal for an $n \geq 2$ iff $T^{* n} T^{n} \geq\left(T^{*} T\right)^{n}$. This class was introduced by Fujii, Izumino and Nakamoto [13].

Definition 1.1. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be n-perihyponormal if

$$
T^{* n} T^{n} \geq\left(T T^{*}\right)^{n}
$$

for $n \geq 1$.
Observe that 1-perihyponormal is equal to hyponormal. It is easy to see that $(n-1)$ perihyponormal is always n-perinormal. In general, the converse is not true, however, if
an n-perinormal operator has dense range then it is $(n-1)$-perihyponormal.
An operator T is said to be $*$-paranormal if

$$
\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\|
$$

for all $x \in \mathcal{H}$. This class of operators was introduced by S. M. Patel [32]. S. C. Arora and J. K. Thukral [2] proved that *-paranormal operators are normaloid, i.e., the operator norm $\|T\|$ of T equals to the spectral radius $r(T)=\sup \{|z|: z \in \sigma(T)\}$ of T where $\sigma(T)$ denotes the spectrum of T. Also we say that T belongs to the class $\mathfrak{P}(n)$ for an integer $n \geq 2$ if

$$
\|T x\|^{n} \leq\left\|T^{n} x\right\|\|x\|^{n-1}
$$

for all $x \in \mathcal{H}$. We remark that an operator in $\mathfrak{P}(2)$ is called class (N) by V. Istracescu, T . Saito and T. Yoshino in [19] and paranormal by T. Furuta in [15], and an operator in $\mathfrak{P}(n)$ is called n-paranormal [3] and also called $(n-1)$-paranormal, e.g., [9], [26]. In order to avoid confusion we use notation $\mathfrak{P}(n)$. S. M. Patel [32] proved that $*$-paranormal operators belong to the class $\mathfrak{P}(3)$. Fujii, Izumino and Nakamoto proved that every n-perinormal operator belongs to the class $\mathfrak{P}(n)$. After, we shall show that every n perihyponormal belongs to the class $\mathfrak{P}(n+1)$.

The Riesz idempotent E_{λ} of an operator T with respect to an isolated point λ of $\sigma(T)$ is defined as follows.

$$
\begin{equation*}
E_{\lambda}=\frac{1}{2 \pi i} \int_{\partial D_{\lambda}}(z-T)^{-1} d z \tag{1.1}
\end{equation*}
$$

It satisfies $\sigma\left(\left.T\right|_{E_{\lambda} \mathcal{H}}\right)=\{\lambda\}$ and $\sigma\left(\left.T\right|_{\left(1-E_{\lambda}\right) \mathcal{H}}\right)=\sigma(T) \backslash\{\lambda\}$, where the integral is taken by the positive direction and D_{λ} is a closed disk with center λ and small enough radius r such as $D_{\lambda} \cap \sigma(T)=\{\lambda\}$. In [40], Uchiyama proved that for every paranormal operator T and each isolated point λ of $\sigma(T)$ the Riesz idempotent E_{λ} satisfies that

$$
\begin{aligned}
& E_{0}=\operatorname{ker} T \\
& E_{\lambda}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*} \text { and } E_{\lambda} \text { is self-adjoint if } \lambda \neq 0
\end{aligned}
$$

We shall show that for every $*$-paranormal operator T and each isolated point $\lambda \in \sigma(T)$ the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint with the property that $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$.

If $T \in \mathcal{B}(\mathcal{H})$, we denote $\operatorname{ker} T$ and $\operatorname{ran} T$ for the kernel of T and the range of T respectively. We also denote the spectrum of T, the point spectrum of T, the Weyl spectrum of T and the set of all eigenvalues of T with finite multiplicity which are isolated in the spectrum by $\sigma(T), \sigma_{p}(T), w(T)$ and $\pi_{00}(T)$ respectively. An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be Fredholm if $\operatorname{ran} T$ is closed and both of $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are finite dimensional subspaces. For arbitrary Fredholm operator T, the index of T is definded by

$$
\operatorname{ind}(T):=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}
$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be Weyl iff T is a Fredholm operator with $\operatorname{ind}(T)=0$. And the Weyl spectrum of T is defined by

$$
w(T):=\{\lambda \in \mathbb{C} \mid T-\lambda \text { is not Weyl }\}
$$

We say that the Weyl's theorem holds for an operator $T \in \mathcal{B}(\mathcal{H})$ if

$$
\sigma(T) \backslash w(T)=\pi_{00}(T)
$$

In this paper, we show that the Weyl's theorem holds for n-perinormal operators.

2 Preliminaries and Definitions

We will introduce basic concepts and notations in this section that will serve as the foundation for the research.

An operator $T \in \mathcal{B}(\mathcal{H})$ is called $*$-paranormal iff

$$
\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\| \quad(\forall x \in \mathcal{H})
$$

and T is called n-paranormal iff

$$
\|T x\|^{n} \leq\left\|T^{n} x\right\|\|x\|^{n-1} \quad(\forall x \in \mathcal{H})
$$

for each $n \geq 2$. We denote the set of all n-paranormal operators on \mathcal{H} by $\mathfrak{P}(n)$.
Theorem 2.1. [39] If T is *-paranormal then the following assertions hold.
(i) $T \in \mathfrak{P}(3)$.
(ii) T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigen value of T.
(iii) Weyl's theorem holds for T, i.e., $\sigma(T) \backslash w(T)=\pi_{00}(T)$,
(iv) If λ is isolated point of $\sigma(T)$ then the Riesz idempotent $E_{\lambda}=\frac{1}{2 \pi i} \int_{|z-\lambda|=r}(z-T)^{-1} d z$ with respect to λ is self-adjoint which satisfies

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}
$$

where $r>0$ is small enough such as $\{z:|z-\lambda| \leq r\} \cap \sigma(T)=\{\lambda\}$ and the integral is taken by positive direction.
(v) T is normaloid, i.e., $\|T\|=r(T)$.
(vi) If T is invertible then

$$
\left\|T^{-1}\right\| \leq r\left(T^{-1}\right)^{3} r(T)^{2}
$$

Theorem 2.2. [39] If $T \in \mathfrak{P}(n)$ for an $n \geq 2$ then the following assertions hold.
(a) T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigen value of T.
(b) Weyl's theorem holds for T.
(c) If λ is isolated point of $\sigma(T)$ then the Riesz idempotent
$E_{\lambda}=\int_{|z-\lambda|=r}(z-T)^{-1} d z$ with respect to λ satisfies

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)
$$

where $r>0$ is small enough such as $\{z:|z-\lambda| \leq r\} \cap \sigma(T)=\{\lambda\}$ and the integral is taken by positive direction.
(d) Any restriction $\left.T\right|_{\mathcal{M}}$ of T to an arbitrary T-invariant subspace \mathcal{M} also belongs to $\mathfrak{P}(n)$.
(e) T is normaloid, i.e., $\|T\|=r(T)$.
(f) If T is invertible then

$$
\left\|T^{-1}\right\| \leq r\left(T^{-1}\right)^{\frac{n(n-1)}{2}} r(T)^{\frac{(n+1)(n-2)}{2}}
$$

Definition 2.3. [44] An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be (n, k)-quasiparanormal if

$$
\left\|T\left(T^{k} x\right)\right\| \leq\left\|T^{n+k+1} x\right\|^{\frac{1}{n+1}}\left\|T^{k} x\right\|^{\frac{n}{n+1}} \text { for } x \in \mathcal{H}
$$

Remark 2.4. It follows from Definition 2.3 that T is n-paranormal should be $(n, 0)$ quasiparanormal if n-paranormal is defined by

$$
\|T x\| \leq\left\|T^{n+1} x\right\|^{\frac{1}{n+1}}\|x\|^{\frac{n}{n+1}} \text { for } x \in \mathcal{H}
$$

However, [6] defined n-paranormal as

$$
\|T x\| \leq\left\|T^{n} x\right\|^{\frac{1}{n}}\|x\|^{\frac{n-1}{n}} \text { for } x \in \mathcal{H}
$$

this means $(n-1)$-paranormal in Yuan's definition.
Definition 2.5. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be
(i) a class (M, n) or n-perinormal if $T^{* n} T^{n} \geq\left(T^{*} T\right)^{n}$ for positive integer n such that $n \geq 2$ [13].
(ii) a n-*-perinormal (briefly, $T \in\left(M^{*}, n\right)$) if $\left|T^{n}\right|^{2} \geq\left|T^{*}\right|^{2 n}$ for $n \geq 2$ [6].

Definition 2.6. Let $T \in \mathcal{B}(\mathcal{H})$. We say that an operator T is a (n, k)-quasiperinormal (briefly, $T \in \mathbb{Q P}(n, k)$) if

$$
T^{* k}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k} \geq 0
$$

for positive integer $n \geq 2$ and integer $k \geq 0$. And we say that T is a (n, k)-*-quasiperinormal (briefly, $T \in \mathbb{Q P}^{*}(n, k)$) if

$$
T^{* k}\left(\left|T^{n}\right|^{2}-\left|T^{*}\right|^{2 n}\right) T^{k} \geq 0
$$

for positive integer $n \geq 2$ and integer $k \geq 0$.
Definition 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. We say that an operator T belongs to class (U, n) if

$$
\left(T^{* n} T^{n}\right)^{\frac{2}{n}} \geq\left(T^{*} T\right)^{2}
$$

for positive integer $n \geq 2$.

3 class $T \in \mathbb{Q} P(n, k)$ and class $T \in \mathbb{Q} \mathbb{P}^{*}(n, k)$ operators

The following lemma is very important in the sequel
Lemma 3.1. (Hölder-McCarthy Inequality) Let $T \geq 0$. Then the following assertions hold.
(i) $\left\langle T^{r} x, x\right\rangle \geq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r>1$ and $x \in \mathcal{H}$.
(ii) $\left\langle T^{r} x, x\right\rangle \leq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r \in[0,1]$ and $x \in \mathcal{H}$.

Proposition 3.2. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an n-perinormal operator with $n \geq 2$, then we have

$$
\left\|T^{n} x\right\|\|x\|^{n-1} \geq\|T x\|^{n}
$$

for all $x \in \mathcal{H}$, and hence T is n-paranormal operator.
Proof. Assume that T is a n-perinormal operator. Then $T^{n *} T^{n} \geq\left(T^{*} T\right)^{n}$ and so for all $x \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\|T^{n} x\right\|^{2} & =\left\langle T^{n *} T^{n} x, x\right\rangle \geq\left\|\left(T^{*} T\right)^{n / 2} x\right\|^{2}=\left\langle\left(T^{*} T\right)^{n} x, x\right\rangle \\
& \Longleftrightarrow\left\|T^{n} x\right\|^{2} \geq\left\langle T^{*} T x, x\right\rangle^{n}\|x\|^{2(1-n)} \quad \text { (by Hölder Mc-Carthy inequality) } \\
& \Longleftrightarrow\left\|T^{n} x\right\|\|x\|^{n-1} \geq\|T x\|^{n} .
\end{aligned}
$$

Proposition 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{Q P}(n, k)$ with $n \geq 2$ and $k \geq 0$ if and only if $\left\|T^{n+k} x\right\| \geq\left\|\left(T^{*} T\right)^{n / 2} T^{k} x\right\|$ holds for every $x \in \mathcal{H}$.

Proof. We have

$$
\begin{aligned}
& T \in \mathbb{Q P}(n, k) \Longleftrightarrow T^{* k}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k} \geq 0 \\
& \Longleftrightarrow\left\langle\left(T^{* k}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k}\right) x, x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{n+k} x, T^{n+k} x\right\rangle-\left\langle\left(T^{*} T\right)^{n / 2} T^{k} x,\left(T^{*} T\right)^{n / 2} T^{k} x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\|T^{n+k} x\right\|^{2} \geq\left\|\left(T^{*} T\right)^{n / 2} T^{k} x\right\|^{2}, \text { for all } x \in \mathcal{H}
\end{aligned}
$$

Remark 3.4. It follows from Proposition 3.3 that
(i) $T \in \mathbb{Q} P^{*}(1, k)$ is k-quasihyponormal.
(ii) T belongs to class (M, n) with $n \geq 2$ if and only if $\left\|T^{n} x\right\| \geq\left\|\left(T^{*} T\right)^{n / 2} x\right\|$ holds for every $x \in \mathcal{H}$.

Proposition 3.5. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{Q} \mathbb{P}(n, k)$ if and only if

$$
\left|T^{n+k}\right|^{2}+2 \lambda T^{* k}|T|^{2 n} T^{k}+\lambda^{2}\left|T^{n+k}\right|^{2} \geq 0
$$

for all $\lambda \in \mathbb{R}$.

Proof. Let $n \in N, \lambda \in \mathbb{R}, x \in \mathcal{H}$ and $k \in \mathbb{Z}$ such that $k \geq 0$. Then we get

$$
\begin{aligned}
T \in \mathbb{Q P}(n, k) & \Longleftrightarrow\left\|T^{n+k} x\right\|^{2} \geq\left\|\left(T^{*} T\right)^{n / 2} T^{k} x\right\|^{2} \\
& \Longleftrightarrow 4\left\|\left(T^{*} T\right)^{n / 2} T^{k} x\right\|^{4} \leq 4\left\|T^{n+k} x\right\|^{2}\left\|T^{n+k} x\right\|^{2} \\
& \Longleftrightarrow\left\|T^{n+k} x\right\|^{2}+2 \lambda\left\|\left(T^{*} T\right)^{n / 2} T^{k} x\right\|^{2}+\lambda^{2}\left\|T^{n+k} x\right\|^{2} \geq 0 \\
& \Longleftrightarrow\left\langle T^{n+k} x, T^{n+k} x\right\rangle+2 \lambda\left\langle\left(T^{*} T\right)^{n / 2} T^{k} x,\left(T^{*} T\right)^{n / 2} T^{k} x\right\rangle+\lambda^{2}\left\langle T^{n+k} x, T^{n+k} x\right\rangle \geq 0 \\
& \Longleftrightarrow\left\langle\left(\left|T^{n+k}\right|^{2}+2 \lambda T^{* k}|T|^{2 n} T^{k}+\lambda^{2}\left|T^{n+k}\right|^{2}\right) x, x\right\rangle \geq 0
\end{aligned}
$$

and so

$$
\left|T^{n+k}\right|^{2}+2 \lambda T^{* k}|T|^{n} T^{k}+\lambda^{2}\left|T^{n+k}\right|^{2} \geq 0
$$

Proposition 3.6. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{Q P}^{*}(n, k)$ with $n \geq 2$ and $k \geq 0$ if and only if $\left\|T^{n+k} x\right\| \geq\left\|\left(T T^{*}\right)^{n / 2} T^{k} x\right\|$ holds for every $x \in \mathcal{H}$.

Proof. We have

$$
\begin{aligned}
T \in \mathbb{Q P P}^{*}(n, k) & \Longleftrightarrow T^{* k}\left(\left|T^{n}\right|^{2}-\left|T^{*}\right|^{2 n}\right) T^{k} \geq 0 \\
& \Longleftrightarrow\left\langle\left(T^{* k}\left(\left|T^{n}\right|^{2}-\left|T^{*}\right|^{2 n}\right) T^{k}\right) x, x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{n+k} x, T^{n+k} x\right\rangle-\left\langle\left(T T^{*}\right)^{n / 2} T^{k} x,\left(T T^{*}\right)^{n / 2} T^{k} x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\|T^{n+k} x\right\|^{2} \geq\left\|\left(T T^{*}\right)^{n / 2} T^{k} x\right\|^{2}, \text { for all } x \in \mathcal{H}
\end{aligned}
$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is called k-quasihyponormal operator if $T^{* k}\left(|T|^{2}-\left|T^{*}\right|^{2}\right) T^{k} \geq$ 0 for $k \geq 0$.

From Proposition 3.6 it follows that:
Corollary 3.7. Let $T \in \mathcal{B}(\mathcal{H})$ and $n=1$, then it follows that T is a k-quasihyponormal operator.

By the same arguments of the proof of Proposition 3.5, we can prove the following result.

Corollary 3.8. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{Q P}^{*}(n, k)$ if and only if

$$
\left|T^{n+k}\right|^{2}+2 \lambda T^{* k}\left|T^{*}\right|^{2 n} T^{k}+\lambda^{2}\left|T^{n+k}\right|^{2} \geq 0
$$

for all $\lambda \in \mathbb{R}$.
Proposition 3.9. Let $T \in \mathbb{Q P}(2, k)$, then T is a k-quasiparanormal operator.

Proof. Let $T \in \mathbb{Q P}(2, k)$, then we get

$$
\begin{align*}
T^{* k}\left|T^{2}\right|^{2} T^{k} & \geq T^{* k}|T|^{4} T^{k} \Longleftrightarrow\left\langle T^{* k}\left(T^{* 2} T^{2}-\left(T^{*} T\right)^{2}\right) T^{k} x, x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{k+2} x, T^{k+2} x\right\rangle-\left\langle T^{*} T^{k+1} x, T^{*} T^{k+1} x\right\rangle \geq 0, \text { for all } x \in \mathcal{H} \\
& \Longleftrightarrow\left\|T^{k+2} x\right\|^{2} \geq\left\|T^{*} T^{k+1} x\right\|^{2}, \text { for all } x \in \mathcal{H} \tag{3.1}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\left\|T^{k+1} x\right\|^{2}=\left|\left\langle T^{k+1} x, T^{k+1} x\right\rangle\right|=\left|\left\langle T^{*} T T^{k} x, T^{k} x\right\rangle\right| \leq\left\|T^{*} T^{k+1} x\right\|\left\|T^{k} x\right\| \tag{3.2}
\end{equation*}
$$

Now from relations (3.1) and (3.2) follows that

$$
\left\|T^{k+1} x\right\|^{2} \leq\left\|T^{k+2} x\right\|\left\|T^{k} x\right\|
$$

for every $x \in \mathcal{H}$. That is, T is a k-quasiparanormal operator.
Remark 3.10. In [28], quasi- $A(n, k)$ class operators $\left(T \in \mathcal{B}(\mathcal{H}): T^{* k}\left(\left|T^{n}\right|-|T|^{n}\right) T^{k} \geq 0\right.$ for integers $n \geq 2$ and $k \geq 0$) has been studied by Lee and Yun. It follows from the definition of class (M, n) and Löwner-Heinz inequality that if $T \in(M, n)$, then T is a quasi- $A(n, 0)$ class operator.
Proposition 3.11. Let $T \in \mathcal{B}(\mathcal{H})$ be a class (M, n) operator and T^{n} be a compact operator for some $n \in \mathbb{N}$. Then T is also compact and normal.
Proof. Assume that T is a class (M, n) operator for $n \geq 2$. Hence

$$
\begin{equation*}
\left\|\left(T^{*} T\right)^{n / 2} x\right\| \leq\left\|T^{n} x\right\| \text { for every } x \in \mathcal{H} \tag{3.3}
\end{equation*}
$$

Let $\left\{x_{m}\right\} \in \mathcal{H}$ be weakly convergent sequence with limit 0 in \mathcal{H}. From the compactness of T^{n} and the relation (3.3) we get the following relation:

$$
\left\|\left(T^{*} T\right)^{n / 2} x_{m}\right\| \rightarrow 0, m \rightarrow \infty
$$

From the last relation it follows that $T^{*} T$ is compact operator and so T is compact. Since T is compact $\sigma(T)$ is finite set or countable infinite with 0 as the unique limit point of it. Let $\sigma(T) \backslash\{0\}=\left\{\lambda_{l}\right\}$ with

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{l}\right| \geq\left|\lambda_{l+1}\right| \geq \cdots \geq 0, \text { and } \lambda_{l} \rightarrow 0(l \rightarrow \infty)
$$

By the compactness of T or isoloidness of $T, \lambda_{l} \in \sigma_{p}(T)$ and $\operatorname{dim} \operatorname{ker}\left(T-\lambda_{l}\right)<\infty$ for all l. Since $\operatorname{ker}\left(T-\lambda_{l}\right) \subset \operatorname{ker}\left(T-\lambda_{l}\right)^{*}, \mathcal{M}:=\bigoplus_{l=1}^{\infty} \operatorname{ker}\left(T-\lambda_{l}\right)$ reduces T, and T is of the form

$$
T=\left(\bigoplus_{l=1}^{\infty} \lambda_{l}\right) \oplus T^{\prime} \text { on } \mathcal{H}=\mathcal{M} \oplus \mathbb{P}^{\perp}
$$

By the construction, T^{\prime} is n-perinormal and $\sigma\left(T^{\prime}\right)=\{0\}$ hence $T^{\prime}=0$. This shows that

$$
T=\left(\bigoplus_{l=1}^{\infty} \lambda_{l}\right) \oplus 0
$$

and it is normal.

Proposition 3.12. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{Q P}^{*}(n, k)$, then $T \in \mathbb{Q} \mathbb{P}(k+1, n)$.
Proof. Let us suppose that $T \in \mathbb{Q} \mathbb{P}^{*}(n, k)$. Then for $n \geq 2$ and $k \geq 0$, it follows that

$$
T^{* k}\left|T^{n}\right|^{2} T^{k} \geq T^{* k}\left|T^{*}\right|^{2 n} T^{k} .
$$

This is equivalent with:

$$
\left\langle T^{* k}\left(\left|T^{n}\right|^{2}-\left|T^{*}\right|^{2 n}\right) T^{k} x, x\right\rangle \geq 0
$$

for every $x \in \mathcal{H}$. Further:

$$
\begin{aligned}
\left\langle T^{* k}\left(T^{*(n+1)} T^{n+1}-\left(T^{*} T\right)^{n+1}\right) T^{k} x, x\right\rangle & =\left\langle T^{*(k+1)}\left(T^{* n} T^{n}-\left(T T^{*}\right)^{n}\right) T^{k+1} x, x\right\rangle \\
& =\left\langle\left[T^{* k}\left(\left|T^{n}\right|^{2}-\left|T^{*}\right|^{2 n}\right) T^{k}\right] T x, T x\right\rangle \geq 0 .
\end{aligned}
$$

From this it follows that $T^{*(k+1)}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k+1} \geq 0$ and so $T \in \mathbb{Q P}(k+1, n)$.
Proposition 3.13. Let $\mathcal{H}=\bigoplus_{i \in \mathbb{N}} \mathcal{H}_{i}, \mathcal{H}_{i} \cong \mathcal{H}_{j}$ and $T=\oplus_{i \in \mathbb{N}} T_{i}$, where $\mathbb{Q P}(n, k) \ni T_{i}$: $\mathcal{H}_{i} \rightarrow \mathcal{H}_{i}, T \in \mathcal{B}(\mathcal{H})$, then $T \in \mathbb{Q P}(n, k)$.
Proof. Assume that $T_{i} \in \mathbb{Q P}(n, k)$ for each $i \in \mathbb{N}$. Then

$$
T_{i}^{* k}\left(T_{i}^{* n} T_{i}^{n}\right) T_{i}^{k} \geq T_{i}^{* k}\left(T_{i}^{*} T_{i}\right)^{n} T_{i}^{k}, i \in \mathbb{N}
$$

Hence

$$
\begin{aligned}
T^{* k}\left(T^{* n} T^{n}\right) T^{k} & =\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{* k}\left(\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{* n}\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{n}\right)\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{k} \\
& =\left(\oplus_{i \in \mathbb{N}} T_{i}^{* k}\right)\left[\left(\oplus_{i \in \mathbb{N}} T_{i}^{* n}\right)\left(\oplus_{i \in \mathbb{N}} T_{i}^{n}\right)\right]\left(\oplus_{i \in \mathbb{N}} T_{i}^{k}\right) \\
& =\oplus_{i \in \mathbb{N}} T_{i}^{* k}\left(T_{i}^{* n} T_{i}^{n}\right) T_{i}^{k} \geq \oplus_{i \in \mathbb{N}} T_{i}^{* k}\left(T_{i}^{*} T_{i}\right)^{n} T_{i}^{k} \\
& =\oplus_{i \in \mathbb{N}} T_{i}^{* k} \oplus_{i \in \mathbb{N}}\left(T_{i}^{*} T_{i}\right)^{n} \oplus_{i \in \mathbb{N}} T_{i}^{k} \\
& =\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{* k}\left(\oplus_{i \in \mathbb{N}} T_{i}^{*} T_{i}\right)^{n}\left(\oplus_{i \in \mathbb{N}} T_{i}\right)^{k} \\
& =T^{* k}\left(T^{*} T\right)^{n} T^{k}
\end{aligned}
$$

and so $T \in \mathbb{Q} \mathbb{P}(n, k)$.
Theorem 3.14. If T is (n, k)-quasiperinormal, then T is $(n-1, k)$-quasiparanormal.
Proof. Since

$$
\begin{aligned}
\left\|T^{n+k} x\right\|^{2} & \left.=\left\langle T^{* k} T^{* n} T^{n} T^{k} x, x\right\rangle=\left.\left\langle T^{* k}\right| T^{n}\right|^{2} T^{k} x, x\right\rangle \\
& \left.\geq\left.\left\langle T^{* k}\right| T\right|^{2 n} T^{k} x, x\right\rangle \\
& \left.=\left.\langle | T\right|^{2 n} T^{k} x, T^{k} x\right\rangle \\
& \left.\geq\left.\langle | T\right|^{2} T^{k} x, T^{k} x\right\rangle^{n}\left\|T^{k} x\right\|^{2(1-n)}=\left\|T^{k+1} x\right\|^{2 n}\left\|T^{k} x\right\|^{2(1-n)},
\end{aligned}
$$

we have

$$
\left\|T\left(T^{k} x\right)\right\| \leq\left\|T^{n+k} x\right\|^{\frac{1}{n}}\left\|T^{k} x\right\|^{\frac{n-1}{n}}
$$

4 Examples

If $T \in \mathcal{B}(\mathcal{H})$ is hyponormal (or p-hyponormal for $0<p \leq 1$ or 2-perinormal or belongs to $\mathfrak{P}(n)$) then the restriction $\left.T\right|_{\mathcal{M}}$ to any T-invariant subspace \mathcal{M} is also hyponormal (p hyponormal, 2-perinormal or belongs to $\mathfrak{P}(n)$ respectively). This result is important to prove the Weyl's theorem for these operators. However, the following example tells us n-perinormal does not have that property in general for $n \geq 3$.

Let A, B be 2×2 positive invertible matrices which satisfy $A \leq B$ and $A^{n} \not \leq B^{n}$ for all $n \geq 2$. Let $\mathcal{H}=\bigoplus_{k=-\infty}^{\infty} \mathbb{C}^{2}$. We definde an invertible operator T on \mathcal{H} by

$$
\begin{gathered}
T\left(x_{k}\right)=\left(y_{k}\right), \quad y_{k}=\left\{\begin{array}{ll}
A^{1 / 2} x_{k-1} & (k \leq 0) \\
B^{1 / 2} x_{k-1} & (k \geq 1
\end{array}\right) \quad\left(x_{k}\right) \in \mathcal{H} . \\
\text { For examples, put } A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), B=\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right) . \text { Then, } A \text { and } B \text { are invertible, and } \\
B-A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \geq 0 . \quad \therefore B \geq A . \\
B^{2}-A^{2}=\left(\begin{array}{ll}
5 & 1 \\
1 & 0
\end{array}\right) \nsupseteq 0 . \quad \therefore B^{2} \nsupseteq A^{2} . \\
B^{n} \nsupseteq A^{n}(n \geq 2) \quad(\text { by the Heinz inequality }) .
\end{gathered}
$$

Proposition 4.1. Let T be as above. Then the following assertions hold:
(i) T is an invertible hyponormal operator, hence it is 2-perinormal.
(ii) T is not n-perinormal for all $n \geq 3$.
(iii) T satisfies $\left(T^{* m} T^{m}\right)^{\frac{1}{m}} \geq T T^{*}$ for all $m \geq 2$.

Proof. (i) Since $T^{*} T-T T^{*}=\left(\bigoplus_{k \leq-1} 0\right) \oplus(B-A) \oplus\left(\bigoplus_{k \geq 1}^{(0)} 0\right) \geq 0$. Hence, T is

hyponormal.

(ii) We shall show that T is not m-perihyponormal for all $m \geq 2$, i.e., $T^{* m} T^{m} \nsupseteq\left(T T^{*}\right)^{m}$. Since

$$
\begin{aligned}
& T^{* m} T^{m}-\left(T T^{*}\right)^{m} \\
= & \left(\bigoplus_{k \leq-m} 0\right) \oplus\left(\bigoplus_{k=-m+1}^{-1}\left(A^{\frac{-k}{2}} B^{m+k} A^{\frac{-k}{2}}-A^{m}\right)\right) \oplus\left(B^{m^{(0)}}-A^{m}\right) \oplus\left(\bigoplus_{k \geq 1} 0\right) \nsupseteq 0,
\end{aligned}
$$

T is not m-perihyponormal for all $m \geq 2$. The invertibility of T implies that T is not n-perinormal for all $n \geq 3$.
(iii) Let $p=m+k, q=m, r=\frac{-k}{2}$ for an $m \geq 2$ and $-m+1 \leq k \leq-1$. Then $(1+2 r) q=(1-k) m \geq p+2 r=m+k-k=m$. Since $A \leq B$, we have

$$
\left(A^{\frac{-k}{2}} B^{m+k} A^{\frac{-k}{2}}\right)^{1 / m} \geq\left(A^{\frac{-k}{2}} A^{m+k} A^{\frac{-k}{2}}\right)^{1 / m}=A, \quad(-m+1 \leq k \leq-1)
$$

by Furuta inequality. Hence,

$$
\begin{aligned}
& \left(T^{* m} T^{m}\right)^{\frac{1}{m}}-T T^{*} \\
= & \left(\bigoplus_{k \leq-m} 0\right) \oplus\left(\bigoplus_{k=-m+1}^{-1}\left\{\left(A^{\frac{-k}{2}} B^{m+k} A^{\frac{-k}{2}}\right)^{1 / m}-A\right\}\right) \oplus\left(B^{(0)}-A\right) \oplus\left(\bigoplus_{k \geq 1} 0\right) \geq 0 .
\end{aligned}
$$

Therefore $\left(T^{* m} T^{m}\right)^{\frac{1}{m}} \geq T T^{*}$ for all $m \geq 2$.
Example 4.2. Let T be as above and define an operator S on $\mathcal{K}=\mathcal{H} \oplus \mathcal{H}$ by

$$
S=\left(\begin{array}{cc}
T & X_{m} \\
0 & 0
\end{array}\right)
$$

where $X_{m}=\left(\left(T^{* m} T^{m}\right)^{\frac{1}{m}}-T T^{*}\right)^{1 / 2}$ for an $m \geq 2$. Then

$$
\begin{aligned}
S^{* m} S^{m} & =\left(\begin{array}{cc}
T^{* m} & 0 \\
X_{m} T^{*(m-1)} & 0
\end{array}\right)\left(\begin{array}{cc}
T^{m} & T^{m-1} X_{m} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
T^{* m} T^{m} & * \\
* & *
\end{array}\right), \\
S S^{*} & =\left(\begin{array}{cc}
T & X_{m} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
T^{*} & 0 \\
X_{m} & 0
\end{array}\right)=\left(\begin{array}{cc}
T T^{*}+X_{m}^{2} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\left(T^{* m} T^{m}\right)^{1 / m} & 0 \\
0 & 0
\end{array}\right), \\
\left(S S^{*}\right)^{m} & =\left(\begin{array}{cc}
\left(T^{* m} T^{m}\right)^{1 / m} & 0 \\
0 & 0
\end{array}\right)^{m}=\left(\begin{array}{ccc}
T^{* m} T^{m} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S^{*(m+1)} S^{m+1}-\left(S^{*} S\right)^{m+1} & =S^{*}\left\{S^{* m} S^{m}-\left(S S^{*}\right)^{m}\right\} S \\
& =\left(\begin{array}{cc}
T^{*} & 0 \\
X_{m} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & * \\
* & *
\end{array}\right)\left(\begin{array}{cc}
T & X_{m} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
T^{*} & 0 \\
X_{m} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
* & *
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)=0,
\end{aligned}
$$

This implies that S is $(m+1)$-perinormal. Put $\mathcal{M}=\operatorname{ran} S$. Then $\mathcal{M}=\mathcal{H} \oplus\{0\}$ is closed and the restriction $\left.S\right|_{\mathcal{M}}$ to its invariant subspace \mathcal{M} is equal to T which is not n-perinormal for all $n \geq 3$ by Proposition 4.1.

Remark 4.3. (i)If $m=2$ then the above S is 3 -perinormal which is not 2-perinormal. (ii) S is $(m+1)$-perinormal which is not m-perinormal for $m \geq 3$.

Proof. (i) Suppose S is 2-perinormal, i.e., S satisfies $S^{* 2} S^{2} \geq\left(S^{*} S\right)^{2}$. Put $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then

$$
\left(\begin{array}{cc}
T^{* 2} T^{2} & 0 \\
0 & 0
\end{array}\right)=P S^{* 2} S^{2} P \geq P\left(S^{*} S\right)^{2} P=\left(\begin{array}{cc}
\left(T^{*} T\right)^{2}+T^{*} X_{2}^{2} T & 0 \\
0 & 0
\end{array}\right)
$$

Hence $T^{* 2} T^{2} \geq\left(T^{*} T\right)^{2}+T^{*} X_{2}^{2} T$. Since T is invertible,

$$
\begin{aligned}
T^{*} T \geq T T^{*}+X_{2}^{2} & =T T^{*}+\left(T^{* 2} T^{2}\right)^{1 / 2}-T T^{*}=\left(T^{* 2} T^{2}\right)^{1 / 2} \\
& \geq\left\{\left(T^{*} T\right)^{2}\right\}^{1 / 2} \quad(\because T \text { is hyponormal, so it is 2-perinormal }) \\
& =T^{*} T
\end{aligned}
$$

Thus $T^{*} T=\left(T^{* 2} T^{2}\right)^{1 / 2},\left(T^{*} T\right)^{2}=T^{* 2} T^{2}$ and $T^{*} T=T T^{*}$. It follows that T is normal, however, T is not normal. Hence, S is not 2-perinormal.
(ii) Suppose S is m-perinormal, i.e., S satisfies $S^{* m} S^{m} \geq\left(S^{*} S\right)^{m}$. Then $0 \leq S^{* m} S^{m}-$ $\left(S^{*} S\right)^{m}=S^{*}\left(S^{* m-1} S^{m-1}-\left(S S^{*}\right)^{m-1}\right) S$ and $0 \leq P\left(S^{* m-1} S^{m-1}-\left(S S^{*}\right)^{m-1}\right) P$. Hence

$$
\begin{aligned}
P S^{* m-1} S^{m-1} P & =\left(\begin{array}{cc}
T^{* m-1} T^{m-1} & 0 \\
0 & 0
\end{array}\right) \geq P\left(S S^{*}\right)^{m-1} P \\
& =\left(\begin{array}{cc}
T T^{*}+X_{m}^{2} & 0 \\
0 & 0
\end{array}\right)^{m-1}=\left(\begin{array}{cc}
T T^{*}+\left(T^{* m} T^{m}\right)^{1 / m}-T T^{*} & 0 \\
0 & 0
\end{array}\right)^{m-1} \\
& =\left(\begin{array}{cc}
\left(T^{* m} T^{m}\right)^{\frac{m-1}{m}} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence $T^{* m-1} T^{m-1} \geq\left(T^{* m} T^{m}\right)^{\frac{m-1}{m}}$. It follows that

$$
\begin{aligned}
0 \leq & T^{* m-1} T^{m-1}-\left(T^{* m} T^{m}\right)^{\frac{m-1}{m}} \\
= & \left(\bigoplus_{k \leq-m} 0\right) \oplus\left(A^{m-1}-\left\{A^{\frac{m-1}{2}} B A^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}}\right) \\
& \oplus\left(\bigoplus_{k=-m+2}^{-1}\left(A^{\frac{-k}{2}} B^{m-1+k} A^{\frac{-k}{2}}-\left\{A^{\frac{-k}{2}} B^{m+k} A^{\frac{-k}{2}}\right\}^{\frac{m-1}{m}}\right)\right) \oplus\left(\bigoplus_{k \geq 0} 0\right)
\end{aligned}
$$

and hence

$$
A^{m-1} \geq\left\{A^{\frac{m-1}{2}} B A^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}} \geq\left\{A^{\frac{m-1}{2}} A A^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}}=A^{m-1}
$$

This implies that $A^{m-1}=\left\{A^{\frac{m-1}{2}} B A^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}}$ and $A=B$ which is a contradiction. Therefore, S is not m-perinormal.

If $T \in \mathcal{B}(\mathcal{H})$ is invertible hyponormal or p-hyponormal for $0<p$ then the inverse T^{-1} of T is is also hyponormal or p-hyponormal respectively. However, in general, the inverse of invertible n-perinormal is not necessarily n-perinormal for $n \geq 3$. We give an example of invertible 3-perinormal operator whose inverse is not 3-perinormal.

Example 4.4. Let A, B be 2×2 positive invertible matrices which satisfy $A \leq B \leq 1$ and $A^{n} \not \leq B^{n}$ for all $n \geq 2$. Let $\mathcal{H}=\bigoplus_{k=-\infty}^{\infty} \mathbb{C}^{2}$. We define an invertible operator T on \mathcal{H} by

$$
T\left(x_{k}\right)=\left(y_{k}\right), \quad y_{k}=\left\{\begin{array}{ll}
A^{1 / 2} x_{k-1} & (k \leq 0) \\
B^{1 / 2} x_{k-1} & (k=1) \\
x_{k-1} & (k \geq 2)
\end{array} \quad\left(x_{k}\right) \in \mathcal{H}\right.
$$

For examples, put $A=\frac{1}{4}\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), B=\frac{1}{4}\left(\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right)$. Then, A and B are invertible, and

$$
\begin{aligned}
B-A & =\frac{1}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \geq 0 . \quad \therefore A \leq B \leq 1 . \\
B^{2}-A^{2} & =\frac{1}{16}\left(\begin{array}{ll}
5 & 1 \\
1 & 0
\end{array}\right) \nsupseteq 0 . \quad \therefore A^{2} \not \leq B^{2} . \\
A^{n} & \not \leq B^{n}(n \geq 2) \quad \text { (by the Heinz inequality). }
\end{aligned}
$$

Proposition 4.5. Let $T \in \mathcal{B}(\mathcal{H})$. Then the following assertions hold:
(i) T is an invertible 2-perihyponormal operator, hence T is 3-perinormal.
(ii) T^{-1} is not 3-perinormal.

Proof. (i) We shall show that $T^{* 2} T^{2} \geq\left(T T^{*}\right)^{2}$. Since $0<A \leq B \leq 1$, we have $A^{2} \leq A \leq B$ and

$$
\begin{aligned}
& T^{* 2} T^{2}-\left(T T^{*}\right)^{2} \\
= & \left(\bigoplus_{k \leq-2} 0\right) \oplus\left(A^{1 / 2} B A^{1 / 2}-A^{2}\right) \oplus\left(B-A^{2}\right) \oplus\left(1-B^{2}\right) \oplus\left(\bigoplus_{k \geq 2}^{(0)} 0\right) \geq 0
\end{aligned}
$$

because $A^{1 / 2} B A^{1 / 2}-A^{2}=A^{1 / 2}(B-A) A^{1 / 2} \geq 0, B-A^{2} \geq 0$ and $1-B \geq 0$. The invertibility of T implies that T is 3-perinormal.
(ii) We shall show that T^{-1} is not 2-perihyponormal. Since

$$
T^{-1}\left(x_{k}\right)=\left(y_{k}\right), \quad y_{k}=\left\{\begin{array}{ll}
A^{-1 / 2} x_{k+1} & (k \leq-1) \\
B^{-1 / 2} x_{1} & (k=0) \\
x_{k+1} & (k \geq 1)
\end{array} \quad\left(x_{k}\right) \in \mathcal{H}\right.
$$

we obtain

$$
\begin{aligned}
& T^{-2 *} T^{-2}-\left(T^{-1} T^{-1 *}\right)^{2} \\
= & \left(\bigoplus_{k \leq-1} 0\right) \oplus\left(A^{-2} \stackrel{(0)}{-} B^{-2}\right) \oplus\left(B^{-1 / 2} A^{-1} B^{-1 / 2}-1\right) \oplus\left(B^{-1}-1\right) \oplus\left(\bigoplus_{k \geq 3} 0\right) .
\end{aligned}
$$

Hence, T^{-1} is 2-perihyponormal iff $A^{-2} \geq B^{-2}$ which is equivalent to $B^{2} \geq A^{2}$. However, the last inequality does not hold. Hence T^{-1} is not 2-perihyponormal and therefore T^{-1} is not 3-perinormal.
Remark 4.6. In Proposition 4.5, if we choose A, B such as $0<A \leq B \leq 1, A^{n-2} \leq$ B^{n-2} and $A^{n-1} \not \leq B^{n-1}$ then the operator T is n-perinormal but the inverse T^{-1} is not n-perinormal for each $n \geq 4$, because

$$
\begin{aligned}
& T^{* n-1} T^{n-1}-\left(T T^{*}\right)^{n-1} \\
= & \left(\bigoplus_{k \leq-n+1} 0\right) \oplus\left(\bigoplus_{k=-n+2}^{-1}\left(A^{\frac{-k}{2}} B A^{\frac{-k}{2}}-A^{n-1}\right)\right) \oplus\left(B-A^{n-1}\right) \oplus\left(1-B^{n-1}\right) \oplus\left(\bigoplus_{k \geq 2}^{(0)} 0\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& T^{-(n-1) *} T^{-(n-1)}-\left(T^{-1} T^{-1 *}\right)^{n-1} \\
= & \left(\bigoplus_{k \leq-1} 0\right) \oplus\left(A^{-(n-1)}-B^{-(n-1)}\right) \oplus\left(\bigoplus_{k=1}^{n-1}\left(B^{\frac{-1}{2}} A^{-(n-k-1)} B^{\frac{-1}{2}}-1\right)\right) \oplus\left(\bigoplus_{k \geq n} 0\right) .
\end{aligned}
$$

5 Complementary Results

The following lemma is very important in the sequel
Lemma 5.1. [11, Hansen's Inequality] If $A, B \in \mathcal{B}(\mathcal{H})$ satisfying $A \geq 0$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\alpha} \geq B^{*} A^{\alpha} B \quad \text { for all } \alpha \in(0,1]
$$

Lemma 5.2. (1) Every 2-perihyponormal operator is $*$-paranormal, hence it is 3-paranormal. (2) Every m-perihyponormal operator is $(m+1)$-paranormal for each $m \geq 3$.

Proof. (1) By the assumption, for every $x \in \mathcal{H}$,

$$
\left\|\left(T T^{*}\right) x\right\|^{2} \leq\left\langle\left(T T^{*}\right)^{2} x, x\right\rangle \leq\left\langle T^{* 2} T^{2} x, x\right\rangle=\left\|T^{2} x\right\|, \quad \therefore\left\|T T^{*} x\right\| \leq\left\|T^{2} x\right\|
$$

It follows that

$$
\left\|T^{*} x\right\|^{2}=\left\langle T T^{*} x, x\right\rangle \leq\left\|T T^{*} x\right\|\|x\| \leq\left\|T^{2} x\right\|\|x\|
$$

for every $x \in \mathcal{H}$.
(2) Let $x \in \mathcal{H}$ be arbitrary.

$$
\begin{aligned}
\left\|T^{m} x\right\|^{2} & =\left\langle T^{* m} T^{m} x, x\right\rangle \geq\left\langle\left(T T^{*}\right)^{m} x, x\right\rangle \\
& \geq\left\langle T T^{*} x, x\right\rangle^{m}\|x\|^{2(1-m)} \quad(\text { by }(1.1)) \\
& =\left\|T^{*} x\right\|^{2 m}\|x\|^{2(1-m)}
\end{aligned}
$$

Hence, $\left\|T^{*} x\right\|^{m} \leq\left\|T^{m} x\right\|\|x\|^{m-1}$ and

$$
\|T x\|^{2}=\left\langle T^{*} T x, x\right\rangle \leq\left\|T^{*} T x\right\|\|x\| \leq \sqrt[m]{\left\|T^{m+1} x\right\|\|T x\|^{m-1}}\|x\|
$$

It follows that

$$
\begin{aligned}
\|T x\|^{2 m} & \leq\left\|T^{m+1} x\right\|\|T x\|^{m-1}\|x\|^{m} \\
\|T x\|^{m+1} & \leq\left\|T^{m+1} x\right\|\|x\|^{m}
\end{aligned}
$$

This implies that $T \in \mathfrak{P}(m+1)$.
Lemma 5.3. [13] Every n-perinormal is n-paranormal.
Lemma 5.4. [31, 45] If T is n-perinormal, $\lambda \in \sigma_{p}(T) \backslash\{0\}$ and $x \in \operatorname{ker}(T-\lambda)$, then

$$
(T-\lambda)^{*} x=0
$$

As we see in the previous section, the restricsion of n-perinormal to its invariant subspace is not necessarily n-perinormal for $n \geq 3$. However, we have a weak result as follows.

Lemma 5.5. If T is n-perinormal for $n \geq 2$ and \mathcal{M} is a T-invariant closed subspace. Then the restriction $T_{1}:=\left.T\right|_{\mathcal{M}}$ of T to \mathcal{M} belongs to class (U, n).

Proof. Let P be the orthogonal projection onto \mathcal{M}. Then T and P are of the forms

$$
T=\left(\begin{array}{cc}
T_{1} & A \\
0 & B
\end{array}\right), P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { on } P \mathcal{H} \oplus(1-P) \mathcal{H}
$$

Since $T P=P T P$ and $T^{* n} T^{n} \geq\left(T^{*} T\right)^{n}$ it follows that

$$
\begin{aligned}
& P\left(T^{* n} T^{n}\right) P=(T P)^{* n}(T P)^{n} \geq P\left(T^{*} T\right)^{n} P \\
& \left(\begin{array}{cc}
\left(T_{1}^{* n} T_{1}^{n}\right)^{\frac{2}{n}} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
T_{1}^{* n} T_{1}^{n} & 0 \\
0 & 0
\end{array}\right)^{\frac{2}{n}}=\left\{P\left(T^{* n} T^{n}\right) P\right\}^{\frac{2}{n}}=\left\{(T P)^{* n}(T P)^{n}\right\}^{\frac{2}{n}} \\
& \geq\left\{P\left(T^{*} T\right)^{n} P\right\}^{\frac{2}{n}} \\
& \geq P\left(T^{*} T\right)^{2} P \quad \text { (by Hansen's inequality) } \\
& =(T P)^{*}\left(T T^{*}\right)(T P) \geq(T P)^{*}\left(T P T^{*}\right)(T P) \\
& =\left\{(T P)^{*}(T P)\right\}^{2}=\left(\begin{array}{cc}
\left(T_{1}^{*} T_{1}\right)^{2} & 0 \\
0 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

This completes the proof.
The following lemma is an extension of Lemma 5.3.
Lemma 5.6. If T belongs to class (U, n) and $\lambda \in \sigma_{p}(T) \backslash\{0\}$. Then $\operatorname{ker}(T-\lambda) \subset$ $\operatorname{ker}(T-\lambda)^{*}$.

Proof. Let P be the orthogonal projection onto $\operatorname{ker}(T-\lambda)$. Then $T P=\lambda P, T^{n} P=\lambda^{n} P$, $P T^{*}=\bar{\lambda} P, P T^{* n}=\bar{\lambda}^{n} P$. And T and P are of the forms $T=\left(\begin{array}{ll}\lambda & A \\ 0 & B\end{array}\right), P=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ on $P \mathcal{H} \oplus(1-P) \mathcal{H}$.

$$
\begin{aligned}
\left(\begin{array}{cc}
|\lambda|^{4} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
|\lambda|^{2 n} & 0 \\
0 & 0
\end{array}\right)^{\frac{2}{n}} & =\left\{P\left(T^{* n} T^{n}\right) P\right\}^{\frac{2}{n}} \\
& \geq P\left(T^{* n} T^{n}\right)^{\frac{2}{n}} P \quad(\text { by Hansen's inequality }) \\
& \geq P\left(T^{*} T\right)^{2} P=|\lambda|^{2} P\left(T T^{*}\right) P=\left(\begin{array}{cc}
|\lambda|^{2}\left(|\lambda|^{2}+A A^{*}\right) & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

This implies that $|\lambda|^{4} \geq|\lambda|^{4}+|\lambda|^{2} A A^{*}$, so $A A^{*}=0$ and $A=0$ by $\lambda \neq 0$. Thus $\operatorname{ker}(T-\lambda)$ reduces T and the proof is complete.

Proposition 5.7. If $T \in \mathcal{B}(\mathcal{H})$ belongs to class (U, n), then T is n-paranormal. In particular, T is isoloid and normaloid.

Proof. By Heinz inequality, we have $\left(T^{* n} T^{n}\right)^{\frac{1}{n}} \geq T^{*} T$. Therefore,

$$
\begin{aligned}
\|T x\|^{2}=\left\langle T^{*} T x, x\right\rangle & \leq\left\langle\left(T^{* n} T^{n}\right)^{\frac{1}{n}} x, x\right\rangle \\
& \leq\left\langle T^{* n} T^{n} x, x\right\rangle^{\frac{1}{n}}\|x\|^{2\left(1-\frac{1}{n}\right)} \quad \text { (by Lemma 3.1) } \\
& =\left\|T^{n} x\right\|^{\frac{2}{n}}\|x\|^{2\left(1-\frac{1}{n}\right)} . \\
\therefore\|T x\|^{n} & \leq\left\|T^{n} x\right\|\|x\|^{n-1} .
\end{aligned}
$$

6 Spectral properties of $\mathbb{Q P}(n, k)$

Lemma 6.1. Let $T \in \mathbb{Q P}(n, k)$ and T^{k} do not have a dense range. Then

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \quad \text { on } \quad \mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{* k}\right)
$$

where $T_{1}=\left.T\right|_{\overline{\operatorname{ran}\left(T^{k}\right)}}$ is the restriction of T to $\overline{\operatorname{ran}\left(T^{k}\right)}$, and T_{1} is a class (U, n) and T_{3} is nilpotent of nilpotency n. Moreover, $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.

Proof. Consider $\mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{* k}\right)$. Since $\overline{\operatorname{ran}\left(T^{k}\right)}$ is an invariant subspace of T, T has the matrix representation

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right)
$$

with respect to $\mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{* k}\right)$. Let P be the orthogonal projection onto $\overline{\operatorname{ran}\left(T^{k}\right)}$. Then $T_{1} \oplus 0=T P=P T P$ and $T_{1}^{*} T_{1} \oplus 0=P T^{*} T P$. Since $T \in \mathbb{Q} \mathbb{P}(n, k)$, we have

$$
P\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) P \geq 0
$$

Using the facts $T P=P T P, P T^{*}=P T^{*} P$, we have

$$
\begin{aligned}
P\left(T^{* n} T^{n}\right) P=(T P)^{* n}(T P)^{n} & \geq P\left(T^{*} T\right)^{n} P \\
\left(\begin{array}{cc}
\left(T_{1}^{* n} T_{1}^{n}\right)^{\frac{2}{n}} & 0 \\
0 & 0
\end{array}\right) & =\left(\begin{array}{cc}
T_{1}^{* n} T_{1}^{n} & 0 \\
0 & 0
\end{array}\right)^{\frac{2}{n}}=\left\{P\left(T^{* n} T^{n}\right) P\right\}^{\frac{2}{n}}=\left\{(T P)^{* n}(T P)^{n}\right\}^{\frac{2}{n}} \\
& \geq\left\{P\left(T^{*} T\right)^{n} P\right\}^{\frac{2}{n}} \\
& \geq P\left(T^{*} T\right)^{2} P \quad \text { (by Hansen's inequality) } \\
& =(T P)^{*}\left(T T^{*}\right)(T P) \geq(T P)^{*}\left(T P T^{*}\right)(T P) \\
& =\left\{(T P)^{*}(T P)\right\}^{2}=\left(\begin{array}{cc}
\left(T_{1}^{*} T_{1}\right)^{2} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

On the other hand, if $u=\binom{u_{1}}{u_{2}} \in \mathcal{H}$,

$$
\left\langle T_{3}^{k} u_{2}, u_{2}\right\rangle=\left\langle T^{k}(I-P) u,(I-P) u\right\rangle=\left\langle(I-P) u, T^{* k}(I-P) u\right\rangle=0 .
$$

which implies that $T_{3}^{k}=0$. It is well known that $\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)=\sigma(T) \cup \mathcal{C}$, where \mathcal{C} is the union of certain of the holes in $\sigma(T)$ which happen to be subset of $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ and $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ has no interior points. Therefore, we have

$$
\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)=\sigma\left(T_{1}\right) \cup\{0\}
$$

Lemma 6.2. Let $T \in \mathbb{Q P}(n, k)$ and \mathcal{W} be its invariant subspace. Then the restriction $A_{1}:=\left.T\right|_{\overline{T^{k}} \mathcal{W}}$ of T to $\overline{T^{k} \mathcal{W}}$ satisfies

$$
\left(A_{1}^{* n} A_{1}^{n}\right)^{\frac{2}{n}} \geq\left(A_{1}^{*} A_{1}\right)^{2} .
$$

That is, A_{1} belongs to class (U, n).
Proof. Let P be the orthogonal projection of \mathcal{H} onto \mathcal{W} and Q be the orthogonal projection of \mathcal{H} onto $\overline{T^{k} \mathcal{W}}$. Since $\overline{T^{k} \mathcal{W}} \subset \mathcal{W}, Q \leq P$ holds. Decompose

$$
T=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \text { on } \mathcal{H}=\mathcal{W} \oplus \mathcal{W}^{\perp}
$$

and

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right) \text { on } \mathcal{W}=\overline{T^{k} \mathcal{W}} \oplus\left(\mathcal{W} \ominus \overline{T^{k} \mathcal{W}}\right)
$$

Then we have $A \oplus 0=T P=P T P$ and $(A \oplus 0) Q=T Q=Q T Q=Q(A \oplus 0) Q=$ $A_{1} \oplus 0 \oplus 0$. Since $T \in \mathbb{Q P}(n, k)$, we have

$$
P T^{* k}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k} P \geq 0
$$

This implies that

$$
Q\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) Q \geq 0
$$

Hence,

$$
\begin{aligned}
Q\left|T^{n}\right|^{2} Q=Q T^{* n} T^{n} Q & =Q\left(A^{* n} A^{n} \oplus 0\right) Q=(Q(A \oplus 0) Q)^{* n}(Q(A \oplus 0) Q)^{n} \\
A_{1}^{* n} A_{1}^{n} \oplus 0 & \geq Q|T|^{2 n} Q \\
\therefore\left(A_{1}^{* n} A_{1}^{n}\right)^{\frac{2}{n}} \oplus\{0\} & \geq\left(Q|T|^{2 n} Q\right)^{\frac{2}{n}} \\
& \geq Q\left(|T|^{2 n}\right)^{\frac{2}{n}} Q=Q\left(T^{*} T\right)^{2} Q \quad \text { (by Hansen's inequality) } \\
& =\left(Q T^{*}\right) T T^{*}(T Q) \\
& \geq\left(Q T^{*}\right)(T Q)\left(Q T^{*}\right)(T Q)=\left(A_{1}^{*} A_{1}\right)^{2} \oplus\{0\} .
\end{aligned}
$$

Theorem 6.3. If $T \in \mathbb{Q P}(n, k)$ and $(T-\lambda) x=0$ for some $\lambda \neq 0$, then $(T-\lambda)^{*} x=0$.
Proof. Let P be the orthogonal projection onto $\operatorname{ker}(T-\lambda)$. Then $T P=\lambda P, T^{m} P=$ $\lambda^{m} P, P T^{*}=\bar{\lambda} P, P T^{* m}=\bar{\lambda}^{m} P$ for all $m \geq 1$. And T and P are of the forms $T=\left(\begin{array}{ll}\lambda & A \\ 0 & B\end{array}\right), P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ on $P \mathcal{H} \oplus(1-P) \mathcal{H}$. Since $T \in \mathbb{Q P}(n, k), T$ satisfies $T^{*(n+k)} T^{n+k}=T^{* k}\left(T^{* n} T^{n}\right) T^{k} \geq T^{* k}\left(T^{*} T\right)^{n} T^{k}$ and hence

$$
|\lambda|^{2(n+k)} P=P T^{*(n+k)} T^{n+k} P \geq P T^{* k}\left(T^{*} T\right)^{n} T^{k} P=|\lambda|^{2 k} P\left(T^{*} T\right)^{n} P
$$

and

$$
\begin{aligned}
|\lambda|^{4} P=\left(|\lambda|^{2 n} P\right)^{\frac{2}{n}} & \geq\left(P\left(T^{*} T\right)^{n} P\right)^{\frac{2}{n}} \geq P\left(T^{*} T\right)^{2} P \quad \text { (by Hansen's inequality) } \\
& =|\lambda|^{2} P\left(T T^{*}\right) P=|\lambda|^{2}\left(|\lambda|^{2}+A A^{*}\right)
\end{aligned}
$$

This implies that $|\lambda|^{4} \geq|\lambda|^{4}+|\lambda|^{2} A A^{*}$, so $A A^{*}=0$ and $A=0$ by $\lambda \neq 0$. Thus $\operatorname{ker}(T-\lambda)$ reduces T and the proof is complete.

A complex number λ is said to be in the point spectrum $\sigma_{p}(T)$ of T if there is a nonzero $x \in \mathcal{H}$ such that $(T-\lambda) x=0$. If in addition, $\left(T^{*}-\bar{\lambda}\right) x=0$, then λ is said to be in the joint point spectrum $\sigma_{j p}(T)$ of T.

Corollary 6.4. If $T \in \mathbb{Q} P(n, k)$, then $\sigma_{j p}(T) \backslash\{0\}=\sigma_{p}(T) \backslash\{0\}$.
Corollary 6.5. If $T \in \mathbb{Q P}(n, k)$ and $\alpha, \beta \in \sigma_{p}(T)$ with $\alpha \neq \beta$. Then $\operatorname{ker}(T-\alpha) \perp$ $\operatorname{ker}(T-\beta)$.

Proof. Without loss of the generality, we may assume $\beta \neq 0$. Let $x \in \operatorname{ker}(T-\alpha)$ and $y \in \operatorname{ker}(T-\beta)$. Then $T x=\alpha x, T y=\beta y$ and $T^{*} y=\bar{\beta} y$. Therefore

$$
\alpha\langle x, y\rangle=\langle\alpha x, y\rangle=\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle x, \bar{\beta} y\rangle=\beta\langle x, y\rangle .
$$

Hence $\alpha\langle x, y\rangle=\beta\langle x, y\rangle$ and so $(\alpha-\beta)\langle x, y\rangle=0$. But $\alpha \neq \beta$, hence $\langle x, y\rangle=0$. Consequently $\operatorname{ker}(T-\alpha) \perp \operatorname{ker}(T-\beta)$.

Theorem 6.6. If T is a class (M, n) operator, then T is normaloid
Proof. If T is a class (M, n) operator, then T is n-paranormal operator and so the result follows by [26, Proposition 1].
Theorem 6.7. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{Q P}(n, k)$ with dense range, then T is class (M, n) operator.
Proof. Since T has dense range, $\overline{\operatorname{ran}\left(T^{k}\right)}=\mathcal{H}$. Then there exists a sequence $\left\{x_{m}\right\} \subset \mathcal{H}$ such that $\lim _{n \longrightarrow \infty} T^{k} x_{m}=y$. Since $T \in \mathbb{Q P}(n, k)$, we have

$$
\begin{aligned}
\left.\left.\left\langle T^{* k}\right| T^{n}\right|^{2} T^{k} x_{m}, x_{m}\right\rangle & \left.\geq\left.\left\langle T^{* k}\right| T\right|^{2 n} T^{k} x_{m}, x_{m}\right\rangle \\
\left.\left.\langle | T^{n}\right|^{2} T^{k} x_{m}, T^{k} x_{m}\right\rangle & \left.\geq\left.\langle | T\right|^{2 n} T^{k} x_{m}, T^{k} x_{m}\right\rangle \text { for all } m \in \mathbb{N}
\end{aligned}
$$

By the continuity of the inner product, we have

$$
\left\langle\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) y, y\right\rangle \geq 0
$$

Therefore T is a class (M, n) operator.
Corollary 6.8. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{Q P}(n, k)$ and not class (M, n), then T has not dense range.

Lemma 6.9. Let $T \in \mathcal{B}(\mathcal{H})$. If T is a class (M, n) and $\sigma(T)=\{\lambda\}$, then $T=\lambda$
Proof. Since T is a class $(M, n), T$ is n-paranormal. Hence the result follows from [39].

Theorem 6.10. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{Q P}(n, k)$ and $\sigma(T)=\{\lambda\}$, then $T=\lambda$ if $\lambda \neq 0$ and $T^{k+1}=0$ if $\lambda=0$.

Proof. If the range of T^{k} is dense, then T is of class (M.n). Hence $T=\lambda$ by Lemma 6.9. If the range of T^{k} is not dense, then

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \text { on } \mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{* k}\right)
$$

where T_{1} satisfies the relation $\left(T_{1}^{* n} T_{1}^{n}\right)^{\frac{2}{n}} \geq\left(T_{1}^{*} T_{1}\right)^{2}, T_{3}^{k}=0$ and $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$ by Lemma 6.1. In this case, $\lambda=0$. Hence $T_{1}=0$ by Proposition 5.7, Lemma 6.1 and Lemma 6.9. Thus

$$
T^{k+1}=\left(\begin{array}{ll}
0 & T_{2} \\
0 & T_{3}
\end{array}\right)^{k+1}=\left(\begin{array}{ll}
0 & T_{2} T_{3}^{k} \\
0 & T_{3}^{k+1}
\end{array}\right)=0
$$

Corollary 6.11. If $T \in \mathbb{Q P}(n, k)$ and $(T-\alpha) x=0,(T-\beta) x=0$ with $\alpha^{n+1} \neq \beta^{n+1}$, then $\langle x, y\rangle=0$.

Proof. We may assume $\beta \neq 0$. Then

$$
\alpha^{n+1}\langle x, y\rangle=\left\langle T^{n+1} x, y\right\rangle=\left\langle x, T^{*(n+1)} y\right\rangle=\beta^{n+1}\langle x, y\rangle
$$

and so $\langle x, y\rangle=0$.
The space of all functions that are analytical in the open neighborhoods of $\sigma(T)$ shall be denoted as $\operatorname{Hol}(\sigma(T))$. Following [10], we state that $T \in \mathcal{B}(\mathcal{H})$ possesses the singlevalued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if the only analytic function $f: O_{\lambda} \longrightarrow$ \mathcal{H} that satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$ Every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$ has SVEP for $T \in \mathcal{B}(\mathcal{H})$, as is well known. Furthermore, it is clear that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point in the border $\partial \sigma(T)$ of the spectrum from the identity theorem for analytic functions. Any isolated point of $\sigma(T)$ at T has SVEP, in particular. Laursen established in [29, Proposition 1.8] that if T is of finite ascent, then T possesses SVEP.

If each isolated point of $\sigma(T)$ is an eigenvalue of T, then an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be isoloid. If $i \operatorname{so\sigma }(T) \subseteq \pi(T)$, where $i \operatorname{so\sigma }(T)$ is the set of isolated points of the spectrum $\sigma(T)$ of T, and $\pi(T)$ is the set of all poles of T, then an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be polaroid.
A necessary and sufficient condition for $\lambda \in \pi(T)$ is that $\operatorname{asc}(T-\lambda)=\operatorname{dsc}(T-\lambda)<\infty$, where the ascent of $T, \operatorname{asc}(T)$, is the least non-negative integer n such that $\operatorname{ker}\left(T^{n}\right)=$ $\operatorname{ker}\left(T^{n+1}\right)$ and the descent of $T, \operatorname{dsc}(T)$, is the least non-negative integer n such that $\operatorname{ran}\left(T^{n}\right)=\operatorname{ran}\left(T^{n+1}\right)$. In general, if T is polaroid then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^{2}(\mathbb{N})$ be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)
$$

Then T is a compact quasinilpotent operator with $\operatorname{dim} \operatorname{ker}(T)=1$, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid.

Recall that $T \in \mathcal{B}(\mathcal{H})$ is said to have finite ascent if $\operatorname{ker}\left(T^{n}\right)=\operatorname{ker}\left(T^{n+1}\right)$ for some positive integer n.

Theorem 6.12. Let $T \in \mathcal{B}(\mathcal{H})$. If T is a class (M, n), then T has $S V E P$.
Proof. Since n-perinormal operator T is finite ascent by [31] , hence T has SVEP.
Corollary 6.13. If T is a (n, k)-quasiperinormal, then T has SVEP.
Proof. Let f be an analytic function on an open set D such that $(T-\alpha) f(\alpha)=0$ for $\alpha \in D$. Let $\alpha=r e^{i \theta} \neq 0$ and $\alpha_{m}=r^{1+\frac{1}{m}} e^{i \theta}$. Then

$$
\|f(\alpha)\|^{2}=\lim \left\langle f(\alpha), f\left(\alpha_{m}\right)\right\rangle=0
$$

by Corollary 6.11.
Corollary 6.14. Suppose that T is non-zero (n, k)-quasiperinormal and it has no nontrivial T-invariant closed subspace. Then T is of class (M, n) operator.

Proof. Since T has no non-trivial invariant closed subspace, it has no non-trivial hyperinvariant subspace. But $\operatorname{ker}\left(T^{k}\right)$ and $\overline{\operatorname{ran}\left(T^{k}\right)}$ are hyperinvariant subspaces, and $T \neq 0$, hence, $\operatorname{ker}\left(T^{k}\right) \neq \mathcal{H}$ and $\overline{\operatorname{ran}\left(T^{k}\right)} \neq\{0\}$. Therefore $\operatorname{ker}\left(T^{k}\right)=\{0\}$ and $\overline{\operatorname{ran}\left(T^{k}\right)}=\mathcal{H}$. In particular, T has dense range. It follows from Corollary 6.7 that T is of class (M, n) operator.

Theorem 6.15. If $T \in \mathbb{Q P}(n, k)$, then $\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{2}$ if $\lambda \neq 0$ and $\operatorname{ker}\left(T^{k+1}\right)=$ $\operatorname{ker}\left(T^{k+2}\right)$ if $\lambda=0$. Consequently, $T-\lambda$ has finite ascent for all $\lambda \in \mathbb{C}$.

Proof. Assume $0 \neq \lambda \in \sigma_{p}(T)$ because the case $\lambda \notin \sigma_{p}(T)$ is obvious. Let $0 \neq x \in$ $\operatorname{ker}(T-\lambda)^{2}, x=x_{1} \oplus x_{2} \in \mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{k}\right)$ and

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \text { on } \mathcal{H}=\overline{\operatorname{ran}\left(T^{k}\right)} \oplus \operatorname{ker}\left(T^{k}\right)
$$

Then

$$
\begin{aligned}
0=(T-\lambda)^{2} x & =\left(\begin{array}{cc}
T_{1}-\lambda & T_{2} \\
0 & T_{3}-\lambda
\end{array}\right)^{2}\binom{x_{1}}{x_{2}} \\
& =\binom{\left(T_{1}-\lambda\right)^{2} x_{1}+\left(\left(T_{1}-\lambda\right) T_{2}+T_{2}\left(T_{3}-\lambda\right)\right) x_{2}}{\left(T_{3}-\lambda\right)^{2} x_{2}}
\end{aligned}
$$

Consequently, $x_{2}=0$ because $T_{3}-\lambda$ is invertible by Lemma 6.1. Thus $\left(T_{1}-\lambda\right)^{2} x_{1}=0$ and $\left(T_{1}-\lambda\right) x_{1} \in \operatorname{ker}\left(T_{1}-\lambda\right) \subset \operatorname{ker}\left(T_{1}-\lambda\right)^{*}$ by Theorem 6.3. Therefore

$$
\left\|\left(T_{1}-\lambda\right) x\right\|^{2}=\left\langle\left(T_{1}-\lambda\right)^{*}\left(T_{1}-\lambda\right) x, x\right\rangle=\langle 0, x\rangle=0
$$

so $\left(T_{1}-\lambda\right) x=0$ and

$$
(T-\lambda) x=(T-\lambda)\left(x_{1} \oplus 0\right)=\left(T_{1}-\lambda\right) x_{1}=0
$$

If $\lambda=0, x \in \operatorname{ker}\left(T^{n+k}\right)$, then

$$
\begin{aligned}
0 & \left.=\left\|T^{n+k}\right\|^{2}=\left\langle T^{* k} T^{* n} T^{n} T^{k} x, x\right\rangle=\left.\left\langle T^{* k}\right| T^{n}\right|^{2} T^{k} x, x\right\rangle \\
& \left.\geq\left.\left\langle T^{* k}\right| T\right|^{2 n} T^{k} x, x\right\rangle=\left\||T|^{n} T^{k} x\right\|^{2}
\end{aligned}
$$

Hence $|T|^{n} T^{k} x=0$ and $|T| T^{k} x=0$. Hence $T . T^{k} x=U|T| T^{k} x=0$. This implies that $\operatorname{ker}\left(T^{n+k}\right)=\operatorname{ker}\left(T^{k+1}\right)$ and $\operatorname{ker}\left(T^{k+1}\right)=\operatorname{ker}\left(T^{k+2}\right)=\cdots$.

If $\lambda=0$ and $x \in \operatorname{ker}\left(T^{k+1}\right)$, then it follows from Theorem 3.14 that

$$
\left\|T^{k} x\right\|=\left\|T\left(T^{k-1} x\right)\right\| \leq\left\|T^{n+k-1} x\right\|^{\frac{1}{n}}\left\|T^{k-1} x\right\|^{\frac{n-1}{n}}=0
$$

Hence $T^{k} x=0$. Then $x \in \operatorname{ker}\left(T^{k}\right)$.

7 Weyl's theorem and the self-adjointness of any Riesz idempotent with respect to an arbitrary isolated point of $\sigma(T)$

Theorem 7.1. Let T be n-perinormal and λ is an isolated point of $\sigma(T)$ then the Riesz idempotent E_{λ} satisfies the followings;
(i) $E_{0}(\mathcal{H})=\operatorname{ker} T(\lambda=0)$
(ii) $E_{\lambda}(\mathcal{H})=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}, E_{\lambda}=E_{\lambda}^{*}(\lambda \neq 0)$.
for each $n \geq 2$.
Proof. (i) Both of $E_{0} \mathcal{H}$ and $\left(1-E_{0}\right) \mathcal{H}$ are T-invariant closed subspaces which satisfy that $\sigma\left(\left.T\right|_{E_{0} \mathcal{H}}\right)=\{0\}$ and $\sigma\left(\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}}\right)=\sigma(T) \backslash\{0\}$. Since $T \in \mathfrak{P}(n)$, the restrictions $\left.T\right|_{E_{0} \mathcal{H}},\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}} \in \mathfrak{P}(n)$ and $\left\|\left.T\right|_{E_{0} \mathcal{H}}\right\|=r\left(\left.T\right|_{E_{0} \mathcal{H}}\right)=0$ by Theorem $2.2(e)$ and hence $\left.T\right|_{E_{0} \mathcal{H}}=0$. This implies that $E_{0} \mathcal{H} \subset \operatorname{ker} T$. Conversely, let $x=y+z \in \operatorname{ker} T$ be arbitrary where $y \in E_{0} \mathcal{H}$ and $z \in\left(1-E_{0}\right) \mathcal{H}$. Since $\left.T\right|_{E_{0} \mathcal{H}}=0$ and $\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}}$ is invertible,

$$
0=T x=T y+T z=\left(\left.T\right|_{E_{0} \mathcal{H}}\right) y+\left(\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}}\right) z=\left(\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}}\right) z
$$

implies $z=0$ and hence $x=y \in E_{0} \mathcal{H}$. Therefore $E_{0} \mathcal{H}=\operatorname{ker} T$ holds.
(ii) Both of $E_{\lambda} \mathcal{H}$ and $\left(1-E_{\lambda}\right) \mathcal{H}$ are T-invariant closed subspaces which satisfy that $\sigma\left(\left.T\right|_{E_{\lambda} \mathcal{H}}\right)=\{\lambda\}$ and $\sigma\left(\left.T\right|_{\left(1-E_{\lambda}\right) \mathcal{H}}\right)=\sigma(T) \backslash\{\lambda\}$. Since, $T \in \mathfrak{P}(n)$ the restrictions $\left.T\right|_{E_{\lambda} \mathcal{H}},\left.T\right|_{\left(1-E_{\lambda}\right) \mathcal{H}} \in \mathfrak{P}(n)$ and $\left\|\left.T\right|_{E_{\lambda} \mathcal{H}}\right\|=r\left(\left.T\right|_{E_{\lambda} \mathcal{H}}\right)=|\lambda|$ by Theorem 2.2(e) and also $|\lambda|^{-1} \leq\left\|\left(\left.T\right|_{E_{0} \mathcal{H}}\right)^{-1}\right\| \leq|\lambda|^{-\frac{n(n-1)}{2}+\frac{(n+1)(n-2)}{2}}=|\lambda|^{-1}$ by Theorem 2.2(f). Hence $U=\left.\frac{1}{\lambda} T\right|_{E_{\lambda} \mathcal{H}}$ is invertible isometry with the spectrum $\sigma(U)=\{1\}$, so U is unitary and $U=1$ on $E_{\lambda} \mathcal{H}$. This implies that $\left.T\right|_{E_{\lambda}}=\lambda E_{\lambda}$ and $(T-\lambda) E_{\lambda}=0$. It follows that $(T-\lambda)^{*} E_{\lambda}=0$ by Lemma 5.4 or Lemma 5.6, and hence $E_{\lambda} \mathcal{H}$ is a reducing subspace of T. Since $(z-T)^{*} E_{\lambda}=(\bar{z}-\bar{\lambda}) E_{\lambda}$ and $(z-T)^{-1 *} E_{\lambda}=\overline{\left(\frac{1}{z-\lambda}\right)} E_{\lambda}$, it follows that

$$
\begin{aligned}
0 & \leq E_{\lambda}^{*} E_{\lambda}=-\frac{1}{2 \pi i} \int_{|z-\lambda|=r}(z-T)^{*-1} E_{\lambda} d \bar{z} \\
& =-\frac{1}{2 \pi i} \int_{|z-\lambda|=r} \overline{\left(\frac{1}{z-\lambda}\right)} E_{\lambda} d \bar{z}=\overline{\left(\frac{1}{2 \pi i} \int_{|z-\lambda|=r} \frac{1}{z-\lambda} d z\right)} E_{\lambda}=E_{\lambda} .
\end{aligned}
$$

Hence $E_{\lambda}=E_{\lambda}^{*}$. Thus T is of the form $T=\lambda \oplus T^{\prime}$ on $\mathcal{H}=E_{\lambda} \mathcal{H} \oplus\left(1-E_{\lambda}\right) \mathcal{H}$ with $\lambda \notin \sigma\left(T^{\prime}\right)$. Therefore the assertion $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$ holds.

Theorem 7.2. Weyl's theorem hold for any n-perinormal operators.
Proof. We first show that $\sigma(T) \backslash w(T) \subset \pi_{00}(T)$. Let $\lambda \in \sigma(T) \backslash w(T)$ be arbitrary. Then $T-\lambda$ is Fredholm operator with the index $\operatorname{ind}(T-\lambda)=0$ and $(T-\lambda)$ is not invertible.

Case (i). $\lambda=0$. Then $\operatorname{ker} T \neq\{0\}$ is finite dimension and $\operatorname{ran} T$ is closed. Thus the range of T^{*} is closed and T is of the form

$$
T=\left(\begin{array}{cc}
0 & A \\
0 & T^{\prime}
\end{array}\right) \text { on } \operatorname{ker} T \oplus \operatorname{ran} T^{*}
$$

Since A is a finite rank operator, it follows that T^{\prime} is Fredholm with the index $\operatorname{ind}\left(T^{\prime}\right)=$ $\operatorname{ind}(T)=\{0\}$. Let $x \in \operatorname{ker} T^{\prime}$ be arbitrary. Then $T^{2}(0 \oplus x)=T\left(A x \oplus T^{\prime} x\right)=T(A x \oplus 0)=$ $0 \oplus 0=0$, so $T^{n}(0 \oplus x)=0$. Since T is n-perinormal, $\operatorname{ker} T^{n}=\operatorname{ker} T$ and hence $x \in \operatorname{ker} T \cap \operatorname{ran} T^{*}=\{0\}$. Therefore T^{\prime} is Weyl with $\operatorname{ker} T^{\prime}=\{0\}$, so it is invertible. This implies that 0 is isolated in $\sigma(T)=\{0\} \cup \sigma\left(T^{\prime}\right)$ and $0 \in \pi_{00}(T)$.

Case (ii). $\lambda \neq 0$. Then $\operatorname{ker}(T-\lambda)$ is finite dimensional subspace which reduces T and $\operatorname{ran}(T-\lambda)$ is closed, and hence T is of the form $T=\lambda \oplus T^{\prime}$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus \operatorname{ran}(T-$ $\lambda)^{*}$. Since $T^{\prime}-\lambda$ is Fredholm with the index $\operatorname{ind}\left(T^{\prime}-\lambda\right)=0$ and $\operatorname{ker}\left(T^{\prime}-\lambda\right)=\{0\}$, it follows that $T^{\prime}-\lambda$ is invertible and hence λ is isolated in $\sigma(T)=\{\lambda\} \cup \sigma\left(T^{\prime}\right)$. Therefore $\lambda \in \pi_{00}(T)$. Thus $\sigma(T) \backslash w(T) \subset \pi_{00}(T)$ holds.

Next, we show that $\pi_{00}(T) \subset \sigma(T) \backslash w(T)$.
Let $\lambda \in \pi_{00}(T)$ be arbitraray. Then λ is isolated in $\sigma(T)$ and $\operatorname{ker}(T-\lambda) \neq\{0\}$ is finite dimension.

Case (i). $\lambda=0$. Since T is n-perinormal, $\left.T\right|_{E_{0}(\mathcal{H})}$ is class (U, n) by Lemma 5.5 and $\sigma\left(\left.T\right|_{E_{0}(\mathcal{H})}\right)=\{0\}$. Hence $\left.T\right|_{E_{0}(\mathcal{H})}=0$ by Proposition 5.7. Then the Riesz idempotent E_{0} with respect to 0 for T satisfies that $\left.T\right|_{E_{0} \mathcal{H}}=0$ and $T^{\prime}:=\left.T\right|_{\left(1-E_{0}\right) \mathcal{H}}$ is invertible (so, it is Weyl) and $T^{\prime} \in \mathfrak{P}(n)$. And $T=0+T^{\prime}$ on $\mathcal{H}=E_{0} \mathcal{H}+\left(1-E_{0}\right) \mathcal{H}$ is also Weyl. Therefore $0 \in \sigma(T) \backslash w(T)$.

Case (ii). $\lambda \neq 0$. Then $\operatorname{ker}(T-\lambda)$ is finite dimensional subspace which reduces T and $T=\lambda \oplus T^{\prime}$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus \operatorname{ran}(T-\lambda)^{*}$, where T^{\prime} is n-perinormal (hence $T^{\prime} \in$ $\mathfrak{P}(n)$). If $\lambda \in \sigma\left(T^{\prime}\right)$ then λ is isolated in $\sigma\left(T^{\prime}\right)$ and $\lambda \in \sigma_{p}\left(T^{\prime}\right)$. This is a contradiction because $\operatorname{ker}\left(T^{\prime}-\lambda\right) \subset \operatorname{ran}(T-\lambda)^{*} \cap \operatorname{ker}(T-\lambda)=\{0\}$. Thus $T^{\prime}-\lambda$ is invertible and $T-\lambda=0 \oplus\left(T^{\prime}-\lambda\right)$ implies that $T-\lambda$ is Fredholm with the index $\operatorname{ind}(T-\lambda)=$ $\operatorname{ind}\left(T^{\prime}-\lambda\right)=0$, so $T-\lambda$ is Weyl. Therefore $\lambda \in \sigma(T) \backslash w(T)$ holds.

8 Riesz Idempotent for $\mathbb{Q P}(n, k)$ operators

Let μ be an isolated instance of T . Following that, the Riesz idempotent E of T with respect to μ is defined as

$$
E:=\frac{1}{2 \pi i} \int_{\partial D}(\mu-T)^{-1} d \mu
$$

where D is a closed disc with a center at μ and no other points of the points of the spectrum of T. It is understood that $E^{2}=E, E T=T E, \sigma\left(\left.T\right|_{\operatorname{ran}(E)}\right)=\{\mu\}$ and $\operatorname{ker}(T-\mu) \subseteq$ $\operatorname{ran}(E)$. In [37],, Stampfli demonstrated that E is self-adjoint and $\operatorname{ran}(E)=\operatorname{ker}(T-\mu)$ if T meets the growth condition G_{1}. Recently, Stampfli's result for quasi-class A operators, paranormal operators, and k-quasi-*-paranormal operators was obtained by Jeon and Kim [20], Uchiyama [42] and Rashid [34]. The Riesz idempotent E of T with respect to μ is typically not necessarily self-adjoint, even if T is a paranormal operator.

Theorem 8.1. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{Q P}(n, k)$, then T is isoloid.
Proof. Assume that T has the representation specified by the Lemma 6.1 and Proposition 5.7. Let z represent an isolated point in $\sigma(T)$. Then z is an isolated point in $\sigma\left(T_{1}\right)$ or $z=0$ because $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$. Lemma 6.1 and Proposition 5.7 states that if z is an isolated point in $\sigma\left(T_{1}\right)$, then z is a point in $\sigma_{p}\left(T_{1}\right)$. Assume that $z=0$ and that $z \notin \sigma\left(T_{1}\right)$. Since $\operatorname{ker}\left(T_{3}\right) \neq 0$ and $T_{3}^{n}=0$. Then for $x \in \operatorname{ker}\left(T_{3}\right),-T_{1}^{-1} T_{2} x \oplus x \in \operatorname{ker}(T)$. Thus, the proof is obtained.

Theorem 8.2. Let $T \in \mathbb{Q} \mathbb{P}(n, k)$. Then T is polaroid. Let λ be an isolated point of $\sigma(T)$ and E be Riesz idempotent for λ. Then $E \mathcal{H}=\operatorname{ker}(T-\lambda)$ if $\lambda \neq 0$ and $E \mathcal{H}=\operatorname{ker}\left(T^{n+1}\right)$ if $\lambda=0$.

Proof. Since $E \mathcal{H}$ is an invariant subspace of T and $\sigma\left(\left.T\right|_{E \mathcal{H}}\right)=\{\lambda\}$, we have $\left.T\right|_{E \mathcal{H}}=\lambda$ if $\lambda \neq 0$ and $\left(\left.T\right|_{E \mathcal{H}}\right)^{k+1}=0$ if $\lambda=0$ by Theorem 6.10 and Proposition 5.7. Hence $E \mathcal{H} \subset \operatorname{ker}\left(\left.T\right|_{E \mathcal{H}}-\lambda\right) \subset \operatorname{ker}(T-\lambda)$ if $\lambda \neq 0$ and $E \mathcal{H} \subset \operatorname{ker}\left(\left.T\right|_{E \mathcal{H}}\right)^{k+1} \subset \operatorname{ker} T^{k+1}$ if $\lambda=0$. Since $\operatorname{ker}(T-\lambda) \subset E \mathcal{H}$ is always true, $E \mathcal{H}=\operatorname{ker}(T-\lambda)$ if $\lambda \neq 0$. And if $\lambda=0$ then $\operatorname{ker} T^{k+1} \subset E \mathcal{H}$ also holds. Hence, $E \mathcal{H}=\operatorname{ker} T^{k+1}$ by Lemma 5.2 of [44]. Hence

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right)
$$

where $\sigma\left(T_{1}\right)=\sigma(T \mid E \mathcal{H})=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T) \backslash\{\lambda\}$. Then $T_{1}-\lambda$ is nilpotent and $T_{2}-\lambda$ is invertible. Hence $T-\lambda$ has finite ascent and descent. Hence T is polaroid.

Theorem 8.3. Let $T \in \mathbb{Q P}(n, k)$ and μ be a non-zero isolated point of $\sigma(T)$. Then the Riesz idempotent E for μ is self-adjoint and

$$
E \mathcal{H}=\operatorname{ker}(T-\mu)=\operatorname{ker}(T-\mu)^{*}
$$

Proof. If $T \in \mathbb{Q P}(n, k)$, then μ is an eigenvalue of T and $E \mathcal{H}=\operatorname{ker}(T-\mu)$ by Theorem 8.1. Since $\operatorname{ker}(T-\mu) \subseteq \operatorname{ker}(T-\mu)^{*}$ by Theorem 6.3, it suffices to show that $\operatorname{ker}(T-\mu)^{*} \subseteq$ $\operatorname{ker}(T-\mu)$. Since $\operatorname{ker}(T-\mu)$ is a reducing subspace of T by Theorem 6.3 and the restriction of a $\mathbb{Q P}(n, k)$ operator to its reducing subspace is also a $\mathbb{Q P}(n, k)$ operator by Lemma 6.2, T can be written as

$$
T=\mu \oplus T_{1} \text { on } \mathcal{H}=\operatorname{ker}(T-\mu) \oplus \operatorname{ker}(T-\mu)^{\perp}
$$

where T_{1} is a n-perinormal with $\operatorname{ker}\left(T_{1}-\mu\right)=\{0\}$. Since $\mu \in \sigma(T)=\sigma\left(T_{1}\right) \cup\{\mu\}$ is isolated, only two cases occur: either $\mu \notin \sigma\left(T_{1}\right)$, or μ is an isolated of $\sigma\left(T_{1}\right)$ and this contradicts the fact that $\operatorname{ker}\left(T_{1}-\mu\right)=\{0\}$. Since T_{1} is invertible as an operator on $\operatorname{ker}(T-\mu)^{\perp}$, we have $\operatorname{ker}(T-\mu)=\operatorname{ker}(T-\mu)^{*}$.

Next, we show that E is self-adjoint. Since

$$
E \mathcal{H}=\operatorname{ker}(T-\mu)=\operatorname{ker}(T-\mu)^{*}
$$

we have

$$
\left((z-T)^{*}\right)^{-1} E=\overline{(z-\mu)^{-1}} E
$$

Therefore

$$
\begin{aligned}
E^{*} E & =-\frac{1}{2 \pi i} \int_{\partial D}\left((z-T)^{*}\right)^{-1} E d \bar{z}=-\frac{1}{2 \pi i} \int_{\partial D} \overline{(z-T)^{-1}} E d \bar{z} \\
& =\overline{\left(\frac{1}{2 \pi i} \int_{\partial D}(z-T)^{-1} d z\right)} E=E
\end{aligned}
$$

This achieves the proof.

9 Tensor Product

Let's use the Hilbert spaces' symbols \mathcal{H} and $\mathcal{K} . \mathcal{H} \otimes \mathcal{K}$ signifies the tensor product on the product space $T \otimes S$ for the non-zero operators $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ that are specified. In terms of tensor products, the normaloid property is invariant [36]. According to $[12,38], T \otimes S$ is normal if and only if T and S are normal. There are paranormal operators T and S such that $T \otimes S$ is not paranormal [1]. I.H. Kim shown in [23] that for non-zero $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K}), T \otimes S$ is log-hyponormal if and only if T and S are log-hyponormal. In in [23], [22], [20], [24] and [33], respectively, this finding was extended to p-quasihyponormal operators, class A operators, quasi-class A, quasi-class (A, k) operators, and class A_{k} operators. In this section, we prove an analogous result for class (U, n) operators.

Remark 9.1. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators, then we have
(i) $(T \otimes S)^{*}(T \otimes S)=T^{*} T \otimes S^{*} S$
(ii) $|T \otimes S|^{t}=|T|^{t} \otimes|S|^{t}$ for any positive real t.

Lemma 9.2. ([38]) Let $T_{1}, T_{2} \in \mathcal{B}(\mathcal{H}), S_{1}, S_{2} \in \mathcal{B}(\mathcal{K})$ be non-negative operators. If T_{1} and S_{1} are non-zero, then the following assertions are equivalent:
(a) $T_{1} \otimes S_{1} \leq T_{2} \otimes S_{2}$
(b) there exists $c>0$ such that $T_{1} \leq c T_{2}$ and $S_{1} \leq c^{-1} S_{2}$.

Theorem 9.3. ([45]) Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in$ $\mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is a class (M, n) operator if and only if T and S are class (M, n) operators.

Theorem 9.4. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in$ $\mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is a class (U, n) operator if and only if T and S are class (U, n) operators.

Proof. It is clear that $T \otimes S$ is a class (U, n) operator if and only if

$$
\begin{aligned}
& \left|(T \otimes S)^{n}\right|^{\frac{4}{n}} \geq|T \otimes S|^{4} \\
\Longleftrightarrow & \left|T^{n} \otimes S^{n}\right|^{\frac{4}{n}} \geq|T|^{4} \otimes|S|^{4} \\
\Longleftrightarrow & \left|T^{n}\right|^{\frac{4}{n}} \otimes\left|S^{n}\right|^{\frac{4}{n}} \geq|T|^{4} \otimes|S|^{4} \\
\Longleftrightarrow & \left(\left|T^{n}\right|^{\frac{4}{n}}-|T|^{4}\right) \otimes\left|S^{n}\right|^{\frac{4}{n}}+|T|^{4} \otimes\left(\left|S^{n}\right|^{\frac{4}{n}}-|S|^{4}\right) \geq 0
\end{aligned}
$$

Therefore, the sufficiency is clear.
Conversely, suppose that $T \otimes S$ is a class (U, n). Let $x \in \mathcal{H}$ and $y \in \mathcal{K}$ be arbitrary. Then we have

$$
\begin{equation*}
\left.\left.\left.\left\langle\left(\left|T^{n}\right|^{\frac{4}{n}}-|T|^{4}\right) x, x\right\rangle\langle | S^{n}\right|^{\frac{4}{n}} y, y\right\rangle+\left.\langle | T\right|^{4} x, x\right\rangle\left\langle\left(\left|S^{n}\right|^{\frac{4}{n}}-|S|^{4}\right) y, y\right\rangle \geq 0 \tag{9.1}
\end{equation*}
$$

Suppose on the contrary that T is not a class (U, n) operator; then there exists $x_{0} \in \mathcal{H}$ such that

$$
\left\{\begin{array}{l}
\left\langle\left(\left|T^{n}\right|^{\frac{4}{n}}-|T|^{4}\right) x_{0}, x_{0}\right\rangle=\alpha<0 \tag{9.2}\\
\left.\left.\langle | T\right|^{4} x_{0}, x_{0}\right\rangle=\beta>0
\end{array}\right.
$$

From (9.1), we have

$$
\begin{equation*}
\left.\left.\alpha\langle | S^{n}\right|^{\frac{4}{n}} y, y\right\rangle+\beta\left\langle\left(\left|S^{n}\right|^{\frac{4}{n}}-|S|^{4}\right) y, y\right\rangle \geq 0 \tag{9.3}
\end{equation*}
$$

for all $y \in \mathcal{K}$; that is,

$$
\begin{equation*}
\left.\left.\left.(\alpha+\beta)\langle | S^{n}\right|^{\frac{4}{n}} y, y\right\rangle \geq\left.\beta\langle | S\right|^{4} y, y\right\rangle \tag{9.4}
\end{equation*}
$$

for all $y \in \mathcal{K}$. Therefore, S is a class (U, n) operator. So, we have

$$
\begin{equation*}
(\alpha+\beta)\left\|\left|S^{n}\right|^{\frac{2}{n}} y\right\|^{2} \geq \beta\left\||S|^{2} y\right\|^{2} \tag{9.5}
\end{equation*}
$$

for all $y \in \mathcal{K}$ by (9.4). By (9.5), we have

$$
\begin{equation*}
(\alpha+\beta)\left\|\left|S^{n}\right|^{\frac{2}{n}}\right\|^{2} \geq \beta\left\||S|^{2}\right\|^{2} \tag{9.6}
\end{equation*}
$$

Since self-adjoint operators are normaloid, we have

$$
\begin{align*}
(\alpha+\beta)\left\|S^{n}\right\|^{\frac{4}{n}} & =(\alpha+\beta)\left\|\left|S^{n}\right|\right\|^{\frac{4}{n}}=(\alpha+\beta)\left\|\left|S^{n}\right|^{2}\right\|^{\frac{2}{n}} \\
& \geq \beta\left\||S|^{2}\right\|^{2}=\beta\||S|\|^{4}=\beta\|S\|^{4} \tag{9.7}
\end{align*}
$$

Hence

$$
\beta\|S\|^{4} \leq(\alpha+\beta)\left\|S^{n}\right\|^{\frac{4}{n}} \leq(\alpha+\beta)\|S\|^{4}
$$

This implies that $S=0$. This contradicts the assumption $S \neq 0$. Hence T must be a class (U, n) operator. A similar argument shows that S is also a class (U, n) operator.

Theorem 9.5. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in$ $\mathbb{Q} \mathbb{P}(n, k)$ if and only if one of the following holds:
(i) T and S are in $\mathbb{Q P}(n, k)$.
(ii) $T^{k+1}=0$ or $S^{k+1}=0$.

Proof. By simple calculation we have

$$
\begin{aligned}
T \otimes S & \in \mathbb{Q P}(n, k) \Leftrightarrow(T \otimes S)^{* k}\left(\left|(T \otimes S)^{n}\right|^{2}-|T \otimes S|^{2 n}\right)(T \otimes S)^{k} \geq 0 \\
& \Leftrightarrow T^{* k}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k} \otimes S^{* k}\left|S^{n}\right|^{2} S^{k}+T^{* k}|T|^{2 n} T^{k} \otimes S^{* k}\left(\left|S^{n}\right|^{2}-|S|^{2 n}\right) S^{k} \geq 0
\end{aligned}
$$

Thus the sufficiency is easily proved because $T^{* k}|T|^{2 n} T^{k}=0$ if $T^{k+1}=0$. Conversely, suppose that $T \otimes S \in \mathbb{Q P}(n, k)$. Then for $x, y \in \mathcal{H}$ we have

$$
\begin{align*}
\left\langle T^{k *}\left(\left|T^{n}\right|^{2}-|T|^{2 n}\right) T^{k} x, x\right\rangle & \left.\left.\left\langle S^{k *}\right| S^{n}\right|^{2} S^{k} y, y\right\rangle \\
& \left.+\left.\left\langle T^{k *}\right| T\right|^{2 n} T^{k} x, x\right\rangle\left\langle S^{k *}\left(\left|S^{n}\right|^{2}-|S|^{2 n}\right) S^{k} y, y\right\rangle \geq 0 \tag{9.8}
\end{align*}
$$

It suffices to show that if the statement (ii) does not hold, the statement (i) holds.Thus, assume to the contrary that neither of T^{k+1} and S^{k+1} is the zero operator, and T is not in $\mathbb{Q P}(n, k)$. Then there exists $x_{0} \in \mathcal{H}$ such that

$$
\left.\left\langle T^{k *}\left(\left|T^{n}\right|^{2}-|T|^{2}\right) T^{k} x_{0}, x_{0}\right\rangle:=\alpha<0 \quad \text { and }\left.\quad\left\langle T^{k *}\right| T\right|^{2 n} T^{k} x_{0}, x_{0}\right\rangle:=\beta>0
$$

From (9.8) we have

$$
\begin{equation*}
\left.\left.\left.(\alpha+\beta)\left\langle S^{k *}\right| S^{n}\right|^{2} S^{k} y, y\right\rangle \geq\left.\beta\left\langle S^{k *}\right| S\right|^{2 n} S^{k} y, y\right\rangle \tag{9.9}
\end{equation*}
$$

Thus $S \in \mathbb{Q P}(n, k)$. By Hölder McCarthy Inequality, we have

$$
\left.\left.\left\langle S^{k *}\right| S^{n}\right|^{2} S^{k} y, y\right\rangle=\left\|S^{n+k} y\right\|^{2}
$$

and

$$
\left.\left.\left.\left\langle S^{k *}\right| S\right|^{2 n} S^{k} y, y\right\rangle \geq\left.\langle | S\right|^{2} S^{k} y, S^{k} y\right\rangle^{n}\left\|S^{k} y\right\|^{2(1-n)}=\left\|S^{k+1} y\right\|^{2 n}\left\|S^{k} y\right\|^{2(1-n)}
$$

Therefore, we have

$$
\begin{equation*}
(\alpha+\beta)\left\|S^{n+k} y\right\|^{2} \geq \beta\left\|S^{k+1} y\right\|^{2 n}\left\|S^{k} y\right\|^{2(1-n)} \tag{9.10}
\end{equation*}
$$

Since $S \in \mathbb{Q P}(n, k)$, from Lemma 6.1 we have a decomposition of S as the following:

$$
S=\left[\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right] \quad \text { on } \quad \mathcal{H}=\overline{\Re\left(S^{k}\right)} \oplus \operatorname{ker}\left(S^{* k}\right), \quad \text { where } S_{1} \text { is a class }(U, n)
$$

By (9.10) and Lemma 6.2 we have

$$
\begin{equation*}
(\alpha+\beta)\left\|S_{1}^{n} \xi\right\|^{2} \geq \beta\left\|S_{1} \xi\right\|^{2 n} \quad \text { for all } \xi \in \overline{\Re\left(S^{k}\right)} \tag{9.11}
\end{equation*}
$$

So, we have

$$
(\alpha+\beta)\left\|S_{1}\right\|^{4} \geq \beta\left\|S_{1}\right\|^{4},
$$

where equality holds since S_{1} is normaloid by Proposition 5.7.
This implies that $S_{1}=0$. Since $S^{k+1} y=S_{1} S^{k} y=0$ for all $y \in \mathcal{K}$, we have $S^{k+1}=0$. This contradicts the assumption $S^{k+1} \neq 0$. Hence T must be a (n, k)-quasiperinormal operator. A similar argument shows that S is also a (n, k)-quasiperinormal operator. The proof is complete.

References

[1] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33, 169-178 (1972).
[2] S. C. Arora and J. K. Thukral, On a class of operators, Glasnik Mathematicki 21 (41) (1986), 381-386.
[3] B. Arun, On k-paranormal operator, Bull. Math. Soc. Sci. Math. R.S. Roumanie(N.S.) 20(68) (1976), 37-39.
[4] N.L. Braha, M. Lohaj, F. Marevci, Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl.2, 23-35 (2009).
[5] S.R. Caradus, Operators of Riesz type, Pacific J. Math. 18 (1), 61-71(1966).
[6] N. Chennappan, S. Karthikeyan, *-paranormal composition operators, Indian J. Pure Appl. Math., 31 (6), 591-601 (2000).
[7] M. Chō and S. Ôta, On n-paranormal operators, J. Math. Research 5 (2), 107-114 (2013).
[8] E. Durszt, Contractions as restricted shifts, Acta Scientiarum Mathematicarum, 48 (1-4), 129-134 (1985)
[9] B. P. Duggal and C. S. Kubrusly, Quasi-similar k-paranormal operators, Operators and Matrices 5 (2011), 417-423.
[10] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58, 61-69 (1975).
[11] F. Hansen, An equality, Math. Ann. 246, 249-250(1980).
[12] Jin-chuan Hou, On tensor products of operators, Acta. Math. Sinica(N.S) 9, 195-202 (1993) .
[13] M. Fujii, S. Izumino, and R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5, 61-67(1994).
[14] T. FURUTA, Invitation to linear operators-From Matrices to bounded linear operatorsin Hilbert space, Taylor and Francis, London, 2001.
[15] T. Furuta, On the Class of Paranormal operators, Proc. Jaban. Acad. 43, 594-598 (1967).
[16] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of loghyponormal and several related classes. Sci. math. 1, 389-403 (1998).
[17] P. R. Halmos, A Hilbert space problem Book, Second Edition. New York. Springer-Verlag 1982.
[18] H. G. Heuser, Functional Analysis, John Wiley and Sons (1982).
[19] V. Istratescu, T. Saito and T. Yoshino, On a class of operators, Tohoku Math. J. (2), 18 (1966), 410-413.
[20] I. H. JEON AND I. H. KIM, On operators satisfying $T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T^{*}$, Linear Alg. Appl., 418, 854-862 (2006).
[21] I.B. Jung, E. Ko, C. Pearcu, Aluthge transforms of operators, Integral Equation Operator Theory 37, 437-448 (2000).
[22] I.H.Jeon and B.P.Duggal, On operators with an absolute value condition, Jour. Korean Math. Soc. 41, 617-627 (2004).
[23] I.H.Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42, 269-277 (2005).
[24] I.H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{* k}\left|T^{2}\right| T^{k} \geq T^{* k}|T|^{2} T^{k}$, J. Korean Math. Soc. 47 (2), 351-361 (2010).
[25] F. Kimura, Analysis of non-normal operators via Aluthge transformation. Integral Equations and Operator Theory 50 (3), 375-384 (1995).
[26] C. S. Kubrusly and B.P.Duggal, A note on k-paranormal operators, Operators and Matrices, 4 (2), 213-223 (2010).
[27] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Operators and Matrices, 4 (2010), 213-223.
[28] M. R. Lee and H.Y. Yun, On quasi- $A(n, k)$ class operators, Commun. Korean Math. Soc. 28 (4), 741-750 (2013).
[29] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152, 323-336 (1992).
[30] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, Oxford, Clarendon, 2000.
[31] S. Mecheri and N.L. Braha, Spectrum properties of n-perinormal operators, Oper. Matrices, 6, 725-734 (2012).
[32] S. M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi University 1974.
[33] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl's theorem and Tensor product for class A_{k} operators, Pure Math. Sci. 1 (1), 13-23 (2012).
[34] M.H.M.RASHID, On k-quasi-*-paranormal operators, RACSAM Rev. R. Acad. Cienc. Exactas Fǐs. Nat. Ser. A Mat. 110 (2), 655-666 (2016).
[35] M.H.M.Rashid, Spectrum of k-quasi-class A_{n} operators, New Zealand Journal of Mathematics 50, 61-70 (2020)
[36] T.Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics, vol.247, Springer-Verlag, 1971.
[37] J. G. Stampfli, Hyponormal operators and spectrum density, Trans. Amer. Math. Soc. 117, 469476 (1965).
[38] J.Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124, 435-440 (1996).
[39] K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51, 357-371 (2014).
[40] A. Uchiyama, On the isolated point of the spectrum of paranormal operators, Integral equations and Operator Theory 55 (2006), 145-151.
[41] A. Uchiyama, K. Tanahashi and J. I. Lee, Spectrum of class A(s,t) operators. Acta Sci. Math.(Szeged), 70 (2004), 279--287.
[42] A. Uchiyama, On isolated points of the spectrum of paranomal operators, Integral Equations Operator Theory 55, 145-151 (2006).
[43] Mi Young Lee and Sang Hun Lee, On a class of operators related to paranormal operators, J. Korean Math. Soc. 44 (1), 25-34 (2007).
[44] J.T. Yuan, G.X. Ji, On (n, k)-quasiparanormal operators, Studia Math., 209, 289-301 (2012).
[45] H. Zuo and F. Zuo, A note on n-perinormal operators, Acta Mathematica Scientia, 34B (1),194198 (2014).

Author information
M.H.M.Rashid ${ }^{1}$, T. Prasad ${ }^{2}$ and Atsushi Uchiyama ${ }^{3}$
, ${ }^{1}$ Department of Mathematics\& Statistics, Faculty of Science P.O.Box(7)-Mu'tah University-Al-Karak-Jordan
${ }^{2}$ Department of mathematics, University of Calicut,Kerala-India
${ }^{3}$ Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
E-mail:
malik_okasha@yahoo.com, prasadvalapil@gmail.com,
uchiyama@tohoku-mpu.ac.jp
Received: 2023-01-24
Accepted: 2023-07-21

