Spectral properties for classes of operators related to Perinormal operators

M.H.M.Rashid $^{\rm 1}$, T. Prasad $^{\rm 2}$ and Atsushi Uchiyama $^{\rm 3}$

Communicated by Fuad Kittaneh

MSC 2020 Classifications: Primary 47B20, 47A10, Secondary 47A11.

Keywords and phrases: Perinormal operator, Paranormal operators, k-quasi-*-Paranormal operators, Riesz Idempotent, tensor product.

The authors thank the referee for his insightful criticism and useful recommendations.

Abstract In this paper, we give several examples of *n*-perinormal operators for each $n \ge 3$ such as (1) *n*-perinormal whose restriction to its invariant subspace is not *n*-perinormal, (2) *n*-perinormal which is not (n - 1)-perinormal and (3) an invertible *n*-perinormal operator whose inverse is not *n*-perinormal. There are several papers studying *n*-perinormal operators which are using the assertions that a restriction of n-perinormal operator to its invariant subspace, the inverse of *n*-perinormal operator is also *n*-perinormal even if $n \ge 3$. We remark that if n = 2 then 2-perinormal is equal to quasihyponormal, and since a restriction of quasihyponormal to any invariant subspace is always quasihyponormal, so it is 2-perinormal. And every invertible 2-perinormal is invertible hyponormal, so the inverse of it is also hyponormal and 2-perinormal. We also show that Weyl's theorem holds for every *n*-perinormal and some results related to the Riesz idempotent of *n*-perinormal operators. Also, we show that, if T is (n, k)-quasiperinormal, then $T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C}$. Further, we give a necessary and sufficient condition for $T \otimes S$ to be in a class of (n, k)-quasiperinormal.

1 Introduction

Let \mathcal{H} be a complex (separable) infinite dimensional Hilbert space and $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be hyponormal iff $T^*T \geq TT^*$, *p*-hyponormal for a p > 0 iff $(T^*T)^p \geq (TT^*)^p$. An operator T is called to be *n*-perinormal for an $n \geq 2$ iff $T^{*n}T^n \geq (T^*T)^n$. This class was introduced by Fujii, Izumino and Nakamoto [13].

Definition 1.1. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *n*-perihyponormal if

$$T^{*n}T^n \ge (TT^*)^n$$

for $n \ge 1$.

Observe that 1-perihyponormal is equal to hyponormal. It is easy to see that (n-1)-perihyponormal is always *n*-perinormal. In general, the converse is not true, however, if

an *n*-perinormal operator has dense range then it is (n - 1)-perihyponormal.

An operator T is said to be *-paranormal if

$$||T^*x||^2 \le ||T^2x|| ||x||$$

for all $x \in \mathcal{H}$. This class of operators was introduced by S. M. Patel [32]. S. C. Arora and J. K. Thukral [2] proved that *-paranormal operators are normaloid, i.e., the operator norm ||T|| of T equals to the spectral radius $r(T) = \sup\{|z| : z \in \sigma(T)\}$ of T where $\sigma(T)$ denotes the spectrum of T. Also we say that T belongs to the class $\mathfrak{P}(n)$ for an integer $n \ge 2$ if

$$||Tx||^n \le ||T^nx|| ||x||^{n-1}$$

for all $x \in \mathcal{H}$. We remark that an operator in $\mathfrak{P}(2)$ is called class (N) by V. Istracescu, T. Saito and T. Yoshino in [19] and paranormal by T. Furuta in [15], and an operator in $\mathfrak{P}(n)$ is called *n*-paranormal [3] and also called (n - 1)-paranormal, e.g., [9], [26]. In order to avoid confusion we use notation $\mathfrak{P}(n)$. S. M. Patel [32] proved that *-paranormal operators belong to the class $\mathfrak{P}(3)$. Fujii, Izumino and Nakamoto proved that every *n*-perinormal operator belongs to the class $\mathfrak{P}(n)$. After, we shall show that every *n*-perihyponormal belongs to the class $\mathfrak{P}(n + 1)$.

The Riesz idempotent E_{λ} of an operator T with respect to an isolated point λ of $\sigma(T)$ is defined as follows.

$$E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D_{\lambda}} (z - T)^{-1} dz \tag{1.1}$$

It satisfies $\sigma(T|_{E_{\lambda}\mathcal{H}}) = \{\lambda\}$ and $\sigma(T|_{(1-E_{\lambda})\mathcal{H}}) = \sigma(T) \setminus \{\lambda\}$, where the integral is taken by the positive direction and D_{λ} is a closed disk with center λ and small enough radius rsuch as $D_{\lambda} \cap \sigma(T) = \{\lambda\}$. In [40], Uchiyama proved that for every paranormal operator T and each isolated point λ of $\sigma(T)$ the Riesz idempotent E_{λ} satisfies that

$$E_0 = \ker T$$

$$E_{\lambda} = \ker(T - \lambda) = \ker(T - \lambda)^* \text{ and } E_{\lambda} \text{ is self-adjoint if } \lambda \neq 0$$

We shall show that for every *-paranormal operator T and each isolated point $\lambda \in \sigma(T)$ the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint with the property that $E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*$.

If $T \in \mathcal{B}(\mathcal{H})$, we denote ker T and ran T for the kernel of T and the range of T respectively. We also denote the spectrum of T, the point spectrum of T, the Weyl spectrum of T and the set of all eigenvalues of T with finite multiplicity which are isolated in the spectrum by $\sigma(T)$, $\sigma_p(T)$, w(T) and $\pi_{00}(T)$ respectively. An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be Fredholm if ran T is closed and both of ker T and ker T^* are finite dimensional subspaces. For arbitrary Fredholm operator T, the index of T is defined by

$$\operatorname{ind}(T) := \dim \ker T - \dim \ker T^*.$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is called to be Weyl iff T is a Fredholm operator with ind(T) = 0. And the Weyl spectrum of T is defined by

$$w(T) := \{\lambda \in \mathbb{C} | T - \lambda \text{ is not Weyl} \}.$$

We say that the Weyl's theorem holds for an operator $T \in \mathcal{B}(\mathcal{H})$ if

$$\sigma(T) \setminus w(T) = \pi_{00}(T).$$

In this paper, we show that the Weyl's theorem holds for *n*-perinormal operators.

2 Preliminaries and Definitions

We will introduce basic concepts and notations in this section that will serve as the foundation for the research.

An operator $T \in \mathcal{B}(\mathcal{H})$ is called *-paranormal iff

$$||T^*x||^2 \le ||T^2x|| ||x|| \quad (\forall x \in \mathcal{H}),$$

and T is called n-paranormal iff

$$||Tx||^n \le ||T^nx|| ||x||^{n-1} \quad (\forall x \in \mathcal{H}).$$

for each $n \ge 2$. We denote the set of all *n*-paranormal operators on \mathcal{H} by $\mathfrak{P}(n)$.

Theorem 2.1. [39] If T is *-paranormal then the following assertions hold.

- (i) $T \in \mathfrak{P}(3)$.
- (ii) T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigen value of T.
- (iii) Weyl's theorem holds for T, i.e., $\sigma(T) \setminus w(T) = \pi_{00}(T)$,
- (iv) If λ is isolated point of $\sigma(T)$ then the Riesz idempotent

$$E_{\lambda} = \frac{1}{2\pi i} \int_{|z-\lambda|=r} (z-T)^{-1} dz \text{ with respect to } \lambda \text{ is self-adjoint which satisfies}$$

$$E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*$$

where r > 0 is small enough such as $\{z : |z - \lambda| \le r\} \cap \sigma(T) = \{\lambda\}$ and the integral is taken by positive direction.

- (v) *T* is normaloid, i.e., ||T|| = r(T).
- (vi) If T is invertible then

$$||T^{-1}|| \le r(T^{-1})^3 r(T)^2.$$

Theorem 2.2. [39] If $T \in \mathfrak{P}(n)$ for an $n \ge 2$ then the following assertions hold.

- (a) T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigen value of T.
- (b) Weyl's theorem holds for T.
- (c) If λ is isolated point of $\sigma(T)$ then the Riesz idempotent

$$E_{\lambda} = \int_{|z-\lambda|=r} (z-T)^{-1} dz$$
 with respect to λ satisfies

$$E_{\lambda}\mathcal{H} = \ker(T - \lambda),$$

where r > 0 is small enough such as $\{z : |z - \lambda| \le r\} \cap \sigma(T) = \{\lambda\}$ and the integral is taken by positive direction.

(d) Any restriction $T|_{\mathcal{M}}$ of T to an arbitrary T-invariant subspace \mathcal{M} also belongs to $\mathfrak{P}(n)$.

- (e) *T* is normaloid, i.e., ||T|| = r(T).
- (f) If T is invertible then

$$||T^{-1}|| \le r(T^{-1})^{\frac{n(n-1)}{2}}r(T)^{\frac{(n+1)(n-2)}{2}}.$$

Definition 2.3. [44] An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be (n, k)-quasiparanormal if

$$||T(T^kx)|| \le ||T^{n+k+1}x||^{\frac{1}{n+1}} ||T^kx||^{\frac{n}{n+1}}$$
 for $x \in \mathcal{H}$.

Remark 2.4. It follows from Definition 2.3 that T is n-paranormal should be (n, 0)quasiparanormal if n-paranormal is defined by

$$||Tx|| \le ||T^{n+1}x||^{\frac{1}{n+1}} ||x||^{\frac{n}{n+1}}$$
 for $x \in \mathcal{H}$.

However, [6] defined *n*-paranormal as

$$||Tx|| \le ||T^nx||^{\frac{1}{n}} ||x||^{\frac{n-1}{n}} \text{ for } x \in \mathcal{H},$$

this means (n-1)-paranormal in Yuan's definition.

Definition 2.5. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be

- (i) a class (M, n) or *n*-perinormal if $T^{*n}T^n \ge (T^*T)^n$ for positive integer *n* such that $n \ge 2$ [13].
- (ii) a *n*-*-perinormal (briefly, $T \in (M^*, n)$) if $|T^n|^2 \ge |T^*|^{2n}$ for $n \ge 2$ [6].

Definition 2.6. Let $T \in \mathcal{B}(\mathcal{H})$. We say that an operator T is a (n, k)-quasiperinormal (briefly, $T \in \mathbb{QP}(n, k)$) if

$$T^{*k}(|T^n|^2 - |T|^{2n})T^k \ge 0$$

for positive integer $n \ge 2$ and integer $k \ge 0$. And we say that T is a (n, k)-*-quasiperinormal (briefly, $T \in \mathbb{QP}^*(n, k)$) if

$$T^{*k}(|T^n|^2 - |T^*|^{2n})T^k \ge 0$$

for positive integer $n \ge 2$ and integer $k \ge 0$.

Definition 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. We say that an operator T belongs to class (U, n) if

$$(T^{*n}T^n)^{\frac{2}{n}} \ge (T^*T)^2$$

for positive integer $n \ge 2$.

3 class $T \in \mathbb{QP}(n,k)$ and class $T \in \mathbb{QP}^*(n,k)$ operators

The following lemma is very important in the sequel

Lemma 3.1. (Hölder-McCarthy Inequality) Let $T \ge 0$. Then the following assertions hold.

- (i) $\langle T^r x, x \rangle \ge \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for r > 1 and $x \in \mathcal{H}$.
- (ii) $\langle T^r x, x \rangle \leq \langle Tx, x \rangle^r ||x||^{2(1-r)}$ for $r \in [0, 1]$ and $x \in \mathcal{H}$.

Proposition 3.2. Let $T \in \mathcal{B}(\mathcal{H})$. If T is an n-perinormal operator with $n \ge 2$, then we have

 $||T^n x|| ||x||^{n-1} \ge ||Tx||^n$

for all $x \in \mathcal{H}$, and hence T is n-paranormal operator.

Proof. Assume that T is a n-perinormal operator. Then $T^{n*}T^n \ge (T^*T)^n$ and so for all $x \in \mathcal{H}$, we have

$$\begin{aligned} \|T^n x\|^2 &= \langle T^{n*} T^n x, x \rangle \ge \left\| (T^* T)^{n/2} x \right\|^2 &= \langle (T^* T)^n x, x \rangle \\ &\iff \|T^n x\|^2 \ge \langle T^* T x, x \rangle^n \|x\|^{2(1-n)} \quad \text{(by Hölder Mc-Carthy inequality)} \\ &\iff \|T^n x\| \|x\|^{n-1} \ge \|T x\|^n \,. \end{aligned}$$

Proposition 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{QP}(n,k)$ with $n \ge 2$ and $k \ge 0$ if and only if $||T^{n+k}x|| \ge ||(T^*T)^{n/2}T^kx||$ holds for every $x \in \mathcal{H}$.

Proof. We have

$$\begin{split} T \in \mathbb{QP}(n,k) &\iff T^{*k}(|T^n|^2 - |T|^{2n})T^k \geq 0 \\ &\iff \left\langle (T^{*k}(|T^n|^2 - |T|^{2n})T^k)x, x \right\rangle \geq 0, \text{ for all } x \in \mathcal{H} \end{split}$$

$$\iff \langle T^{n+k}x, T^{n+k}x \rangle - \left\langle (T^*T)^{n/2}T^kx, (T^*T)^{n/2}T^kx \right\rangle \ge 0, \text{ for all } x \in \mathcal{H}$$
$$\iff \left\| T^{n+k}x \right\|^2 \ge \left\| (T^*T)^{n/2}T^kx \right\|^2, \text{ for all } x \in \mathcal{H}.$$

Remark 3.4. It follows from Proposition 3.3 that

- (i) $T \in \mathbb{Q}P^*(1,k)$ is *k*-quasihyponormal.
- (ii) T belongs to class (M, n) with $n \ge 2$ if and only if $||T^n x|| \ge ||(T^*T)^{n/2}x||$ holds for every $x \in \mathcal{H}$.

Proposition 3.5. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{QP}(n, k)$ if and only if

$$|T^{n+k}|^2 + 2\lambda T^{*k}|T|^{2n}T^k + \lambda^2|T^{n+k}|^2 \ge 0$$

for all $\lambda \in \mathbb{R}$.

Proof. Let $n \in N$, $\lambda \in \mathbb{R}$, $x \in \mathcal{H}$ and $k \in \mathbb{Z}$ such that $k \ge 0$. Then we get

$$T \in \mathbb{QP}(n,k) \iff \|T^{n+k}x\|^{2} \ge \|(T^{*}T)^{n/2}T^{k}x\|^{2}$$

$$\iff 4 \|(T^{*}T)^{n/2}T^{k}x\|^{4} \le 4 \|T^{n+k}x\|^{2} \|T^{n+k}x\|^{2}$$

$$\iff \|T^{n+k}x\|^{2} + 2\lambda \|(T^{*}T)^{n/2}T^{k}x\|^{2} + \lambda^{2} \|T^{n+k}x\|^{2} \ge 0$$

$$\iff \langle T^{n+k}x, T^{n+k}x \rangle + 2\lambda \left\langle (T^{*}T)^{n/2}T^{k}x, (T^{*}T)^{n/2}T^{k}x \right\rangle + \lambda^{2} \left\langle T^{n+k}x, T^{n+k}x \right\rangle \ge 0$$

$$\iff \left\langle (|T^{n+k}|^{2} + 2\lambda T^{*k}|T|^{2n}T^{k} + \lambda^{2}|T^{n+k}|^{2}) x, x \right\rangle \ge 0$$

and so

$$|T^{n+k}|^2 + 2\lambda T^{*k}|T|^n T^k + \lambda^2 |T^{n+k}|^2 \ge 0.$$

Proposition 3.6. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{QP}^*(n,k)$ with $n \ge 2$ and $k \ge 0$ if and only if $||T^{n+k}x|| \ge ||(TT^*)^{n/2}T^kx||$ holds for every $x \in \mathcal{H}$.

Proof. We have

$$T \in \mathbb{QP}^*(n,k) \iff T^{*k}(|T^n|^2 - |T^*|^{2n})T^k \ge 0$$

$$\iff \langle (T^{*k}(|T^n|^2 - |T^*|^{2n})T^k)x, x \rangle \ge 0, \text{ for all } x \in \mathcal{H}$$

$$\iff \langle T^{n+k}x, T^{n+k}x \rangle - \left\langle (TT^*)^{n/2}T^kx, (TT^*)^{n/2}T^kx \right\rangle \ge 0, \text{ for all } x \in \mathcal{H}$$

$$\iff \left\| T^{n+k}x \right\|^2 \ge \left\| (TT^*)^{n/2}T^kx \right\|^2, \text{ for all } x \in \mathcal{H}.$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is called k-quasihyponormal operator if $T^{*k}(|T|^2 - |T^*|^2)T^k \ge 0$ for $k \ge 0$.

From Proposition 3.6 it follows that:

Corollary 3.7. Let $T \in \mathcal{B}(\mathcal{H})$ and n = 1, then it follows that T is a k-quasihyponormal *operator*.

By the same arguments of the proof of Proposition 3.5, we can prove the following result.

Corollary 3.8. Let $T \in \mathcal{B}(\mathcal{H})$. Then $T \in \mathbb{QP}^*(n, k)$ if and only if

$$|T^{n+k}|^2 + 2\lambda T^{*k}|T^*|^{2n}T^k + \lambda^2|T^{n+k}|^2 \ge 0$$

for all $\lambda \in \mathbb{R}$.

Proposition 3.9. Let $T \in \mathbb{QP}(2, k)$, then T is a k-quasiparanormal operator.

Proof. Let $T \in \mathbb{QP}(2, k)$, then we get

$$T^{*k}|T^{2}|^{2}T^{k} \geq T^{*k}|T|^{4}T^{k} \iff \langle T^{*k}(T^{*2}T^{2} - (T^{*}T)^{2})T^{k}x, x \rangle \geq 0, \text{ for all } x \in \mathcal{H}$$

$$\iff \langle T^{k+2}x, T^{k+2}x \rangle - \langle T^{*}T^{k+1}x, T^{*}T^{k+1}x \rangle \geq 0, \text{ for all } x \in \mathcal{H}$$

$$\iff \left\| T^{k+2}x \right\|^{2} \geq \left\| T^{*}T^{k+1}x \right\|^{2}, \text{ for all } x \in \mathcal{H}.$$
(3.1)

On the other hand,

$$|T^{k+1}x||^{2} = |\langle T^{k+1}x, T^{k+1}x\rangle| = |\langle T^{*}TT^{k}x, T^{k}x\rangle| \le ||T^{*}T^{k+1}x|| ||T^{k}x||.$$
(3.2)

Now from relations (3.1) and (3.2) follows that

$$||T^{k+1}x||^2 \le ||T^{k+2}x|| ||T^kx||$$

for every $x \in \mathcal{H}$. That is, T is a k-quasiparanormal operator.

Remark 3.10. In [28], quasi-A(n, k) class operators $(T \in \mathcal{B}(\mathcal{H}): T^{*k}(|T^n| - |T|^n)T^k \ge 0$ for integers $n \ge 2$ and $k \ge 0$) has been studied by Lee and Yun. It follows from the definition of class (M, n) and Löwner-Heinz inequality that if $T \in (M, n)$, then T is a quasi-A(n, 0) class operator.

Proposition 3.11. Let $T \in \mathcal{B}(\mathcal{H})$ be a class (M, n) operator and T^n be a compact operator for some $n \in \mathbb{N}$. Then T is also compact and normal.

Proof. Assume that T is a class (M, n) operator for $n \ge 2$. Hence

$$\left\| (T^*T)^{n/2} x \right\| \le \|T^n x\| \text{ for every } x \in \mathcal{H}.$$
(3.3)

Let $\{x_m\} \in \mathcal{H}$ be weakly convergent sequence with limit 0 in \mathcal{H} . From the compactness of T^n and the relation (3.3) we get the following relation:

$$\left\| (T^*T)^{n/2} x_m \right\| \to 0, \ m \to \infty.$$

From the last relation it follows that T^*T is compact operator and so T is compact. Since T is compact $\sigma(T)$ is finite set or countable infinite with 0 as the unique limit point of it. Let $\sigma(T) \setminus \{0\} = \{\lambda_l\}$ with

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_l| \ge |\lambda_{l+1}| \ge \cdots \ge 0$$
, and $\lambda_l \to 0 \ (l \to \infty)$.

By the compactness of T or isoloidness of T, $\lambda_l \in \sigma_p(T)$ and $\dim \ker(T - \lambda_l) < \infty$ for all l. Since $\ker(T - \lambda_l) \subset \ker(T - \lambda_l)^*$, $\mathcal{M} := \bigoplus_{l=1}^{\infty} \ker(T - \lambda_l)$ reduces T, and T is of the form

JIII

$$T = \left(\bigoplus_{l=1}^{\infty} \lambda_l\right) \oplus T' \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathbb{P}^{\perp}.$$

By the construction, T' is n-perinormal and $\sigma(T') = \{0\}$ hence T' = 0. This shows that

$$T = \left(\bigoplus_{l=1}^{\infty} \lambda_l\right) \oplus 0$$

and it is normal.

Proposition 3.12. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{QP}^*(n, k)$, then $T \in \mathbb{QP}(k + 1, n)$.

Proof. Let us suppose that $T \in \mathbb{QP}^*(n,k)$. Then for $n \ge 2$ and $k \ge 0$, it follows that $\pi^{*k} | \pi^{n+2} \pi^k \ge \pi^{*k} | \pi^{*k} | \pi^{n+2} \pi^k$.

 $T^{*k}|T^n|^2T^k \ge T^{*k}|T^*|^{2n}T^k.$

This is equivalent with:

$$\langle T^{*k}(|T^n|^2 - |T^*|^{2n})T^kx, x \rangle \ge 0,$$

for every $x \in \mathcal{H}$. Further:

$$\left\langle T^{*k} (T^{*(n+1)}T^{n+1} - (T^*T)^{n+1}) T^k x, x \right\rangle = \left\langle T^{*(k+1)} (T^{*n}T^n - (TT^*)^n) T^{k+1} x, x \right\rangle$$
$$= \left\langle [T^{*k} (|T^n|^2 - |T^*|^{2n}) T^k] T x, Tx \right\rangle \ge 0.$$

From this it follows that $T^{*(k+1)}(|T^n|^2 - |T|^{2n})T^{k+1} \ge 0$ and so $T \in \mathbb{QP}(k+1,n)$. **Proposition 3.13.** Let $\mathcal{H} = \bigoplus_{i \in \mathbb{N}} \mathcal{H}_i$, $\mathcal{H}_i \cong \mathcal{H}_j$ and $T = \bigoplus_{i \in \mathbb{N}} T_i$, where $\mathbb{QP}(n,k) \ni T_i$: $\mathcal{H}_i \to \mathcal{H}_i$, $T \in \mathcal{B}(\mathcal{H})$, then $T \in \mathbb{QP}(n,k)$.

Proof. Assume that $T_i \in \mathbb{QP}(n,k)$ for each $i \in \mathbb{N}$. Then

$$T_i^{*k}(T_i^{*n}T_i^n)T_i^k \ge T_i^{*k}(T_i^{*}T_i)^n T_i^k, \ i \in \mathbb{N}.$$

Hence

$$T^{*k}(T^{*n}T^n)T^k = (\bigoplus_{i\in\mathbb{N}}T_i)^{*k} \left((\bigoplus_{i\in\mathbb{N}}T_i)^{*n} (\bigoplus_{i\in\mathbb{N}}T_i)^n \right) (\bigoplus_{i\in\mathbb{N}}T_i)^k$$
$$= (\bigoplus_{i\in\mathbb{N}}T_i^{*k}) [(\bigoplus_{i\in\mathbb{N}}T_i^{*n})(\bigoplus_{i\in\mathbb{N}}T_i^n)](\bigoplus_{i\in\mathbb{N}}T_i^k)$$
$$= \bigoplus_{i\in\mathbb{N}}T_i^{*k} (T_i^{*n}T_i^n)T_i^k \ge \bigoplus_{i\in\mathbb{N}}T_i^{*k} (T_i^{*T}T_i)^nT_i^k$$
$$= \bigoplus_{i\in\mathbb{N}}T_i^{*k} \oplus_{i\in\mathbb{N}} (T_i^{*T}T_i)^n \oplus_{i\in\mathbb{N}}T_i^k$$
$$= (\bigoplus_{i\in\mathbb{N}}T_i)^{*k} (\bigoplus_{i\in\mathbb{N}}T_i^{*T}T_i)^n (\bigoplus_{i\in\mathbb{N}}T_i)^k$$
$$= T^{*k}(T^*T)^nT^k$$

and so $T \in \mathbb{QP}(n,k)$.

Theorem 3.14. If T is (n, k)-quasiperinormal, then T is (n - 1, k)-quasiparanormal. *Proof.* Since

$$\begin{aligned} \left\| T^{n+k} x \right\|^{2} &= \left\langle T^{*k} T^{*n} T^{n} T^{k} x, x \right\rangle = \left\langle T^{*k} |T^{n}|^{2} T^{k} x, x \right\rangle \\ &\geq \left\langle T^{*k} |T|^{2n} T^{k} x, x \right\rangle \\ &= \left\langle |T|^{2n} T^{k} x, T^{k} x \right\rangle \\ &\geq \left\langle |T|^{2} T^{k} x, T^{k} x \right\rangle^{n} \left\| T^{k} x \right\|^{2(1-n)} = \left\| T^{k+1} x \right\|^{2n} \left\| T^{k} x \right\|^{2(1-n)} .\end{aligned}$$

we have

$$||T(T^kx)|| \le ||T^{n+k}x||^{\frac{1}{n}} ||T^kx||^{\frac{n-1}{n}}$$

4 Examples

If $T \in \mathcal{B}(\mathcal{H})$ is hyponormal (or *p*-hyponormal for 0 or 2-perinormal or belongsto $\mathfrak{P}(n)$) then the restriction $T|_{\mathcal{M}}$ to any T-invariant subspace \mathcal{M} is also hyponormal (phyponormal, 2-perinormal or belongs to $\mathfrak{P}(n)$ respectively). This result is important to prove the Weyl's theorem for these operators. However, the following example tells us *n*-perinormal does not have that property in general for $n \geq 3$.

Let A, B be 2×2 positive invertible matrices which satisfy $A \leq B$ and $A^n \not\leq B^n$ for

all $n \ge 2$. Let $\mathcal{H} = \bigoplus_{k=-\infty}^{\infty} \mathbb{C}^2$. We definde an invertible operator T on \mathcal{H} by

$$T(x_k) = (y_k), \quad y_k = \begin{cases} A^{1/2} x_{k-1} & (k \le 0) \\ B^{1/2} x_{k-1} & (k \ge 1) \end{cases} \quad (x_k) \in \mathcal{H}$$

For examples, put $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$. Then, A and B are invertible, and

$$B - A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ge 0. \quad \therefore B \ge A.$$
$$B^2 - A^2 = \begin{pmatrix} 5 & 1 \\ 1 & 0 \end{pmatrix} \ge 0. \quad \therefore B^2 \ge A^2.$$

 $B^n \not\geq A^n \ (n \geq 2)$ (by the Heinz inequality).

Proposition 4.1. Let T be as above. Then the following assertions hold:

- (i) T is an invertible hyponormal operator, hence it is 2-perinormal.
- (ii) T is not n-perinormal for all $n \ge 3$.

(iii) T satisfies $(T^{*m}T^m)^{\frac{1}{m}} \ge TT^*$ for all $m \ge 2$.

Proof. (i) Since
$$T^*T - TT^* = \left(\bigoplus_{k \le -1} 0\right) \oplus (B^{(0)} - A) \oplus \left(\bigoplus_{k \ge 1} 0\right) \ge 0$$
. Hence, T is hyponormal

nyponormal.

(ii) We shall show that T is not m-perihyponormal for all $m \ge 2$, i.e., $T^{*m}T^m \ge (TT^*)^m$. Since

$$T^{*m}T^m - (TT^*)^m = \left(\bigoplus_{k \le -m}^{-1} 0\right) \oplus \left(\bigoplus_{k=-m+1}^{-1} \left(A^{\frac{-k}{2}}B^{m+k}A^{\frac{-k}{2}} - A^m\right)\right) \oplus \left(B^m - A^m\right) \oplus \left(\bigoplus_{k \ge 1}^{-1} 0\right) \ge 0,$$

T is not m-perihyponormal for all $m \ge 2$. The invertibility of T implies that T is not *n*-perinormal for all $n \geq 3$.

(iii) Let p = m + k, q = m, $r = \frac{-k}{2}$ for an $m \ge 2$ and $-m + 1 \le k \le -1$. Then $(1+2r)q = (1-k)m \ge p + 2r = m + k - k = m$. Since $A \le B$, we have

$$\left(A^{\frac{-k}{2}}B^{m+k}A^{\frac{-k}{2}}\right)^{1/m} \ge \left(A^{\frac{-k}{2}}A^{m+k}A^{\frac{-k}{2}}\right)^{1/m} = A, \quad (-m+1 \le k \le -1)$$

by Furuta inequality. Hence,

$$(T^{*m}T^m)^{\frac{1}{m}} - TT^*$$

$$= \left(\bigoplus_{k \le -m} 0\right) \oplus \left(\bigoplus_{k=-m+1}^{-1} \left\{ \left(A^{\frac{-k}{2}}B^{m+k}A^{\frac{-k}{2}}\right)^{1/m} - A \right\} \right) \oplus \left(B^{(0)} - A\right) \oplus \left(\bigoplus_{k \ge 1} 0\right) \ge 0.$$

Therefore $(T^{*m}T^m)^{\frac{1}{m}} \ge TT^*$ for all $m \ge 2$.

Example 4.2. Let T be as above and define an operator S on $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}$ by

$$S = \begin{pmatrix} T & X_m \\ 0 & 0 \end{pmatrix},$$

where $X_m = \left((T^{*m}T^m)^{\frac{1}{m}} - TT^* \right)^{1/2}$ for an $m \ge 2$. Then

$$S^{*m}S^m = \begin{pmatrix} T^{*m} & 0 \\ X_m T^{*(m-1)} & 0 \end{pmatrix} \begin{pmatrix} T^m & T^{m-1}X_m \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} T^{*m}T^m & * \\ * & * \end{pmatrix},$$

$$SS^* = \begin{pmatrix} T & X_m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} T^* & 0 \\ X_m & 0 \end{pmatrix} = \begin{pmatrix} TT^* + X_m^2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} (T^{*m}T^m)^{1/m} & 0 \\ 0 & 0 \end{pmatrix},$$

$$(SS^*)^m = \begin{pmatrix} (T^{*m}T^m)^{1/m} & 0 \\ 0 & 0 \end{pmatrix}^m = \begin{pmatrix} T^{*m}T^m & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus,

$$S^{*(m+1)}S^{m+1} - (S^*S)^{m+1} = S^* \{S^{*m}S^m - (SS^*)^m\} S$$
$$= \begin{pmatrix} T^* & 0\\ X_m & 0 \end{pmatrix} \begin{pmatrix} 0 & *\\ * & * \end{pmatrix} \begin{pmatrix} T & X_m\\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} T^* & 0\\ X_m & 0 \end{pmatrix} \begin{pmatrix} 0 & 0\\ * & * \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix} = 0.$$

This implies that S is (m + 1)-perinormal. Put $\mathcal{M} = \operatorname{ran} S$. Then $\mathcal{M} = \mathcal{H} \oplus \{0\}$ is closed and the restriction $S|_{\mathcal{M}}$ to its invariant subspace \mathcal{M} is equal to T which is not *n*-perinormal for all $n \geq 3$ by Proposition 4.1.

Remark 4.3. (i) If m = 2 then the above S is 3-perinormal which is not 2-perinormal. (ii) S is (m + 1)-perinormal which is not m-perinormal for $m \ge 3$. *Proof.* (i) Suppose S is 2-perinormal, i.e., S satisfies $S^{*2}S^2 \ge (S^*S)^2$. Put $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Then

$$\begin{pmatrix} T^{*2}T^2 & 0\\ 0 & 0 \end{pmatrix} = PS^{*2}S^2P \ge P(S^*S)^2P = \begin{pmatrix} (T^*T)^2 + T^*X_2^2T & 0\\ 0 & 0 \end{pmatrix}$$

Hence $T^{*2}T^2 \ge (T^*T)^2 + T^*X_2^2T$. Since T is invertible,

$$T^*T \ge TT^* + X_2^2 = TT^* + (T^{*2}T^2)^{1/2} - TT^* = (T^{*2}T^2)^{1/2}$$
$$\ge \{(T^*T)^2\}^{1/2} \quad (\because T \text{ is hyponormal, so it is 2-perinormal})$$
$$= T^*T.$$

Thus $T^*T = (T^{*2}T^2)^{1/2}$, $(T^*T)^2 = T^{*2}T^2$ and $T^*T = TT^*$. It follows that T is normal, however, T is not normal. Hence, S is not 2-perinormal. (ii) Suppose S is m-perinormal, i.e., S satisfies $S^{*m}S^m > (S^*S)^m$. Then $0 < S^{*m}S^m - C^*S^m$.

(ii) Suppose S is m-perinormal, i.e., S satisfies $S^{*m}S^m \ge (S^*S)^m$. Then $0 \le S^{*m}S^m - (S^*S)^m = S^* (S^{*m-1}S^{m-1} - (SS^*)^{m-1}) S$ and $0 \le P (S^{*m-1}S^{m-1} - (SS^*)^{m-1}) P$. Hence

$$PS^{*m-1}S^{m-1}P = \begin{pmatrix} T^{*m-1}T^{m-1} & 0\\ 0 & 0 \end{pmatrix} \ge P(SS^*)^{m-1}P$$
$$= \begin{pmatrix} TT^* + X_m^2 & 0\\ 0 & 0 \end{pmatrix}^{m-1} = \begin{pmatrix} TT^* + (T^{*m}T^m)^{1/m} - TT^* & 0\\ 0 & 0 \end{pmatrix}^{m-1}$$
$$= \begin{pmatrix} (T^{*m}T^m)^{\frac{m-1}{m}} & 0\\ 0 & 0 \end{pmatrix}.$$

Hence $T^{*m-1}T^{m-1} \ge (T^{*m}T^m)^{\frac{m-1}{m}}$. It follows that

$$\begin{aligned} 0 &\leq T^{*m-1}T^{m-1} - (T^{*m}T^m)^{\frac{m-1}{m}} \\ &= \left(\bigoplus_{k \leq -m} 0\right) \oplus \left(A^{m-1} - \left\{A^{\frac{m-1}{2}}BA^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}}\right) \\ &\oplus \left(\bigoplus_{k=-m+2}^{-1} \left(A^{\frac{-k}{2}}B^{m-1+k}A^{\frac{-k}{2}} - \left\{A^{\frac{-k}{2}}B^{m+k}A^{\frac{-k}{2}}\right\}^{\frac{m-1}{m}}\right)\right) \oplus \left(\bigoplus_{k \geq 0} 0\right), \end{aligned}$$

and hence

$$A^{m-1} \ge \left\{ A^{\frac{m-1}{2}} B A^{\frac{m-1}{2}} \right\}^{\frac{m-1}{m}} \ge \left\{ A^{\frac{m-1}{2}} A A^{\frac{m-1}{2}} \right\}^{\frac{m-1}{m}} = A^{m-1}$$

This implies that $A^{m-1} = \left\{A^{\frac{m-1}{2}}BA^{\frac{m-1}{2}}\right\}^{\frac{m-1}{m}}$ and A = B which is a contradiction. Therefore, S is not m-perinormal.

If $T \in \mathcal{B}(\mathcal{H})$ is invertible hyponormal or p-hyponormal for 0 < p then the inverse T^{-1} of T is is also hyponormal or p-hyponormal respectively. However, in general, the inverse of invertible *n*-perinormal is not necessarily *n*-perinormal for $n \ge 3$. We give an example of invertible 3-perinormal operator whose inverse is not 3-perinormal.

Example 4.4. Let A, B be 2×2 positive invertible matrices which satisfy $A \le B \le 1$ and $A^n \leq B^n$ for all $n \geq 2$. Let $\mathcal{H} = \bigoplus_{k=-\infty}^{\infty} \mathbb{C}^2$. We define an invertible operator T on \mathcal{H} by

$$T(x_k) = (y_k), \quad y_k = \begin{cases} A^{1/2} x_{k-1} & (k \le 0) \\ B^{1/2} x_{k-1} & (k = 1) \\ x_{k-1} & (k \ge 2) \end{cases} \quad (x_k) \in \mathcal{H}.$$

For examples, put $A = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$. Then, A and B are invertible, and

$$B - A = \frac{1}{4} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ge 0. \quad \therefore \ A \le B \le 1.$$
$$B^2 - A^2 = \frac{1}{16} \begin{pmatrix} 5 & 1 \\ 1 & 0 \end{pmatrix} \not\ge 0. \quad \therefore \ A^2 \not\le B^2.$$
$$A^n \not\le B^n \ (n \ge 2) \quad \text{(by the Heinz inequality)}.$$

Proposition 4.5. Let $T \in \mathcal{B}(\mathcal{H})$. Then the following assertions hold:

- (i) T is an invertible 2-perihyponormal operator, hence T is 3-perinormal.
- (ii) T^{-1} is not 3-perinormal.

Proof. (i) We shall show that $T^{*2}T^2 \ge (TT^*)^2$. Since $0 < A \le B \le 1$, we have $A^2 \leq A \leq B$ and

$$T^{*2}T^{2} - (TT^{*})^{2} = \left(\bigoplus_{k \le -2} 0\right) \oplus \left(A^{1/2}BA^{1/2} - A^{2}\right) \oplus \left(B^{(0)} - A^{2}\right) \oplus (1 - B^{2}) \oplus \left(\bigoplus_{k \ge 2} 0\right) \ge 0,$$

because $A^{1/2}BA^{1/2} - A^2 = A^{1/2}(B - A)A^{1/2} \ge 0$, $B - A^2 \ge 0$ and $1 - B \ge 0$. The invertibility of T implies that T is 3-perinormal. (ii) We shall show that T^{-1} is not 2-perihyponormal. Since

$$T^{-1}(x_k) = (y_k), \quad y_k = \begin{cases} A^{-1/2} x_{k+1} & (k \le -1) \\ B^{-1/2} x_1 & (k = 0) \\ x_{k+1} & (k \ge 1) \end{cases} \quad (x_k) \in \mathcal{H}.$$

we obtain

$$T^{-2*}T^{-2} - (T^{-1}T^{-1*})^2 = \left(\bigoplus_{k \le -1} 0\right) \oplus (A^{-2} - B^{-2}) \oplus (B^{-1/2}A^{-1}B^{-1/2} - 1) \oplus (B^{-1} - 1) \oplus \left(\bigoplus_{k \ge 3} 0\right).$$

Hence, T^{-1} is 2-perihyponormal iff $A^{-2} \ge B^{-2}$ which is equivalent to $B^2 \ge A^2$. However, the last inequality does not hold. Hence T^{-1} is not 2-perihyponormal and therefore T^{-1} is not 3-perinormal.

Remark 4.6. In Proposition 4.5, if we choose A, B such as $0 < A \le B \le 1$, $A^{n-2} \le B^{n-2}$ and $A^{n-1} \le B^{n-1}$ then the operator T is *n*-perinormal but the inverse T^{-1} is not *n*-perinormal for each $n \ge 4$, because

$$T^{*n-1}T^{n-1} - (TT^*)^{n-1} = \left(\bigoplus_{k \le -n+1}^{-1} 0\right) \oplus \left(\bigoplus_{k=-n+2}^{-1} \left(A^{\frac{-k}{2}}BA^{\frac{-k}{2}} - A^{n-1}\right)\right) \oplus (B^{-1}A^{n-1}) \oplus (1 - B^{n-1}) \oplus \left(\bigoplus_{k \ge 2}^{-1} 0\right),$$

and

$$T^{-(n-1)*}T^{-(n-1)} - (T^{-1}T^{-1*})^{n-1} = \left(\bigoplus_{k\leq -1}^{(0)} 0\right) \oplus \left(A^{-(n-1)} - B^{-(n-1)}\right) \oplus \left(\bigoplus_{k=1}^{n-1} \left(B^{\frac{-1}{2}}A^{-(n-k-1)}B^{\frac{-1}{2}} - 1\right)\right) \oplus \left(\bigoplus_{k\geq n}^{\infty} 0\right).$$

5 Complementary Results

The following lemma is very important in the sequel

Lemma 5.1. [11, Hansen's Inequality] If $A, B \in \mathcal{B}(\mathcal{H})$ satisfying $A \ge 0$ and $||B|| \le 1$, then

 $(B^*AB)^{\alpha} \ge B^*A^{\alpha}B$ for all $\alpha \in (0, 1]$.

Lemma 5.2. (1) Every 2-perihyponormal operator is *-paranormal, hence it is 3-paranormal. (2) Every m-perihyponormal operator is (m + 1)-paranormal for each $m \ge 3$.

Proof. (1) By the assumption, for every $x \in \mathcal{H}$,

$$||(TT^*)x||^2 \le \langle (TT^*)^2 x, x \rangle \le \langle T^{*2}T^2 x, x \rangle = ||T^2x||, \quad \therefore ||TT^*x|| \le ||T^2x||.$$

It follows that

$$||T^*x||^2 = \langle TT^*x, x \rangle \le ||TT^*x|| ||x|| \le ||T^2x|| ||x||$$

for every $x \in \mathcal{H}$. (2) Let $x \in \mathcal{H}$ be arbitrary.

$$\begin{split} \|T^{m}x\|^{2} &= \langle T^{*m}T^{m}x, x \rangle \geq \langle (TT^{*})^{m}x, x \rangle \\ &\geq \langle TT^{*}x, x \rangle^{m} \|x\|^{2(1-m)} \quad (\text{by (1.1)}) \\ &= \|T^{*}x\|^{2m} \|x\|^{2(1-m)}. \end{split}$$

Hence, $||T^*x||^m \le ||T^mx|| ||x||^{m-1}$ and

$$||Tx||^{2} = \langle T^{*}Tx, x \rangle \leq ||T^{*}Tx|| ||x|| \leq \sqrt[m]{||T^{m+1}x|| ||Tx||^{m-1} ||x||}.$$

It follows that

$$||Tx||^{2m} \le ||T^{m+1}x|| ||Tx||^{m-1} ||x||^m,$$

$$||Tx||^{m+1} \le ||T^{m+1}x|| ||x||^m.$$

This implies that $T \in \mathfrak{P}(m+1)$.

Lemma 5.3. [13] Every n-perinormal is n-paranormal.

Lemma 5.4. [31, 45] If T is n-perinormal, $\lambda \in \sigma_p(T) \setminus \{0\}$ and $x \in \text{ker}(T - \lambda)$, then

$$(T - \lambda)^* x = 0.$$

As we see in the previous section, the restriction of *n*-perinormal to its invariant subspace is not necessarily *n*-perinormal for $n \ge 3$. However, we have a weak result as follows.

Lemma 5.5. If T is n-perinormal for $n \ge 2$ and \mathcal{M} is a T-invariant closed subspace. Then the restriction $T_1 := T|_{\mathcal{M}}$ of T to \mathcal{M} belongs to class (U, n).

Proof. Let P be the orthogonal projection onto \mathcal{M} . Then T and P are of the forms

$$T = \begin{pmatrix} T_1 & A \\ 0 & B \end{pmatrix}, P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ on } P\mathcal{H} \oplus (1-P)\mathcal{H}.$$

Since TP = PTP and $T^{*n}T^n \ge (T^*T)^n$ it follows that

$$\begin{split} P(T^{*n}T^n)P &= (TP)^{*n}(TP)^n \ge P(T^*T)^n P\\ & \begin{pmatrix} (T_1^{*n}T_1^n)^{\frac{2}{n}} & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} T_1^{*n}T_1^n & 0\\ 0 & 0 \end{pmatrix}^{\frac{2}{n}} = \{P(T^{*n}T^n)P\}^{\frac{2}{n}} \\ & \ge \{P(T^*T)^nP\}^{\frac{2}{n}} \\ & \ge P(T^*T)^2P \quad \text{(by Hansen's inequality)} \\ & = (TP)^*(TT^*)(TP) \ge (TP)^*(TPT^*)(TP) \\ & = \{(TP)^*(TP)\}^2 = \begin{pmatrix} (T_1^{*T}T_1)^2 & 0\\ 0 & 0 \end{pmatrix}. \end{split}$$

This completes the proof.

The following lemma is an extension of Lemma 5.3.

Lemma 5.6. If T belongs to class (U, n) and $\lambda \in \sigma_p(T) \setminus \{0\}$. Then $\ker(T - \lambda) \subset \ker(T - \lambda)^*$.

Proof. Let P be the orthogonal projection onto $\ker(T-\lambda)$. Then $TP = \lambda P$, $T^n P = \lambda^n P$, $PT^* = \overline{\lambda}P$, $PT^{*n} = \overline{\lambda}^n P$. And T and P are of the forms $T = \begin{pmatrix} \lambda & A \\ 0 & B \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ on $P\mathcal{H} \oplus (1-P)\mathcal{H}$. $\begin{pmatrix} |\lambda|^4 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} |\lambda|^{2n} & 0 \\ 0 & 0 \end{pmatrix}^{\frac{2}{n}} = \{P(T^{*n}T^n)P\}^{\frac{2}{n}}$ $\ge P(T^{*n}T^n)^{\frac{2}{n}}P$ (by Hansen's inequality) $\ge P(T^*T)^2P = |\lambda|^2 P(TT^*)P = \begin{pmatrix} |\lambda|^2 (|\lambda|^2 + AA^*) & 0 \\ 0 & 0 \end{pmatrix}$.

This implies that $|\lambda|^4 \ge |\lambda|^4 + |\lambda|^2 A A^*$, so $AA^* = 0$ and A = 0 by $\lambda \ne 0$. Thus ker $(T - \lambda)$ reduces T and the proof is complete.

Proposition 5.7. If $T \in \mathcal{B}(\mathcal{H})$ belongs to class (U, n), then T is n-paranormal. In particular, T is isoloid and normaloid.

Proof. By Heinz inequality, we have $(T^{*n}T^n)^{\frac{1}{n}} \ge T^*T$. Therefore,

$$\begin{split} \|Tx\|^2 &= \langle T^*Tx, x \rangle \leq \langle (T^{*n}T^n)^{\frac{1}{n}} x, x \rangle \\ &\leq \langle T^{*n}T^nx, x \rangle^{\frac{1}{n}} \|x\|^{2(1-\frac{1}{n})} \quad \text{(by Lemma 3.1)} \\ &= \|T^nx\|^{\frac{2}{n}} \|x\|^{2(1-\frac{1}{n})}. \\ &\therefore \|Tx\|^n \leq \|T^nx\| \|x\|^{n-1}. \end{split}$$

6 Spectral properties of $\mathbb{QP}(n,k)$

Lemma 6.1. Let $T \in \mathbb{QP}(n,k)$ and T^k do not have a dense range. Then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k}),$

where $T_1 = T|_{\overline{\operatorname{ran}(T^k)}}$ is the restriction of T to $\overline{\operatorname{ran}(T^k)}$, and T_1 is a class (U, n) and T_3 is nilpotent of nilpotency n. Moreover, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Consider $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k})$. Since $\overline{\operatorname{ran}(T^k)}$ is an invariant subspace of T, T has the matrix representation

$$T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & T_3 \end{array}\right)$$

with respect to $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \operatorname{ker}(T^{*k})$. Let P be the orthogonal projection onto $\overline{\operatorname{ran}(T^k)}$. Then $T_1 \oplus 0 = TP = PTP$ and $T_1^*T_1 \oplus 0 = PT^*TP$. Since $T \in \mathbb{QP}(n,k)$, we have

$$P(|T^n|^2 - |T|^{2n}) P \ge 0.$$

Using the facts TP = PTP, $PT^* = PT^*P$, we have

$$\begin{split} P(T^{*n}T^{n})P &= (TP)^{*n}(TP)^{n} \ge P(T^{*}T)^{n}P \\ & \left(\begin{pmatrix} (T_{1}^{*n}T_{1}^{n})^{\frac{2}{n}} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} T_{1}^{*n}T_{1}^{n} & 0 \\ 0 & 0 \end{pmatrix}^{\frac{2}{n}} = \{P(T^{*n}T^{n})P\}^{\frac{2}{n}} \\ & \ge \{P(T^{*}T)^{n}P\}^{\frac{2}{n}} \\ & \ge P(T^{*}T)^{2}P \quad \text{(by Hansen's inequality)} \\ & = (TP)^{*}(TT^{*})(TP) \ge (TP)^{*}(TPT^{*})(TP) \\ & = \{(TP)^{*}(TP)\}^{2} = \begin{pmatrix} (T_{1}^{*}T_{1})^{2} & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

On the other hand, if $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathcal{H}$,

$$\left\langle T_3^k u_2, u_2 \right\rangle = \left\langle T^k (I-P)u, (I-P)u \right\rangle = \left\langle (I-P)u, T^{*k} (I-P)u \right\rangle = 0.$$

which implies that $T_3^k = 0$. It is well known that $\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup C$, where C is the union of certain of the holes in $\sigma(T)$ which happen to be subset of $\sigma(T_1) \cap \sigma(T_3)$ and $\sigma(T_1) \cap \sigma(T_3)$ has no interior points. Therefore, we have

$$\sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\}.$$

Lemma 6.2. Let $T \in \mathbb{QP}(n,k)$ and W be its invariant subspace. Then the restriction $A_1 := T|_{\overline{T^k}W}$ of T to $\overline{T^kW}$ satisfies

$$(A_1^{*n}A_1^n)^{\frac{2}{n}} \ge (A_1^*A_1)^2$$

That is, A_1 belongs to class (U, n).

Proof. Let P be the orthogonal projection of \mathcal{H} onto \mathcal{W} and Q be the orthogonal projection of \mathcal{H} onto $\overline{T^k \mathcal{W}}$. Since $\overline{T^k \mathcal{W}} \subset \mathcal{W}$, $Q \leq P$ holds. Decompose

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $\mathcal{H} = \mathcal{W} \oplus \mathcal{W}^{\perp}$,

and

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix} \text{ on } \mathcal{W} = \overline{T^k \mathcal{W}} \oplus \left(\mathcal{W} \ominus \overline{T^k \mathcal{W}} \right).$$

Then we have $A \oplus 0 = TP = PTP$ and $(A \oplus 0)Q = TQ = QTQ = Q(A \oplus 0)Q = A_1 \oplus 0 \oplus 0$. Since $T \in \mathbb{QP}(n, k)$, we have

$$PT^{*k}(|T^n|^2 - |T|^{2n})T^kP \ge 0.$$

This implies that

$$Q(|T^n|^2 - |T|^{2n})Q \ge 0.$$

Hence,

$$\begin{aligned} Q|T^{n}|^{2}Q &= QT^{*n}T^{n}Q = Q(A^{*n}A^{n} \oplus 0)Q = (Q(A \oplus 0)Q)^{*n}(Q(A \oplus 0)Q)^{n} \\ A_{1}^{*n}A_{1}^{n} \oplus 0 \geq Q|T|^{2n}Q \\ \therefore (A_{1}^{*n}A_{1}^{n})^{\frac{2}{n}} \oplus \{0\} \geq (Q|T|^{2n}Q)^{\frac{2}{n}} \\ &\geq Q(|T|^{2n})^{\frac{2}{n}}Q = Q(T^{*}T)^{2}Q \quad \text{(by Hansen's inequality)} \\ &= (QT^{*})TT^{*}(TQ) \\ &\geq (QT^{*})(TQ)(QT^{*})(TQ) = (A_{1}^{*}A_{1})^{2} \oplus \{0\}. \end{aligned}$$

Theorem 6.3. If $T \in \mathbb{QP}(n,k)$ and $(T - \lambda)x = 0$ for some $\lambda \neq 0$, then $(T - \lambda)^*x = 0$.

Proof. Let P be the orthogonal projection onto $\ker(T - \lambda)$. Then $TP = \lambda P$, $T^m P = \lambda^m P$, $PT^* = \overline{\lambda}P$, $PT^{*m} = \overline{\lambda}^m P$ for all $m \ge 1$. And T and P are of the forms $T = \begin{pmatrix} \lambda & A \\ 0 & B \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ on $P\mathcal{H} \oplus (1 - P)\mathcal{H}$. Since $T \in \mathbb{QP}(n,k)$, T satisfies $T^{*(n+k)}T^{n+k} = T^{*k}(T^{*n}T^n)T^k \ge T^{*k}(T^*T)^nT^k$ and hence

$$|\lambda|^{2(n+k)}P = PT^{*(n+k)}T^{n+k}P \ge PT^{*k}(T^*T)^nT^kP = |\lambda|^{2k}P(T^*T)^nP,$$

and

$$|\lambda|^4 P = \left(|\lambda|^{2n}P\right)^{\frac{2}{n}} \ge \left(P(T^*T)^n P\right)^{\frac{2}{n}} \ge P(T^*T)^2 P \quad \text{(by Hansen's inequality)}$$
$$= |\lambda|^2 P(TT^*) P = |\lambda|^2 (|\lambda|^2 + AA^*)$$

This implies that $|\lambda|^4 \ge |\lambda|^4 + |\lambda|^2 A A^*$, so $AA^* = 0$ and A = 0 by $\lambda \ne 0$. Thus ker $(T - \lambda)$ reduces T and the proof is complete.

A complex number λ is said to be in the point spectrum $\sigma_p(T)$ of T if there is a nonzero $x \in \mathcal{H}$ such that $(T - \lambda)x = 0$. If in addition, $(T^* - \overline{\lambda})x = 0$, then λ is said to be in the joint point spectrum $\sigma_{jp}(T)$ of T.

Corollary 6.4. If $T \in \mathbb{QP}(n,k)$, then $\sigma_{jp}(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.

Corollary 6.5. If $T \in \mathbb{QP}(n,k)$ and $\alpha, \beta \in \sigma_p(T)$ with $\alpha \neq \beta$. Then $\ker(T - \alpha) \perp \ker(T - \beta)$.

Proof. Without loss of the generality, we may assume $\beta \neq 0$. Let $x \in \text{ker}(T - \alpha)$ and $y \in \text{ker}(T - \beta)$. Then $Tx = \alpha x$, $Ty = \beta y$ and $T^*y = \overline{\beta}y$. Therefore

$$\alpha \langle x, y \rangle = \langle \alpha x, y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle = \langle x, \overline{\beta}y \rangle = \beta \langle x, y \rangle$$

Hence $\alpha \langle x, y \rangle = \beta \langle x, y \rangle$ and so $(\alpha - \beta) \langle x, y \rangle = 0$. But $\alpha \neq \beta$, hence $\langle x, y \rangle = 0$. Consequently ker $(T - \alpha) \perp \text{ker}(T - \beta)$.

Theorem 6.6. If T is a class (M, n) operator, then T is normaloid

Proof. If T is a class (M, n) operator, then T is n-paranormal operator and so the result follows by [26, Proposition 1].

Theorem 6.7. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{QP}(n,k)$ with dense range, then T is class (M,n) operator.

Proof. Since T has dense range, $\overline{\operatorname{ran}(T^k)} = \mathcal{H}$. Then there exists a sequence $\{x_m\} \subset \mathcal{H}$ such that $\lim_{n \to \infty} T^k x_m = y$. Since $T \in \mathbb{QP}(n, k)$, we have

$$\begin{split} &\left\langle T^{*k}|T^{n}|^{2}T^{k}x_{m}, x_{m}\right\rangle \geq \left\langle T^{*k}|T|^{2n}T^{k}x_{m}, x_{m}\right\rangle \\ &\left\langle |T^{n}|^{2}T^{k}x_{m}, T^{k}x_{m}\right\rangle \geq \left\langle |T|^{2n}T^{k}x_{m}, T^{k}x_{m}\right\rangle \text{ for all } m \in \mathbb{N} \end{split}$$

By the continuity of the inner product, we have

$$\left\langle \left(|T^n|^2 - |T|^{2n}\right)y, y\right\rangle \ge 0.$$

Therefore T is a class (M, n) operator.

Corollary 6.8. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{QP}(n,k)$ and not class (M,n), then T has not dense range.

Lemma 6.9. Let $T \in \mathcal{B}(\mathcal{H})$. If T is a class (M, n) and $\sigma(T) = \{\lambda\}$, then $T = \lambda$

Proof. Since T is a class (M, n), T is n-paranormal. Hence the result follows from [39].

Theorem 6.10. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{QP}(n,k)$ and $\sigma(T) = \{\lambda\}$, then $T = \lambda$ if $\lambda \neq 0$ and $T^{k+1} = 0$ if $\lambda = 0$.

Proof. If the range of T^k is dense, then T is of class (M.n). Hence $T = \lambda$ by Lemma 6.9. If the range of T^k is not dense, then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k})$

where T_1 satisfies the relation $(T_1^{*n}T_1^n)^{\frac{2}{n}} \ge (T_1^*T_1)^2$, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$ by Lemma 6.1. In this case, $\lambda = 0$. Hence $T_1 = 0$ by Proposition 5.7, Lemma 6.1 and Lemma 6.9. Thus

$$T^{k+1} = \begin{pmatrix} 0 & T_2 \\ 0 & T_3 \end{pmatrix}^{k+1} = \begin{pmatrix} 0 & T_2 T_3^k \\ 0 & T_3^{k+1} \end{pmatrix} = 0.$$

Corollary 6.11. If $T \in \mathbb{QP}(n,k)$ and $(T - \alpha)x = 0$, $(T - \beta)x = 0$ with $\alpha^{n+1} \neq \beta^{n+1}$, then $\langle x, y \rangle = 0$.

Proof. We may assume $\beta \neq 0$. Then

$$\alpha^{n+1} \langle x, y \rangle = \left\langle T^{n+1} x, y \right\rangle = \left\langle x, T^{*(n+1)} y \right\rangle = \beta^{n+1} \left\langle x, y \right\rangle$$

and so $\langle x, y \rangle = 0$.

The space of all functions that are analytical in the open neighborhoods of $\sigma(T)$ shall be denoted as $Hol(\sigma(T))$. Following [10], we state that $T \in \mathcal{B}(\mathcal{H})$ possesses the singlevalued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if the only analytic function $f : O_{\lambda} \longrightarrow$ \mathcal{H} that satisfies the equation $(T - \mu)f(\mu) = 0$ is the constant function $f \equiv 0$ Every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$ has SVEP for $T \in \mathcal{B}(\mathcal{H})$, as is well known. Furthermore, it is clear that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point in the border $\partial\sigma(T)$ of the spectrum from the identity theorem for analytic functions. Any isolated point of $\sigma(T)$ at T has SVEP, in particular. Laursen established in [29, Proposition 1.8] that if T is of finite ascent, then T possesses SVEP.

If each isolated point of $\sigma(T)$ is an eigenvalue of T, then an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be isoloid. If $iso\sigma(T) \subseteq \pi(T)$, where $iso\sigma(T)$ is the set of isolated points of the spectrum $\sigma(T)$ of T, and $\pi(T)$ is the set of all poles of T, then an operator $T \in \mathcal{B}(\mathcal{H})$ is said to be polaroid.

A necessary and sufficient condition for $\lambda \in \pi(T)$ is that $\operatorname{asc}(T-\lambda) = \operatorname{dsc}(T-\lambda) < \infty$, where the ascent of T, $\operatorname{asc}(T)$, is the least non-negative integer n such that $\operatorname{ker}(T^n) = \operatorname{ker}(T^{n+1})$ and the descent of T, $\operatorname{dsc}(T)$, is the least non-negative integer n such that $\operatorname{ran}(T^n) = \operatorname{ran}(T^{n+1})$. In general, if T is polaroid then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^2(\mathbb{N})$ be defined by

$$T(x_1, x_2, \cdots) = (\frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Then T is a compact quasinilpotent operator with dim ker(T) = 1, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid.

Recall that $T \in \mathcal{B}(\mathcal{H})$ is said to have finite ascent if $\ker(T^n) = \ker(T^{n+1})$ for some positive integer n.

Theorem 6.12. Let $T \in \mathcal{B}(\mathcal{H})$. If T is a class (M, n), then T has SVEP.

Proof. Since *n*-perinormal operator T is finite ascent by [31], hence T has SVEP.

Corollary 6.13. If T is a (n, k)-quasiperinormal, then T has SVEP.

Proof. Let f be an analytic function on an open set D such that $(T - \alpha)f(\alpha) = 0$ for $\alpha \in D$. Let $\alpha = re^{i\theta} \neq 0$ and $\alpha_m = r^{1+\frac{1}{m}}e^{i\theta}$. Then

$$\|f(\alpha)\|^2 = \lim \langle f(\alpha), f(\alpha_m) \rangle = 0$$

by Corollary 6.11.

Corollary 6.14. Suppose that T is non-zero (n, k)-quasiperinormal and it has no nontrivial T-invariant closed subspace. Then T is of class (M, n) operator.

Proof. Since T has no non-trivial invariant closed subspace, it has no non-trivial hyperinvariant subspace. But ker (T^k) and $\overline{ran}(T^k)$ are hyperinvariant subspaces, and $T \neq 0$, hence, $\ker(T^k) \neq \mathcal{H}$ and $\overline{\operatorname{ran}(T^k)} \neq \{0\}$. Therefore $\ker(T^k) = \{0\}$ and $\overline{\operatorname{ran}(T^k)} = \mathcal{H}$. In particular, T has dense range. It follows from Corollary 6.7 that T is of class (M, n)operator.

Theorem 6.15. If $T \in \mathbb{QP}(n, k)$, then $\ker(T - \lambda) = \ker(T - \lambda)^2$ if $\lambda \neq 0$ and $\ker(T^{k+1}) =$ $\ker(T^{k+2})$ if $\lambda = 0$. Consequently, $T - \lambda$ has finite ascent for all $\lambda \in \mathbb{C}$.

Proof. Assume $0 \neq \lambda \in \sigma_p(T)$ because the case $\lambda \notin \sigma_p(T)$ is obvious. Let $0 \neq x \in$ $\ker(T-\lambda)^2, x = x_1 \oplus x_2 \in \mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^k)$ and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^k)$.

Then

$$0 = (T - \lambda)^2 x = \begin{pmatrix} T_1 - \lambda & T_2 \\ 0 & T_3 - \lambda \end{pmatrix}^2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} (T_1 - \lambda)^2 x_1 + ((T_1 - \lambda)T_2 + T_2(T_3 - \lambda))x_2 \\ (T_3 - \lambda)^2 x_2 \end{pmatrix}$$

Consequently, $x_2 = 0$ because $T_3 - \lambda$ is invertible by Lemma 6.1. Thus $(T_1 - \lambda)^2 x_1 = 0$ and $(T_1 - \lambda)x_1 \in \ker(T_1 - \lambda) \subset \ker(T_1 - \lambda)^*$ by Theorem 6.3. Therefore

$$||(T_1 - \lambda)x||^2 = \langle (T_1 - \lambda)^* (T_1 - \lambda)x, x \rangle = \langle 0, x \rangle = 0,$$

so $(T_1 - \lambda)x = 0$ and

$$(T-\lambda)x = (T-\lambda)(x_1 \oplus 0) = (T_1 - \lambda)x_1 = 0$$

If $\lambda = 0, x \in \ker(T^{n+k})$, then

$$0 = ||T^{n+k}||^{2} = \langle T^{*k}T^{*n}T^{n}T^{k}x, x \rangle = \langle T^{*k}|T^{n}|^{2}T^{k}x, x \rangle$$

$$\geq \langle T^{*k}|T|^{2n}T^{k}x, x \rangle = |||T|^{n}T^{k}x||^{2}.$$

Hence $|T|^n T^k x = 0$ and $|T|T^k x = 0$. Hence $T.T^k x = U|T|T^k x = 0$. This implies that $\ker(T^{n+k}) = \ker(T^{k+1})$ and $\ker(T^{k+1}) = \ker(T^{k+2}) = \cdots$. If $\lambda = 0$ and $x \in \ker(T^{k+1})$, then it follows from Theorem 3.14 that

$$||T^{k}x|| = ||T(T^{k-1}x)|| \le ||T^{n+k-1}x||^{\frac{1}{n}} ||T^{k-1}x||^{\frac{n-1}{n}} = 0$$

Hence $T^k x = 0$. Then $x \in \ker(T^k)$.

7 Weyl's theorem and the self-adjointness of any Riesz idempotent with respect to an arbitrary isolated point of $\sigma(T)$

Theorem 7.1. Let T be n-perinormal and λ is an isolated point of $\sigma(T)$ then the Riesz idempotent E_{λ} satisfies the followings;

- (i) $E_0(\mathcal{H}) = \ker T \ (\lambda = 0)$
- (ii) $E_{\lambda}(\mathcal{H}) = \ker(T \lambda) = \ker(T \lambda)^*, \ E_{\lambda} = E_{\lambda}^* \ (\lambda \neq 0).$

for each $n \geq 2$.

Proof. (i) Both of $E_0\mathcal{H}$ and $(1 - E_0)\mathcal{H}$ are *T*-invariant closed subspaces which satisfy that $\sigma(T|_{E_0\mathcal{H}}) = \{0\}$ and $\sigma(T|_{(1-E_0)\mathcal{H}}) = \sigma(T) \setminus \{0\}$. Since $T \in \mathfrak{P}(n)$, the restrictions $T|_{E_0\mathcal{H}}, T|_{(1-E_0)\mathcal{H}} \in \mathfrak{P}(n)$ and $||T|_{E_0\mathcal{H}}|| = r(T|_{E_0\mathcal{H}}) = 0$ by Theorem 2.2 (e) and hence $T|_{E_0\mathcal{H}} = 0$. This implies that $E_0\mathcal{H} \subset \ker T$. Conversely, let $x = y + z \in \ker T$ be arbitrary where $y \in E_0\mathcal{H}$ and $z \in (1 - E_0)\mathcal{H}$. Since $T|_{E_0\mathcal{H}} = 0$ and $T|_{(1-E_0)\mathcal{H}}$ is invertible,

$$0 = Tx = Ty + Tz = (T|_{E_0\mathcal{H}})y + (T|_{(1-E_0)\mathcal{H}})z = (T|_{(1-E_0)\mathcal{H}})z$$

implies z = 0 and hence $x = y \in E_0 \mathcal{H}$. Therefore $E_0 \mathcal{H} = \ker T$ holds.

(ii) Both of $E_{\lambda}\mathcal{H}$ and $(1 - E_{\lambda})\mathcal{H}$ are *T*-invariant closed subspaces which satisfy that $\sigma(T|_{E_{\lambda}\mathcal{H}}) = \{\lambda\}$ and $\sigma(T|_{(1-E_{\lambda})\mathcal{H}}) = \sigma(T) \setminus \{\lambda\}$. Since, $T \in \mathfrak{P}(n)$ the restrictions $T|_{E_{\lambda}\mathcal{H}}, T|_{(1-E_{\lambda})\mathcal{H}} \in \mathfrak{P}(n)$ and $||T|_{E_{\lambda}\mathcal{H}}|| = r(T|_{E_{\lambda}\mathcal{H}}) = |\lambda|$ by Theorem 2.2(*e*) and also $|\lambda|^{-1} \leq \left\| (T|_{E_{0}\mathcal{H}})^{-1} \right\| \leq |\lambda|^{-\frac{n(n-1)}{2} + \frac{(n+1)(n-2)}{2}} = |\lambda|^{-1}$ by Theorem 2.2(*f*). Hence $U = \frac{1}{\lambda}T|_{E_{\lambda}\mathcal{H}}$ is invertible isometry with the spectrum $\sigma(U) = \{1\}$, so *U* is unitary and U = 1 on $E_{\lambda}\mathcal{H}$. This implies that $T|_{E_{\lambda}} = \lambda E_{\lambda}$ and $(T - \lambda)E_{\lambda} = 0$. It follows that $(T - \lambda)^*E_{\lambda} = 0$ by Lemma 5.4 or Lemma 5.6, and hence $E_{\lambda}\mathcal{H}$ is a reducing subspace of *T*. Since $(z - T)^*E_{\lambda} = (\overline{z} - \overline{\lambda})E_{\lambda}$ and $(z - T)^{-1*}E_{\lambda} = (\frac{1}{z - \lambda})E_{\lambda}$, it follows that

$$0 \le E_{\lambda}^{*} E_{\lambda} = -\frac{1}{2\pi i} \int_{|z-\lambda|=r} (z-T)^{*-1} E_{\lambda} d\overline{z}$$
$$= -\frac{1}{2\pi i} \int_{|z-\lambda|=r} \overline{\left(\frac{1}{z-\lambda}\right)} E_{\lambda} d\overline{z} = \overline{\left(\frac{1}{2\pi i} \int_{|z-\lambda|=r} \frac{1}{z-\lambda} dz\right)} E_{\lambda} = E_{\lambda}.$$

Hence $E_{\lambda} = E_{\lambda}^*$. Thus T is of the form $T = \lambda \oplus T'$ on $\mathcal{H} = E_{\lambda}\mathcal{H} \oplus (1 - E_{\lambda})\mathcal{H}$ with $\lambda \notin \sigma(T')$. Therefore the assertion $E_{\lambda}\mathcal{H} = \ker(T - \lambda) = \ker(T - \lambda)^*$ holds.

Theorem 7.2. Weyl's theorem hold for any *n*-perinormal operators.

Proof. We first show that $\sigma(T) \setminus w(T) \subset \pi_{00}(T)$. Let $\lambda \in \sigma(T) \setminus w(T)$ be arbitrary. Then $T - \lambda$ is Fredholm operator with the index $ind(T - \lambda) = 0$ and $(T - \lambda)$ is not invertible.

Case (i). $\lambda = 0$. Then ker $T \neq \{0\}$ is finite dimension and ran T is closed. Thus the range of T^* is closed and T is of the form

$$T = \begin{pmatrix} 0 & A \\ 0 & T' \end{pmatrix}$$
 on ker $T \oplus \operatorname{ran} T^*$.

Since A is a finite rank operator, it follows that T' is Fredholm with the index $\operatorname{ind}(T') = \operatorname{ind}(T) = \{0\}$. Let $x \in \ker T'$ be arbitrary. Then $T^2(0 \oplus x) = T(Ax \oplus T'x) = T(Ax \oplus 0) = 0 \oplus 0 = 0$, so $T^n(0 \oplus x) = 0$. Since T is n-perinormal, $\ker T^n = \ker T$ and hence $x \in \ker T \cap \operatorname{ran} T^* = \{0\}$. Therefore T' is Weyl with $\ker T' = \{0\}$, so it is invertible. This implies that 0 is isolated in $\sigma(T) = \{0\} \cup \sigma(T')$ and $0 \in \pi_{00}(T)$.

Case (ii). $\lambda \neq 0$. Then ker $(T - \lambda)$ is finite dimensional subspace which reduces T and ran $(T - \lambda)$ is closed, and hence T is of the form $T = \lambda \oplus T'$ on $\mathcal{H} = \ker(T - \lambda) \oplus \operatorname{ran} (T - \lambda)^*$. Since $T' - \lambda$ is Fredholm with the index $\operatorname{ind}(T' - \lambda) = 0$ and $\ker(T' - \lambda) = \{0\}$, it follows that $T' - \lambda$ is invertible and hence λ is isolated in $\sigma(T) = \{\lambda\} \cup \sigma(T')$. Therefore $\lambda \in \pi_{00}(T)$. Thus $\sigma(T) \setminus w(T) \subset \pi_{00}(T)$ holds.

Next, we show that $\pi_{00}(T) \subset \sigma(T) \setminus w(T)$.

Let $\lambda \in \pi_{00}(T)$ be arbitraray. Then λ is isolated in $\sigma(T)$ and ker $(T - \lambda) \neq \{0\}$ is finite dimension.

Case (i). $\lambda = 0$. Since *T* is *n*-perinormal, $T|_{E_0(\mathcal{H})}$ is class (U, n) by Lemma 5.5 and $\sigma(T|_{E_0(\mathcal{H})}) = \{0\}$. Hence $T|_{E_0(\mathcal{H})} = 0$ by Proposition 5.7. Then the Riesz idempotent E_0 with respect to 0 for *T* satisfies that $T|_{E_0\mathcal{H}} = 0$ and $T' := T|_{(1-E_0)\mathcal{H}}$ is invertible (so, it is Weyl) and $T' \in \mathfrak{P}(n)$. And T = 0 + T' on $\mathcal{H} = E_0\mathcal{H} + (1 - E_0)\mathcal{H}$ is also Weyl. Therefore $0 \in \sigma(T) \setminus w(T)$.

Case (ii). $\lambda \neq 0$. Then ker $(T - \lambda)$ is finite dimensional subspace which reduces T and $T = \lambda \oplus T'$ on $\mathcal{H} = \ker(T - \lambda) \oplus \operatorname{ran} (T - \lambda)^*$, where T' is *n*-perinormal (hence $T' \in \mathfrak{P}(n)$). If $\lambda \in \sigma(T')$ then λ is isolated in $\sigma(T')$ and $\lambda \in \sigma_p(T')$. This is a contradiction because ker $(T' - \lambda) \subset \operatorname{ran} (T - \lambda)^* \cap \ker(T - \lambda) = \{0\}$. Thus $T' - \lambda$ is invertible and $T - \lambda = 0 \oplus (T' - \lambda)$ implies that $T - \lambda$ is Fredholm with the index $\operatorname{ind}(T - \lambda) = \operatorname{ind}(T' - \lambda) = 0$, so $T - \lambda$ is Weyl. Therefore $\lambda \in \sigma(T) \setminus w(T)$ holds.

8 Riesz Idempotent for $\mathbb{QP}(n,k)$ operators

Let μ be an isolated instance of T. Following that, the Riesz idempotent E of T with respect to μ is defined as

$$E := \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu,$$

where D is a closed disc with a center at μ and no other points of the points of the spectrum of T. It is understood that $E^2 = E$, ET = TE, $\sigma(T|_{ran(E)}) = {\mu}$ and $ker(T - \mu) \subseteq$ ran(E). In [37],, Stampfli demonstrated that E is self-adjoint and ran(E) = ker(T - μ) if T meets the growth condition G_1 . Recently, Stampfli's result for quasi-class A operators, paranormal operators, and k-quasi-*-paranormal operators was obtained by Jeon and Kim [20], Uchiyama [42] and Rashid [34]. The Riesz idempotent E of T with respect to μ is typically not necessarily self-adjoint, even if T is a paranormal operator.

Theorem 8.1. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathbb{QP}(n, k)$, then T is isoloid.

Proof. Assume that T has the representation specified by the Lemma 6.1 and Proposition 5.7. Let z represent an isolated point in $\sigma(T)$. Then z is an isolated point in $\sigma(T_1)$ or z = 0 because $\sigma(T) = \sigma(T_1) \cup \{0\}$. Lemma 6.1 and Proposition 5.7 states that if z is an isolated point in $\sigma(T_1)$, then z is a point in $\sigma_p(T_1)$. Assume that z = 0 and that $z \notin \sigma(T_1)$. Since ker $(T_3) \neq 0$ and $T_3^n = 0$. Then for $x \in \text{ker}(T_3)$, $-T_1^{-1}T_2x \oplus x \in \text{ker}(T)$. Thus, the proof is obtained.

Theorem 8.2. Let $T \in \mathbb{QP}(n, k)$. Then T is polaroid. Let λ be an isolated point of $\sigma(T)$ and E be Riesz idempotent for λ . Then $E\mathcal{H} = \ker(T - \lambda)$ if $\lambda \neq 0$ and $E\mathcal{H} = \ker(T^{n+1})$ if $\lambda = 0$.

Proof. Since $E\mathcal{H}$ is an invariant subspace of T and $\sigma(T|_{E\mathcal{H}}) = \{\lambda\}$, we have $T|_{E\mathcal{H}} = \lambda$ if $\lambda \neq 0$ and $(T|_{E\mathcal{H}})^{k+1} = 0$ if $\lambda = 0$ by Theorem 6.10 and Proposition 5.7. Hence $E\mathcal{H} \subset \ker(T|_{E\mathcal{H}} - \lambda) \subset \ker(T - \lambda)$ if $\lambda \neq 0$ and $E\mathcal{H} \subset \ker(T|_{E\mathcal{H}})^{k+1} \subset \ker T^{k+1}$ if $\lambda = 0$. Since $\ker(T - \lambda) \subset E\mathcal{H}$ is always true, $E\mathcal{H} = \ker(T - \lambda)$ if $\lambda \neq 0$. And if $\lambda = 0$ then $\ker T^{k+1} \subset E\mathcal{H}$ also holds. Hence, $E\mathcal{H} = \ker T^{k+1}$ by Lemma 5.2 of [44]. Hence

$$T = \begin{pmatrix} T_1 & 0\\ 0 & T_2 \end{pmatrix}$$

where $\sigma(T_1) = \sigma(T|E\mathcal{H}) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$. Then $T_1 - \lambda$ is nilpotent and $T_2 - \lambda$ is invertible. Hence $T - \lambda$ has finite ascent and descent. Hence T is polaroid.

Theorem 8.3. Let $T \in \mathbb{QP}(n,k)$ and μ be a non-zero isolated point of $\sigma(T)$. Then the Riesz idempotent E for μ is self-adjoint and

$$E\mathcal{H} = \ker(T-\mu) = \ker(T-\mu)^*$$

Proof. If $T \in \mathbb{QP}(n, k)$, then μ is an eigenvalue of T and $E\mathcal{H} = \ker(T - \mu)$ by Theorem 8.1. Since $\ker(T-\mu) \subseteq \ker(T-\mu)^*$ by Theorem 6.3, it suffices to show that $\ker(T-\mu)^* \subseteq \ker(T-\mu)$. Since $\ker(T-\mu)$ is a reducing subspace of T by Theorem 6.3 and the restriction of a $\mathbb{QP}(n, k)$ operator to its reducing subspace is also a $\mathbb{QP}(n, k)$ operator by Lemma 6.2, T can be written as

$$T = \mu \oplus T_1$$
 on $\mathcal{H} = \ker(T - \mu) \oplus \ker(T - \mu)^{\perp}$,

where T_1 is a *n*-perinormal with ker $(T_1 - \mu) = \{0\}$. Since $\mu \in \sigma(T) = \sigma(T_1) \cup \{\mu\}$ is isolated, only two cases occur: either $\mu \notin \sigma(T_1)$, or μ is an isolated of $\sigma(T_1)$ and this contradicts the fact that ker $(T_1 - \mu) = \{0\}$. Since T_1 is invertible as an operator on ker $(T - \mu)^{\perp}$, we have ker $(T - \mu) = \text{ker}(T - \mu)^*$.

Next, we show that E is self-adjoint. Since

$$E\mathcal{H} = \ker(T-\mu) = \ker(T-\mu)^*,$$

we have

$$((z-T)^*)^{-1}E = \overline{(z-\mu)^{-1}}E.$$

Therefore

$$E^*E = -\frac{1}{2\pi i} \int_{\partial D} ((z-T)^*)^{-1} E \, d\bar{z} = -\frac{1}{2\pi i} \int_{\partial D} \overline{(z-T)^{-1}} E \, d\bar{z}$$
$$= \overline{\left(\frac{1}{2\pi i} \int_{\partial D} (z-T)^{-1} \, dz\right)} E = E.$$

This achieves the proof.

9 Tensor Product

Let's use the Hilbert spaces' symbols \mathcal{H} and \mathcal{K} . $\mathcal{H} \otimes \mathcal{K}$ signifies the tensor product on the product space $T \otimes S$ for the non-zero operators $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ that are specified. In terms of tensor products, the normaloid property is invariant [36]. According to [12, 38], $T \otimes S$ is normal if and only if T and S are normal. There are paranormal operators T and S such that $T \otimes S$ is not paranormal [1]. I.H. Kim shown in [23] that for non-zero $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K}), T \otimes S$ is log-hyponormal if and only if T and Sare log-hyponormal. In in [23], [22], [20], [24] and [33], respectively, this finding was extended to p-quasihyponormal operators, class A operators, quasi-class A, quasi-class (A, k) operators, and class A_k operators. In this section, we prove an analogous result for class (U, n) operators.

Remark 9.1. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators, then we have

- (i) $(T \otimes S)^* (T \otimes S) = T^*T \otimes S^*S$
- (ii) $|T \otimes S|^t = |T|^t \otimes |S|^t$ for any positive real t.

Lemma 9.2. ([38]) Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$, $S_1, S_2 \in \mathcal{B}(\mathcal{K})$ be non-negative operators. If T_1 and S_1 are non-zero, then the following assertions are equivalent:

- (a) $T_1 \otimes S_1 \leq T_2 \otimes S_2$
- (b) there exists c > 0 such that $T_1 \leq cT_2$ and $S_1 \leq c^{-1}S_2$.

Theorem 9.3. ([45]) Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is a class (M, n) operator if and only if T and S are class (M, n) operators.

Theorem 9.4. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is a class (U, n) operator if and only if T and S are class (U, n) operators.

Proof. It is clear that $T \otimes S$ is a class (U, n) operator if and only if

$$\begin{split} |(T \otimes S)^n|^{\frac{4}{n}} &\ge |T \otimes S|^4 \\ \iff |T^n \otimes S^n|^{\frac{4}{n}} &\ge |T|^4 \otimes |S|^4 \\ \iff |T^n|^{\frac{4}{n}} \otimes |S^n|^{\frac{4}{n}} &\ge |T|^4 \otimes |S|^4 \\ \iff (|T^n|^{\frac{4}{n}} - |T|^4) \otimes |S^n|^{\frac{4}{n}} + |T|^4 \otimes (|S^n|^{\frac{4}{n}} - |S|^4) \ge 0 \end{split}$$

Therefore, the sufficiency is clear.

Conversely, suppose that $T\otimes S$ is a class (U,n) . Let $x\in \mathcal{H}$ and $y\in \mathcal{K}$ be arbitrary. Then we have

$$\left\langle \left(|T^n|^{\frac{4}{n}} - |T|^4\right)x, x\right\rangle \left\langle |S^n|^{\frac{4}{n}}y, y\right\rangle + \left\langle |T|^4x, x\right\rangle \left\langle \left(|S^n|^{\frac{4}{n}} - |S|^4\right)y, y\right\rangle \ge 0 \tag{9.1}$$

Suppose on the contrary that T is not a class (U, n) operator; then there exists $x_0 \in \mathcal{H}$ such that

$$\begin{cases} \left\langle \left(|T^n|^{\frac{4}{n}} - |T|^4\right) x_0, x_0 \right\rangle = \alpha < 0\\ \left\langle |T|^4 x_0, x_0 \right\rangle = \beta > 0 \end{cases}$$
(9.2)

From (9.1), we have

$$\alpha \left\langle |S^n|^{\frac{4}{n}}y, y \right\rangle + \beta \left\langle (|S^n|^{\frac{4}{n}} - |S|^4)y, y \right\rangle \ge 0 \tag{9.3}$$

for all $y \in \mathcal{K}$; that is,

$$(\alpha + \beta) \left\langle |S^n|^{\frac{4}{n}} y, y \right\rangle \ge \beta \left\langle |S|^4 y, y \right\rangle$$
(9.4)

for all $y \in \mathcal{K}$. Therefore, S is a class (U, n) operator. So, we have

$$(\alpha + \beta) \left\| |S^n|^{\frac{2}{n}} y \right\|^2 \ge \beta \left\| |S|^2 y \right\|^2$$
(9.5)

for all $y \in \mathcal{K}$ by (9.4). By (9.5), we have

$$(\alpha + \beta) \left\| |S^n|^{\frac{2}{n}} \right\|^2 \ge \beta \left\| |S|^2 \right\|^2.$$
(9.6)

Since self-adjoint operators are normaloid, we have

$$(\alpha + \beta) \|S^{n}\|^{\frac{4}{n}} = (\alpha + \beta) \||S^{n}|\|^{\frac{4}{n}} = (\alpha + \beta) \||S^{n}|^{2}\|^{\frac{2}{n}}$$

$$\geq \beta \||S|^{2}\|^{2} = \beta \||S|\|^{4} = \beta \|S\|^{4}.$$
(9.7)

Hence

$$\beta \left\| S \right\|^{4} \le \left(\alpha + \beta\right) \left\| S^{n} \right\|^{\frac{4}{n}} \le \left(\alpha + \beta\right) \left\| S \right\|^{4}.$$

This implies that S = 0. This contradicts the assumption $S \neq 0$. Hence T must be a class (U, n) operator. A similar argument shows that S is also a class (U, n) operator.

Theorem 9.5. Let $T \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be non-zero operators. Then $T \otimes S \in \mathbb{QP}(n,k)$ if and only if one of the following holds:

- (i) T and S are in $\mathbb{QP}(n,k)$.
- (*ii*) $T^{k+1} = 0$ or $S^{k+1} = 0$.

Proof. By simple calculation we have

$$T \otimes S \in \mathbb{QP}(n,k) \Leftrightarrow (T \otimes S)^{*k} \left(|(T \otimes S)^n|^2 - |T \otimes S|^{2n} \right) (T \otimes S)^k \ge 0$$

$$\Leftrightarrow T^{*k} (|T^n|^2 - |T|^{2n}) T^k \otimes S^{*k} |S^n|^2 S^k + T^{*k} |T|^{2n} T^k \otimes S^{*k} (|S^n|^2 - |S|^{2n}) S^k \ge 0$$

Thus the sufficiency is easily proved because $T^{*k}|T|^{2n}T^k = 0$ if $T^{k+1} = 0$. Conversely, suppose that $T \otimes S \in \mathbb{QP}(n, k)$. Then for $x, y \in \mathcal{H}$ we have

$$\langle T^{k*}(|T^n|^2 - |T|^{2n})T^k x, x \rangle \langle S^{k*}|S^n|^2 S^k y, y \rangle + \langle T^{k*}|T|^{2n}T^k x, x \rangle \langle S^{k*}(|S^n|^2 - |S|^{2n})S^k y, y \rangle \ge 0.$$
(9.8)

It suffices to show that if the statement (ii) does not hold, the statement (i) holds. Thus, assume to the contrary that neither of T^{k+1} and S^{k+1} is the zero operator, and T is not in $\mathbb{QP}(n,k)$. Then there exists $x_0 \in \mathcal{H}$ such that

$$\langle T^{k*}(|T^n|^2 - |T|^2)T^kx_0, x_0 \rangle := \alpha < 0 \text{ and } \langle T^{k*}|T|^{2n}T^kx_0, x_0 \rangle := \beta > 0.$$

From (9.8) we have

$$(\alpha + \beta) \left\langle S^{k*} | S^n |^2 S^k y, y \right\rangle \ge \beta \left\langle S^{k*} | S |^{2n} S^k y, y \right\rangle.$$
(9.9)

Thus $S \in \mathbb{QP}(n, k)$. By Hölder McCarthy Inequality, we have

$$\left\langle S^{k*}|S^{n}|^{2}S^{k}y,y\right\rangle =\left\| S^{n+k}y\right\| ^{2}$$

and

$$\langle S^{k*}|S|^{2n}S^{k}y,y\rangle \ge \langle |S|^{2}S^{k}y,S^{k}y\rangle^{n} \|S^{k}y\|^{2(1-n)} = \|S^{k+1}y\|^{2n} \|S^{k}y\|^{2(1-n)}.$$

Therefore, we have

$$(\alpha + \beta) \|S^{n+k}y\|^{2} \ge \beta \|S^{k+1}y\|^{2n} \|S^{k}y\|^{2(1-n)}.$$
(9.10)

Since $S \in \mathbb{QP}(n,k)$, from Lemma 6.1 we have a decomposition of S as the following:

$$S = \begin{bmatrix} S_1 & S_2 \\ 0 & S_3 \end{bmatrix} \quad \text{on} \quad \mathcal{H} = \overline{\Re(S^k)} \oplus \ker(S^{*k}), \quad \text{where } S_1 \text{ is a class } (U, n).$$

By (9.10) and Lemma 6.2 we have

$$(\alpha + \beta) \|S_1^n \xi\|^2 \ge \beta \|S_1 \xi\|^{2n} \quad \text{for all } \xi \in \overline{\Re(S^k)}.$$
(9.11)

So, we have

$$(\alpha + \beta) ||S_1||^4 \ge \beta ||S_1||^4$$
,

where equality holds since S_1 is normaloid by Proposition 5.7. This implies that $S_1 = 0$. Since $S^{k+1}y = S_1S^ky = 0$ for all $y \in \mathcal{K}$, we have $S^{k+1} = 0$. This contradicts the assumption $S^{k+1} \neq 0$. Hence T must be a (n, k)-quasiperinormal operator. A similar argument shows that S is also a (n, k)-quasiperinormal operator. The proof is complete.

References

- [1] T.Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33, 169–178 (1972).
- [2] S. C. Arora and J. K. Thukral, On a class of operators, Glasnik Mathematicki 21 (41) (1986), 381–386.
- [3] B. Arun, On k-paranormal operator, Bull. Math. Soc. Sci. Math. R.S. Roumanie(N.S.) 20(68) (1976), 37–39.
- [4] N.L. Braha, M. Lohaj, F. Marevci, Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl.2, 23–35 (2009).
- [5] S.R. Caradus, Operators of Riesz type, Pacific J. Math. 18 (1), 61–71(1966).
- [6] N. Chennappan, S. Karthikeyan, *-paranormal composition operators, Indian J. Pure Appl. Math., 31 (6), 591–601 (2000).
- [7] M. Chō and S. Ôta, On *n*-paranormal operators, J. Math. Research 5 (2), 107–114 (2013).
- [8] E. Durszt, Contractions as restricted shifts, Acta Scientiarum Mathematicarum, 48 (1-4), 129–134 (1985).

- [9] B. P. Duggal and C. S. Kubrusly, Quasi-similar k-paranormal operators, Operators and Matrices 5 (2011), 417–423.
- [10] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58, 61–69 (1975).
- [11] F. Hansen, An equality, Math. Ann. 246, 249-250(1980).
- [12] Jin-chuan Hou, On tensor products of operators, Acta. Math. Sinica(N.S) 9, 195–202 (1993).
- [13] M. Fujii, S. Izumino, and R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5, 61–67(1994).
- [14] T. FURUTA, *Invitation to linear operators-From Matrices to bounded linear operatorsin Hilbert space*, Taylor and Francis, London, 2001.
- [15] T. Furuta, On the Class of Paranormal operators, Proc. Jaban. Acad. 43, 594-598 (1967).
- [16] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of *log*hyponormal and several related classes. Sci. math. 1, 389–403 (1998).
- [17] P. R. Halmos, A Hilbert space problem Book, Second Edition. New York. Springer-Verlag 1982.
- [18] H. G. Heuser, Functional Analysis, John Wiley and Sons (1982).
- [19] V. Istratescu, T. Saito and T. Yoshino, On a class of operators, Tohoku Math. J. (2), 18 (1966), 410–413.
- [20] I. H. JEON AND I. H. KIM, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T^*$, Linear Alg. Appl., **418**, 854–862 (2006).
- [21] I.B. Jung, E. Ko, C. Pearcu, Aluthge transforms of operators, Integral Equation Operator Theory 37, 437–448 (2000).
- [22] I.H.Jeon and B.P.Duggal, On operators with an absolute value condition, Jour. Korean Math. Soc. 41, 617–627 (2004).
- [23] I.H.Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42, 269-277 (2005).
- [24] I.H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^2|T^k \ge T^{*k}|T|^2T^k$, J. Korean Math. Soc. **47** (2), 351–361 (2010).
- [25] F. Kimura, Analysis of non-normal operators via Aluthge transformation. Integral Equations and Operator Theory 50 (3), 375–384 (1995).
- [26] C. S. Kubrusly and B.P.Duggal, A note on k-paranormal operators, Operators and Matrices, 4 (2), 213–223 (2010).
- [27] C. S. Kubrusly and B. P. Duggal, A note on *k*-paranormal operators, Operators and Matrices, 4 (2010), 213–223.
- [28] M. R. Lee and H.Y. Yun, On quasi-A(n, k) class operators, Commun. Korean Math. Soc. **28** (4), 741–750 (2013).
- [29] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152, 323–336 (1992).
- [30] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, Oxford, Clarendon, 2000.
- [31] S. Mecheri and N.L. Braha, Spectrum properties of n-perinormal operators, Oper. Matrices, 6, 725–734 (2012).
- [32] S. M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi University 1974.
- [33] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl's theorem and Tensor product for class A_k operators, Pure Math. Sci. **1** (1), 13–23 (2012).
- [34] M.H.M.RASHID, On k-quasi-*-paranormal operators, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 110 (2), 655–666 (2016).

- [35] M.H.M.Rashid, Spectrum of k-quasi-class A_n operators, New Zealand Journal of Mathematics **50**, 61–70 (2020).
- [36] T.Saito, *Hyponormal operators and Related topics, Lecture notes in Mathematics*, vol.247, Springer-Verlag, 1971.
- [37] J. G. Stampfli, Hyponormal operators and spectrum density, Trans. Amer. Math. Soc. 117, 469– 476 (1965).
- [38] J.Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124, 435–440 (1996).
- [39] K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51, 357–371 (2014).
- [40] A. Uchiyama, On the isolated point of the spectrum of paranormal operators, Integral equations and Operator Theory **55** (2006), 145–151.
- [41] A. Uchiyama, K. Tanahashi and J. I. Lee, Spectrum of class A(s,t) operators. Acta Sci. Math.(Szeged), 70 (2004), 279–287.
- [42] A. Uchiyama, On isolated points of the spectrum of paranomal operators, Integral Equations Operator Theory 55, 145 - 151 (2006).
- [43] Mi Young Lee and Sang Hun Lee, On a class of operators related to paranormal operators, J. Korean Math. Soc. 44 (1), 25–34 (2007).
- [44] J.T. Yuan, G.X. Ji, On (n, k)-quasiparanormal operators, Studia Math., 209, 289–301 (2012).
- [45] H. Zuo and F. Zuo, A note on *n*-perinormal operators, Acta Mathematica Scientia, 34B (1),194– 198 (2014).

Author information

M.H.M.Rashid¹, T. Prasad² and Atsushi Uchiyama³

, ¹ Department of Mathematics& Statistics, Faculty of Science P.O.Box(7)-Mu'tah University-Al-Karak-Jordan

- ² Department of mathematics, University of Calicut,Kerala-India
- ³ Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.

E-mail: malik_okasha@yahoo.com, prasadvalapil@gmail.com, uchiyama@tohoku-mpu.ac.jp

Received: 2023-01-24 Accepted: 2023-07-21