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Abstract In this paper, we give several examples of n-perinormal operators for each
n ≥ 3 such as (1) n-perinormal whose restriction to its invariant subspace is not n-
perinormal, (2) n-perinormal which is not (n − 1)-perinormal and (3) an invertible n-
perinormal operator whose inverse is not n-perinormal. There are several papers studying
n-perinormal operators which are using the assertions that a restriction of n-perinormal
operator to its invariant subspace, the inverse of n-perinormal operator is also n-perinormal
even if n ≥ 3. We remark that if n = 2 then 2-perinormal is equal to quasihyponormal,
and since a restriction of quasihyponormal to any invariant subspace is always quasihy-
ponormal, so it is 2-perinormal. And every invertible 2-perinormal is invertible hyponor-
mal, so the inverse of it is also hyponormal and 2-perinormal. We also show that Weyl’s
theorem holds for every n-perinormal and some results related to the Riesz idempotent
of n-perinormal. Moreover, We study fundamental structural characteristics of class of
(n, k)-quasiperinormal operators. Also, we show that, if T is (n, k)-quasiperinormal, then
T −λ has finite ascent for all λ ∈ C. Further, we give a necessary and sufficient condition
for T ⊗ S to be in a class of (n, k)-quasiperinormal .

1 Introduction

LetH be a complex (separable) infinite dimensional Hilbert space and B(H) be the set of
all bounded linear operators on H. An operator T ∈ B(H) is called to be hyponormal iff
T ∗T ≥ TT ∗, p-hyponormal for a p > 0 iff (T ∗T )p ≥ (TT ∗)p. An operator T is called to
be n-perinormal for an n ≥ 2 iff T ∗nTn ≥ (T ∗T )n. This class was introduced by Fujii,
Izumino and Nakamoto [13].

Definition 1.1. An operator T ∈ B(H) is said to be n-perihyponormal if

T ∗nTn ≥ (TT ∗)n

for n ≥ 1.

Observe that 1-perihyponormal is equal to hyponormal. It is easy to see that (n− 1)-
perihyponormal is always n-perinormal. In general, the converse is not true, however, if
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an n-perinormal operator has dense range then it is (n− 1)-perihyponormal.
An operator T is said to be ∗-paranormal if

‖T ∗x‖2 ≤ ‖T 2x‖ ‖x‖

for all x ∈ H. This class of operators was introduced by S. M. Patel [32]. S. C. Arora
and J. K. Thukral [2] proved that ∗-paranormal operators are normaloid, i.e., the operator
norm ‖T‖ of T equals to the spectral radius r(T ) = sup{|z| : z ∈ σ(T )} of T where σ(T )
denotes the spectrum of T . Also we say that T belongs to the class P(n) for an integer
n ≥ 2 if

‖Tx‖n ≤ ‖Tnx‖‖x‖n−1

for all x ∈ H. We remark that an operator in P(2) is called class (N) by V. Istracescu, T.
Saito and T. Yoshino in [19] and paranormal by T. Furuta in [15], and an operator in P(n)
is called n-paranormal [3] and also called (n − 1)-paranormal, e.g., [9], [26]. In order
to avoid confusion we use notation P(n). S. M. Patel [32] proved that ∗-paranormal
operators belong to the class P(3). Fujii, Izumino and Nakamoto proved that every
n-perinormal operator belongs to the class P(n). After, we shall show that every n-
perihyponormal belongs to the class P(n+ 1).

The Riesz idempotent Eλ of an operator T with respect to an isolated point λ of σ(T )
is defined as follows.

Eλ =
1

2πi

∫
∂Dλ

(z − T )−1 dz (1.1)

It satisfies σ(T |EλH) = {λ} and σ(T |(1−Eλ)H) = σ(T ) \ {λ}, where the integral is taken
by the positive direction and Dλ is a closed disk with center λ and small enough radius r
such as Dλ ∩ σ(T ) = {λ}. In [40], Uchiyama proved that for every paranormal operator
T and each isolated point λ of σ(T ) the Riesz idempotent Eλ satisfies that

E0 = kerT

Eλ = ker(T − λ) = ker(T − λ)∗ and Eλ is self-adjoint if λ 6= 0.

We shall show that for every ∗-paranormal operator T and each isolated point λ ∈ σ(T )
the Riesz idempotent Eλ of T with respect to λ is self-adjoint with the property that
EλH = ker(T − λ) = ker(T − λ)∗.

If T ∈ B(H), we denote kerT and ranT for the kernel of T and the range of T re-
spectively. We also denote the spectrum of T , the point spectrum of T , the Weyl spectrum
of T and the set of all eigenvalues of T with finite multiplicity which are isolated in the
spectrum by σ(T ), σp(T ), w(T ) and π00(T ) respectively. An operator T ∈ B(H) is called
to be Fredholm if ranT is closed and both of kerT and kerT ∗ are finite dimensional
subspaces. For arbitrary Fredholm operator T , the index of T is definded by

ind(T ) := dim kerT − dim kerT ∗.

An operator T ∈ B(H) is called to be Weyl iff T is a Fredholm operator with ind(T ) = 0.
And the Weyl spectrum of T is defined by

w(T ) := {λ ∈ C|T − λ is not Weyl}.

We say that the Weyl’s theorem holds for an operator T ∈ B(H) if

σ(T ) \ w(T ) = π00(T ).

In this paper, we show that the Weyl’s theorem holds for n-perinormal operators.
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2 Preliminaries and Definitions

We will introduce basic concepts and notations in this section that will serve as the foun-
dation for the research.

An operator T ∈ B(H) is called ∗-paranormal iff

‖T ∗x‖2 ≤ ‖T 2x‖‖x‖ (∀x ∈ H),

and T is called n-paranormal iff

‖Tx‖n ≤ ‖Tnx‖‖x‖n−1 (∀x ∈ H),

for each n ≥ 2. We denote the set of all n-paranormal operators on H by P(n).

Theorem 2.1. [39] If T is ∗-paranormal then the following assertions hold.

(i) T ∈ P(3).

(ii) T is isoloid, i.e., every isolated point of σ(T ) is an eigen value of T .

(iii) Weyl’s theorem holds for T , i.e., σ(T ) \ w(T ) = π00(T ),

(iv) If λ is isolated point of σ(T ) then the Riesz idempotent

Eλ =
1

2πi

∫
|z−λ|=r

(z − T )−1 dz with respect to λ is self-adjoint which satisfies

EλH = ker(T − λ) = ker(T − λ)∗,

where r > 0 is small enough such as {z : |z − λ| ≤ r} ∩ σ(T ) = {λ} and

the integral is taken by positive direction.

(v) T is normaloid, i.e., ‖T‖ = r(T ).

(vi) If T is invertible then
‖T−1‖ ≤ r(T−1)3r(T )2.

Theorem 2.2. [39] If T ∈ P(n) for an n ≥ 2 then the following assertions hold.

(a) T is isoloid, i.e., every isolated point of σ(T ) is an eigen value of T .

(b) Weyl’s theorem holds for T .

(c) If λ is isolated point of σ(T ) then the Riesz idempotent

Eλ =

∫
|z−λ|=r

(z − T )−1 dz with respect to λ satisfies

EλH = ker(T − λ),

where r > 0 is small enough such as {z : |z − λ| ≤ r} ∩ σ(T ) = {λ} and

the integral is taken by positive direction.

(d) Any restriction T |M of T to an arbitrary T -invariant subspaceM also

belongs to P(n).
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(e) T is normaloid, i.e., ‖T‖ = r(T ).

(f) If T is invertible then

‖T−1‖ ≤ r(T−1)
n(n−1)

2 r(T )
(n+1)(n−2)

2 .

Definition 2.3. [44] An operator T ∈ B(H) is said to be (n, k)-quasiparanormal if∥∥T (T kx)∥∥ ≤ ∥∥Tn+k+1x
∥∥ 1
n+1
∥∥T kx∥∥ n

n+1 for x ∈ H.

Remark 2.4. It follows from Definition 2.3 that T is n-paranormal should be (n, 0)-
quasiparanormal if n-paranormal is defined by

‖Tx‖ ≤
∥∥Tn+1x

∥∥ 1
n+1 ‖x‖

n
n+1 for x ∈ H.

However, [6] defined n-paranormal as

‖Tx‖ ≤ ‖Tnx‖
1
n ‖x‖

n−1
n for x ∈ H,

this means (n− 1)-paranormal in Yuan’s definition.

Definition 2.5. An operator T ∈ B(H) is said to be

(i) a class (M,n) or n-perinormal if T ∗nTn ≥ (T ∗T )n for positive integer n such that
n ≥ 2 [13].

(ii) a n-∗-perinormal (briefly, T ∈ (M∗, n)) if |Tn|2 ≥ |T ∗|2n for n ≥ 2 [6].

Definition 2.6. Let T ∈ B(H). We say that an operator T is a (n, k)-quasiperinormal
(briefly, T ∈ QP(n, k)) if

T ∗k(|Tn|2 − |T |2n)T k ≥ 0

for positive integer n ≥ 2 and integer k ≥ 0. And we say that T is a (n, k)-∗-quasiperinormal
(briefly, T ∈ QP∗(n, k)) if

T ∗k(|Tn|2 − |T ∗|2n)T k ≥ 0

for positive integer n ≥ 2 and integer k ≥ 0.

Definition 2.7. Let T ∈ B(H). We say that an operator T belongs to class (U, n) if

(T ∗nTn)
2
n ≥ (T ∗T )2

for positive integer n ≥ 2.

3 class T ∈ QP(n, k) and class T ∈ QP∗(n, k) operators

The following lemma is very important in the sequel

Lemma 3.1. (Hölder-McCarthy Inequality) Let T ≥ 0. Then the following assertions
hold.
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(i) 〈T rx, x〉 ≥ 〈Tx, x〉r ‖x‖2(1−r)for r > 1 and x ∈ H.

(ii) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r)for r ∈ [0, 1] and x ∈ H.

Proposition 3.2. Let T ∈ B(H). If T is an n-perinormal operator with n ≥ 2, then we
have

‖Tnx‖ ‖x‖n−1 ≥ ‖Tx‖n

for all x ∈ H, and hence T is n-paranormal operator.

Proof. Assume that T is a n-perinormal operator. Then Tn∗Tn ≥ (T ∗T )n and so for all
x ∈ H, we have

‖Tnx‖2 = 〈Tn∗Tnx, x〉 ≥
∥∥∥(T ∗T )n/2x

∥∥∥2
= 〈(T ∗T )nx, x〉

⇐⇒ ‖Tnx‖2 ≥ 〈T ∗Tx, x〉n ‖x‖2(1−n) (by Hölder Mc-Carthy inequality)

⇐⇒ ‖Tnx‖ ‖x‖n−1 ≥ ‖Tx‖n .

�

Proposition 3.3. Let T ∈ B(H). Then T ∈ QP(n, k) with n ≥ 2 and k ≥ 0 if and only if∥∥Tn+kx∥∥ ≥ ∥∥∥(T ∗T )n/2T kx
∥∥∥ holds for every x ∈ H.

Proof. We have

T ∈ QP(n, k) ⇐⇒ T ∗k(|Tn|2 − |T |2n)T k ≥ 0

⇐⇒
〈
(T ∗k(|Tn|2 − |T |2n)T k)x, x

〉
≥ 0, for all x ∈ H

⇐⇒
〈
Tn+kx, Tn+kx

〉
−
〈
(T ∗T )n/2T kx, (T ∗T )n/2T kx

〉
≥ 0, for all x ∈ H

⇐⇒
∥∥Tn+kx∥∥2 ≥

∥∥∥(T ∗T )n/2T kx
∥∥∥2
, for all x ∈ H.

�

Remark 3.4. It follows from Proposition 3.3 that

(i) T ∈ QP ∗(1, k) is k-quasihyponormal.

(ii) T belongs to class (M,n) with n ≥ 2 if and only if ‖Tnx‖ ≥
∥∥∥(T ∗T )n/2x

∥∥∥ holds
for every x ∈ H.

Proposition 3.5. Let T ∈ B(H). Then T ∈ QP(n, k) if and only if

|Tn+k|2 + 2λT ∗k|T |2nT k + λ2|Tn+k|2 ≥ 0

for all λ ∈ R.
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Proof. Let n ∈ N , λ ∈ R, x ∈ H and k ∈ Z such that k ≥ 0. Then we get

T ∈ QP(n, k) ⇐⇒
∥∥Tn+kx∥∥2 ≥

∥∥∥(T ∗T )n/2T kx
∥∥∥2

⇐⇒ 4
∥∥∥(T ∗T )n/2T kx

∥∥∥4
≤ 4

∥∥Tn+kx∥∥2 ∥∥Tn+kx∥∥2

⇐⇒
∥∥Tn+kx∥∥2

+ 2λ
∥∥∥(T ∗T )n/2T kx

∥∥∥2
+ λ2 ∥∥Tn+kx∥∥2 ≥ 0

⇐⇒
〈
Tn+kx, Tn+kx

〉
+ 2λ

〈
(T ∗T )n/2T kx, (T ∗T )n/2T kx

〉
+ λ2 〈Tn+kx, Tn+kx〉 ≥ 0

⇐⇒
〈(
|Tn+k|2 + 2λT ∗k|T |2nT k + λ2|Tn+k|2

)
x, x

〉
≥ 0

and so
|Tn+k|2 + 2λT ∗k|T |nT k + λ2|Tn+k|2 ≥ 0.

�

Proposition 3.6. Let T ∈ B(H). Then T ∈ QP∗(n, k) with n ≥ 2 and k ≥ 0 if and only if∥∥Tn+kx∥∥ ≥ ∥∥∥(TT ∗)n/2T kx
∥∥∥ holds for every x ∈ H.

Proof. We have

T ∈ QP∗(n, k)⇐⇒ T ∗k(|Tn|2 − |T ∗|2n)T k ≥ 0

⇐⇒
〈
(T ∗k(|Tn|2 − |T ∗|2n)T k)x, x

〉
≥ 0, for all x ∈ H

⇐⇒
〈
Tn+kx, Tn+kx

〉
−
〈
(TT ∗)n/2T kx, (TT ∗)n/2T kx

〉
≥ 0, for all x ∈ H

⇐⇒
∥∥Tn+kx∥∥2 ≥

∥∥∥(TT ∗)n/2T kx
∥∥∥2
, for all x ∈ H.

�

An operator T ∈ B(H) is called k-quasihyponormal operator if T ∗k(|T |2−|T ∗|2)T k ≥
0 for k ≥ 0.

From Proposition 3.6 it follows that:

Corollary 3.7. Let T ∈ B(H) and n = 1, then it follows that T is a k-quasihyponormal
operator.

By the same arguments of the proof of Proposition 3.5, we can prove the following
result.

Corollary 3.8. Let T ∈ B(H). Then T ∈ QP∗(n, k) if and only if

|Tn+k|2 + 2λT ∗k|T ∗|2nT k + λ2|Tn+k|2 ≥ 0

for all λ ∈ R.

Proposition 3.9. Let T ∈ QP(2, k), then T is a k-quasiparanormal operator.
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Proof. Let T ∈ QP(2, k), then we get

T ∗k|T 2|2T k ≥ T ∗k|T |4T k ⇐⇒
〈
T ∗k(T ∗2T 2 − (T ∗T )2)T kx, x

〉
≥ 0, for all x ∈ H

⇐⇒
〈
T k+2x, T k+2x

〉
−
〈
T ∗T k+1x, T ∗T k+1x

〉
≥ 0, for all x ∈ H

⇐⇒
∥∥T k+2x

∥∥2 ≥
∥∥T ∗T k+1x

∥∥2
, for all x ∈ H. (3.1)

On the other hand,∥∥T k+1x
∥∥2

= |
〈
T k+1x, T k+1x

〉
| = |

〈
T ∗TT kx, T kx

〉
| ≤

∥∥T ∗T k+1x
∥∥∥∥T kx∥∥ . (3.2)

Now from relations (3.1) and (3.2) follows that∥∥T k+1x
∥∥2 ≤

∥∥T k+2x
∥∥ ∥∥T kx∥∥

for every x ∈ H. That is, T is a k-quasiparanormal operator. �

Remark 3.10. In [28], quasi-A(n, k) class operators (T ∈ B(H): T ∗k(|Tn|−|T |n)T k ≥ 0
for integers n ≥ 2 and k ≥ 0) has been studied by Lee and Yun. It follows from the
definition of class (M,n) and Löwner-Heinz inequality that if T ∈ (M,n), then T is a
quasi-A(n, 0) class operator.

Proposition 3.11. Let T ∈ B(H) be a class (M,n) operator and Tn be a compact oper-
ator for some n ∈ N. Then T is also compact and normal.

Proof. Assume that T is a class (M,n) operator for n ≥ 2. Hence∥∥∥(T ∗T )n/2x
∥∥∥ ≤ ‖Tnx‖ for every x ∈ H. (3.3)

Let {xm} ∈ H be weakly convergent sequence with limit 0 in H. From the compactness
of Tn and the relation (3.3) we get the following relation:∥∥∥(T ∗T )n/2xm

∥∥∥→ 0, m→∞.

From the last relation it follows that T ∗T is compact operator and so T is compact. Since
T is compact σ(T ) is finite set or countable infinite with 0 as the unique limit point of it.
Let σ(T ) \ {0} = {λl} with

|λ1| ≥ |λ2| ≥ · · · ≥ |λl| ≥ |λl+1| ≥ · · · ≥ 0, and λl → 0 (l→∞).

By the compactness of T or isoloidness of T , λl ∈ σp(T ) and dim ker(T − λl) < ∞ for

all l. Since ker(T −λl) ⊂ ker(T −λl)∗,M :=
∞⊕
l=1

ker(T −λl) reduces T , and T is of the

form

T =

( ∞⊕
l=1

λl

)
⊕ T ′ on H =M⊕ P⊥.

By the construction, T ′ is n-perinormal and σ(T ′) = {0} hence T ′ = 0. This shows that

T =

( ∞⊕
l=1

λl

)
⊕ 0

and it is normal. �
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Proposition 3.12. Let T ∈ B(H). If T ∈ QP∗(n, k), then T ∈ QP(k + 1, n).

Proof. Let us suppose that T ∈ QP∗(n, k). Then for n ≥ 2 and k ≥ 0, it follows that

T ∗k|Tn|2T k ≥ T ∗k|T ∗|2nT k.

This is equivalent with: 〈
T ∗k(|Tn|2 − |T ∗|2n)T kx, x

〉
≥ 0,

for every x ∈ H. Further:〈
T ∗k(T ∗(n+1)Tn+1 − (T ∗T )n+1)T kx, x

〉
=
〈
T ∗(k+1)(T ∗nTn − (TT ∗)n)T k+1x, x

〉
=
〈
[T ∗k(|Tn|2 − |T ∗|2n)T k]Tx, Tx

〉
≥ 0.

From this it follows that T ∗(k+1)(|Tn|2 − |T |2n)T k+1 ≥ 0 and so T ∈ QP(k + 1, n). �

Proposition 3.13. Let H =
⊕
i∈N
Hi, Hi ∼= Hj and T = ⊕i∈NTi, where QP(n, k) 3 Ti :

Hi → Hi, T ∈ B(H), then T ∈ QP(n, k).

Proof. Assume that Ti ∈ QP(n, k) for each i ∈ N. Then

T ∗ki (T ∗ni Tni )T
k
i ≥ T ∗ki (T ∗i Ti)

nT ki , i ∈ N.

Hence

T ∗k(T ∗nTn)T k = (⊕i∈NTi)∗k ((⊕i∈NTi)∗n(⊕i∈NTi)n) (⊕i∈NTi)k

= (⊕i∈NT ∗ki )[(⊕i∈NT ∗ni )(⊕i∈NTni )](⊕i∈NT ki )

= ⊕i∈NT ∗ki (T ∗ni Tni )T
k
i ≥ ⊕i∈NT ∗ki (T ∗i Ti)

nT ki

= ⊕i∈NT ∗ki ⊕i∈N (T ∗i Ti)
n ⊕i∈N T ki

= (⊕i∈NTi)∗k(⊕i∈NT ∗i Ti)n(⊕i∈NTi)k

= T ∗k(T ∗T )nT k

and so T ∈ QP(n, k). �

Theorem 3.14. If T is (n, k)-quasiperinormal, then T is (n− 1, k)-quasiparanormal.

Proof. Since∥∥Tn+kx∥∥2
=

〈
T ∗kT ∗nTnT kx, x

〉
=
〈
T ∗k|Tn|2T kx, x

〉
≥

〈
T ∗k|T |2nT kx, x

〉
=

〈
|T |2nT kx, T kx

〉
≥

〈
|T |2T kx, T kx

〉n ∥∥T kx∥∥2(1−n)
=
∥∥T k+1x

∥∥2n ∥∥T kx∥∥2(1−n)
,

we have ∥∥T (T kx)∥∥ ≤ ∥∥Tn+kx∥∥ 1
n
∥∥T kx∥∥n−1

n .

�



492
M.H.M.Rashid 1, T. Prasad 2 and Atsushi Uchiyama 3

4 Examples

If T ∈ B(H) is hyponormal (or p-hyponormal for 0 < p ≤ 1 or 2-perinormal or belongs
to P(n)) then the restriction T |M to any T -invariant subspaceM is also hyponormal (p-
hyponormal, 2-perinormal or belongs to P(n) respectively). This result is important to
prove the Weyl’s theorem for these operators. However, the following example tells us
n-perinormal does not have that property in general for n ≥ 3.

Let A,B be 2× 2 positive invertible matrices which satisfy A ≤ B and An 6≤ Bn for

all n ≥ 2. Let H =
∞⊕

k=−∞

C2. We definde an invertible operator T on H by

T (xk) = (yk), yk =

{
A1/2xk−1 (k ≤ 0)
B1/2xk−1 (k ≥ 1)

(xk) ∈ H.

For examples, put A =

(
2 1
1 1

)
, B =

(
3 1
1 1

)
. Then, A and B are invertible, and

B −A =

(
1 0
0 0

)
≥ 0. ∴ B ≥ A.

B2 −A2 =

(
5 1
1 0

)
6≥ 0. ∴ B2 6≥ A2.

Bn 6≥ An (n ≥ 2) (by the Heinz inequality).

Proposition 4.1. Let T be as above. Then the following assertions hold:

(i) T is an invertible hyponormal operator, hence it is 2-perinormal.

(ii) T is not n-perinormal for all n ≥ 3.

(iii) T satisfies (T ∗mTm)
1
m ≥ TT ∗ for all m ≥ 2.

Proof. (i) Since T ∗T − TT ∗ =

⊕
k≤−1

0

 ⊕ (0)
(B −A) ⊕

⊕
k≥1

0

 ≥ 0. Hence, T is

hyponormal.
(ii) We shall show that T is notm-perihyponormal for allm ≥ 2, i.e., T ∗mTm 6≥ (TT ∗)m.
Since

T ∗mTm − (TT ∗)m

=

 ⊕
k≤−m

0

⊕( −1⊕
k=−m+1

(
A

−k
2 Bm+kA

−k
2 −Am

))
⊕

(0)
(Bm −Am)⊕

⊕
k≥1

0

 6≥ 0,

T is not m-perihyponormal for all m ≥ 2. The invertibility of T implies that T is not
n-perinormal for all n ≥ 3.
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(iii) Let p = m + k, q = m, r =
−k
2

for an m ≥ 2 and −m + 1 ≤ k ≤ −1. Then
(1 + 2r)q = (1− k)m ≥ p+ 2r = m+ k − k = m. Since A ≤ B, we have(

A
−k

2 Bm+kA
−k

2

)1/m
≥
(
A

−k
2 Am+kA

−k
2

)1/m
= A, (−m+ 1 ≤ k ≤ −1)

by Furuta inequality. Hence,

(T ∗mTm)
1
m − TT ∗

=

 ⊕
k≤−m

0

⊕( −1⊕
k=−m+1

{(
A

−k
2 Bm+kA

−k
2

)1/m
−A

})
⊕

(0)
(B −A)⊕

⊕
k≥1

0

 ≥ 0.

Therefore (T ∗mTm)
1
m ≥ TT ∗ for all m ≥ 2. �

Example 4.2. Let T be as above and define an operator S on K = H⊕H by

S =

(
T Xm

0 0

)
,

where Xm =
(
(T ∗mTm)

1
m − TT ∗

)1/2
for an m ≥ 2. Then

S∗mSm =

(
T ∗m 0

XmT
∗(m−1) 0

)(
Tm Tm−1Xm

0 0

)
=

(
T ∗mTm ∗
∗ ∗

)
,

SS∗ =

(
T Xm

0 0

)(
T ∗ 0
Xm 0

)
=

(
TT ∗ +X2

m 0
0 0

)
=

(
(T ∗mTm)

1/m 0
0 0

)
,

(SS∗)
m
=

(
(T ∗mTm)

1/m 0
0 0

)m
=

(
T ∗mTm 0

0 0

)
.

Thus,

S∗(m+1)Sm+1 − (S∗S)m+1 = S∗
{
S∗mSm − (SS∗)

m}
S

=

(
T ∗ 0
Xm 0

)(
0 ∗
∗ ∗

)(
T Xm

0 0

)

=

(
T ∗ 0
Xm 0

)(
0 0
∗ ∗

)
=

(
0 0
0 0

)
= 0,

This implies that S is (m + 1)-perinormal. Put M = ranS. Then M = H ⊕ {0} is
closed and the restriction S|M to its invariant subspace M is equal to T which is not
n-perinormal for all n ≥ 3 by Proposition 4.1.

Remark 4.3. (i)If m = 2 then the above S is 3-perinormal which is not 2-perinormal.
(ii) S is (m+ 1)-perinormal which is not m-perinormal for m ≥ 3.
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Proof. (i) Suppose S is 2-perinormal, i.e., S satisfies S∗2S2 ≥ (S∗S)2. Put P =

(
1 0
0 0

)
.

Then (
T ∗2T 2 0

0 0

)
= PS∗2S2P ≥ P (S∗S)

2
P =

(
(T ∗T )2 + T ∗X2

2T 0
0 0

)
.

Hence T ∗2T 2 ≥ (T ∗T )2 + T ∗X2
2T . Since T is invertible,

T ∗T ≥ TT ∗ +X2
2 = TT ∗ + (T ∗2T 2)1/2 − TT ∗ = (T ∗2T 2)1/2

≥
{
(T ∗T )2}1/2

(∵ T is hyponormal, so it is 2-perinormal)

= T ∗T.

Thus T ∗T = (T ∗2T 2)1/2, (T ∗T )2 = T ∗2T 2 and T ∗T = TT ∗. It follows that T is normal,
however, T is not normal. Hence, S is not 2-perinormal.
(ii) Suppose S is m-perinormal, i.e., S satisfies S∗mSm ≥ (S∗S)m. Then 0 ≤ S∗mSm −
(S∗S)m = S∗

(
S∗m−1Sm−1 − (SS∗)m−1)S and 0 ≤ P

(
S∗m−1Sm−1 − (SS∗)m−1)P .

Hence

PS∗m−1Sm−1P =

(
T ∗m−1Tm−1 0

0 0

)
≥ P (SS∗)m−1P

=

(
TT ∗ +X2

m 0
0 0

)m−1

=

(
TT ∗ + (T ∗mTm)1/m − TT ∗ 0

0 0

)m−1

=

(
(T ∗mTm)

m−1
m 0

0 0

)
.

Hence T ∗m−1Tm−1 ≥ (T ∗mTm)
m−1
m . It follows that

0 ≤T ∗m−1Tm−1 − (T ∗mTm)
m−1
m

=

 ⊕
k≤−m

0

⊕ (Am−1 −
{
A
m−1

2 BA
m−1

2

}m−1
m

)

⊕

( −1⊕
k=−m+2

(
A

−k
2 Bm−1+kA

−k
2 −

{
A

−k
2 Bm+kA

−k
2

}m−1
m

))
⊕

⊕
k≥0

0

 ,

and hence

Am−1 ≥
{
A
m−1

2 BA
m−1

2

}m−1
m ≥

{
A
m−1

2 AA
m−1

2

}m−1
m

= Am−1.

This implies that Am−1 =
{
A
m−1

2 BA
m−1

2

}m−1
m

and A = B which is a contradiction.
Therefore, S is not m-perinormal. �
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If T ∈ B(H) is invertible hyponormal or p-hyponormal for 0 < p then the inverse T−1

of T is is also hyponormal or p-hyponormal respectively. However, in general, the inverse
of invertible n-perinormal is not necessarily n-perinormal for n ≥ 3. We give an example
of invertible 3-perinormal operator whose inverse is not 3-perinormal.

Example 4.4. Let A,B be 2×2 positive invertible matrices which satisfy A ≤ B ≤ 1 and

An 6≤ Bn for all n ≥ 2. Let H =
∞⊕

k=−∞

C2. We define an invertible operator T on H by

T (xk) = (yk), yk =


A1/2xk−1 (k ≤ 0)
B1/2xk−1 (k = 1)
xk−1 (k ≥ 2)

(xk) ∈ H.

For examples, put A =
1
4

(
2 1
1 1

)
, B =

1
4

(
3 1
1 1

)
. Then, A and B are invertible,

and

B −A =
1
4

(
1 0
0 0

)
≥ 0. ∴ A ≤ B ≤ 1.

B2 −A2 =
1

16

(
5 1
1 0

)
6≥ 0. ∴ A2 6≤ B2.

An 6≤ Bn (n ≥ 2) (by the Heinz inequality).

Proposition 4.5. Let T ∈ B(H). Then the following assertions hold:

(i) T is an invertible 2-perihyponormal operator, hence T is 3-perinormal.

(ii) T−1 is not 3-perinormal.

Proof. (i) We shall show that T ∗2T 2 ≥ (TT ∗)2. Since 0 < A ≤ B ≤ 1, we have
A2 ≤ A ≤ B and

T ∗2T 2 − (TT ∗)2

=

⊕
k≤−2

0

⊕ (A1/2BA1/2 −A2
)
⊕

(0)

(B −A2)⊕ (1−B2)⊕

⊕
k≥2

0

 ≥ 0,

because A1/2BA1/2 − A2 = A1/2(B − A)A1/2 ≥ 0, B − A2 ≥ 0 and 1 − B ≥ 0. The
invertibility of T implies that T is 3-perinormal.
(ii) We shall show that T−1 is not 2-perihyponormal. Since

T−1(xk) = (yk), yk =


A−1/2xk+1 (k ≤ −1)
B−1/2x1 (k = 0)
xk+1 (k ≥ 1)

(xk) ∈ H,
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we obtain

T−2∗T−2 − (T−1T−1∗)2

=

⊕
k≤−1

0

⊕ (0)(
A−2 −B−2)⊕ (B−1/2A−1B−1/2 − 1)⊕ (B−1 − 1)⊕

⊕
k≥3

0

 .

Hence, T−1 is 2-perihyponormal iff A−2 ≥ B−2 which is equivalent to B2 ≥ A2. How-
ever, the last inequality does not hold. Hence T−1 is not 2-perihyponormal and therefore
T−1 is not 3-perinormal. �

Remark 4.6. In Proposition 4.5, if we choose A,B such as 0 < A ≤ B ≤ 1, An−2 ≤
Bn−2 and An−1 6≤ Bn−1 then the operator T is n-perinormal but the inverse T−1 is not
n-perinormal for each n ≥ 4, because

T ∗n−1Tn−1 − (TT ∗)n−1

=

 ⊕
k≤−n+1

0

⊕( −1⊕
k=−n+2

(
A

−k
2 BA

−k
2 −An−1

))
⊕

(0)

(B −An−1)⊕ (1−Bn−1)⊕

⊕
k≥2

0

 ,

and

T−(n−1)∗T−(n−1) − (T−1T−1∗)n−1

=

⊕
k≤−1

0

⊕ (0)(
A−(n−1) −B−(n−1)

)
⊕

(
n−1⊕
k=1

(
B

−1
2 A−(n−k−1)B

−1
2 − 1

))
⊕

⊕
k≥n

0

 .

5 Complementary Results

The following lemma is very important in the sequel

Lemma 5.1. [11, Hansen’s Inequality] If A,B ∈ B(H) satisfying A ≥ 0 and ‖B‖ ≤ 1,
then

(B∗AB)α ≥ B∗AαB for all α ∈ (0, 1].

Lemma 5.2. (1) Every 2-perihyponormal operator is ∗-paranormal, hence it is 3-paranormal.
(2) Every m-perihyponormal operator is (m+ 1)-paranormal for each m ≥ 3.

Proof. (1) By the assumption, for every x ∈ H,

‖(TT ∗)x‖2 ≤ 〈(TT ∗)2x, x〉 ≤ 〈T ∗2T 2x, x〉 = ‖T 2x‖, ∴ ‖TT ∗x‖ ≤ ‖T 2x‖.

It follows that
‖T ∗x‖2 = 〈TT ∗x, x〉 ≤ ‖TT ∗x‖‖x‖ ≤ ‖T 2x‖‖x‖

for every x ∈ H.
(2) Let x ∈ H be arbitrary.

‖Tmx‖2 = 〈T ∗mTmx, x〉 ≥ 〈(TT ∗)mx, x〉

≥ 〈TT ∗x, x〉m‖x‖2(1−m) (by (1.1))

= ‖T ∗x‖2m‖x‖2(1−m).
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Hence, ‖T ∗x‖m ≤ ‖Tmx‖‖x‖m−1 and

‖Tx‖2 = 〈T ∗Tx, x〉 ≤ ‖T ∗Tx‖‖x‖ ≤ m

√
‖Tm+1x‖‖Tx‖m−1‖x‖.

It follows that

‖Tx‖2m ≤ ‖Tm+1x‖‖Tx‖m−1‖x‖m,

‖Tx‖m+1 ≤ ‖Tm+1x‖‖x‖m.

This implies that T ∈ P(m+ 1). �

Lemma 5.3. [13] Every n-perinormal is n-paranormal.

Lemma 5.4. [31, 45] If T is n-perinormal, λ ∈ σp(T ) \ {0} and x ∈ ker(T − λ), then

(T − λ)∗x = 0.

As we see in the previous section, the restricsion of n-perinormal to its invariant sub-
space is not necessarily n-perinormal for n ≥ 3. However, we have a weak result as
follows.

Lemma 5.5. If T is n-perinormal for n ≥ 2 and M is a T -invariant closed subspace.
Then the restriction T1 := T |M of T toM belongs to class (U, n).

Proof. Let P be the orthogonal projection ontoM. Then T and P are of the forms

T =

(
T1 A

0 B

)
, P =

(
1 0
0 0

)
on PH⊕ (1− P )H.

Since TP = PTP and T ∗nTn ≥ (T ∗T )n it follows that

P (T ∗nTn)P = (TP )∗n(TP )n ≥ P (T ∗T )nP(
(T ∗n1 Tn1 )

2
n 0

0 0

)
=

(
T ∗n1 Tn1 0

0 0

) 2
n

= {P (T ∗nTn)P}
2
n = {(TP )∗n(TP )n} 2

n

≥ {P (T ∗T )nP} 2
n

≥ P (T ∗T )2P (by Hansen’s inequality)

= (TP )∗(TT ∗)(TP ) ≥ (TP )∗(TPT ∗)(TP )

= {(TP )∗(TP )}2 =

(
(T ∗1 T1)

2 0
0 0

)
.

This completes the proof. �

The following lemma is an extension of Lemma 5.3.

Lemma 5.6. If T belongs to class (U, n) and λ ∈ σp(T ) \ {0}. Then ker(T − λ) ⊂
ker(T − λ)∗.
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Proof. Let P be the orthogonal projection onto ker(T−λ). Then TP = λP, TnP = λnP ,

PT ∗ = λP, PT ∗n = λ
n
P . And T and P are of the forms T =

(
λ A

0 B

)
, P =(

1 0
0 0

)
on PH⊕ (1− P )H.

(
|λ|4 0
0 0

)
=

(
|λ|2n 0

0 0

) 2
n

= {P (T ∗nTn)P}
2
n

≥ P (T ∗nTn)
2
n P (by Hansen’s inequality)

≥ P (T ∗T )2P = |λ|2P (TT ∗)P =

(
|λ|2

(
|λ|2 +AA∗

)
0

0 0

)
.

This implies that |λ|4 ≥ |λ|4+|λ|2AA∗, soAA∗ = 0 andA = 0 by λ 6= 0. Thus ker(T−λ)
reduces T and the proof is complete. �

Proposition 5.7. If T ∈ B(H) belongs to class (U, n), then T is n-paranormal. In partic-
ular, T is isoloid and normaloid.

Proof. By Heinz inequality, we have (T ∗nTn)
1
n ≥ T ∗T . Therefore,

‖Tx‖2 = 〈T ∗Tx, x〉 ≤ 〈(T ∗nTn)
1
n x, x〉

≤ 〈T ∗nTnx, x〉 1
n ‖x‖2(1− 1

n ) (by Lemma 3.1)

= ‖Tnx‖ 2
n ‖x‖2(1− 1

n ).

∴ ‖Tx‖n ≤ ‖Tnx‖‖x‖n−1.

�

6 Spectral properties of QP(n, k)

Lemma 6.1. Let T ∈ QP(n, k) and T k do not have a dense range. Then

T =

(
T1 T2

0 T3

)
on H = ran(T k)⊕ ker(T ∗k),

where T1 = T |ran(Tk) is the restriction of T to ran(T k), and T1 is a class (U, n) and T3 is
nilpotent of nilpotency n. Moreover, σ(T ) = σ(T1) ∪ {0} .

Proof. Consider H = ran(T k) ⊕ ker(T ∗k). Since ran(T k) is an invariant subspace of T ,
T has the matrix representation

T =

(
T1 T2

0 T3

)
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with respect toH = ran(T k)⊕ker(T ∗k). Let P be the orthogonal projection onto ran(T k).
Then T1 ⊕ 0 = TP = PTP and T ∗1 T1 ⊕ 0 = PT ∗TP . Since T ∈ QP(n, k), we have

P
(
|Tn|2 − |T |2n

)
P ≥ 0.

Using the facts TP = PTP , PT ∗ = PT ∗P , we have

P (T ∗nTn)P = (TP )∗n(TP )n ≥ P (T ∗T )nP(
(T ∗n1 Tn1 )

2
n 0

0 0

)
=

(
T ∗n1 Tn1 0

0 0

) 2
n

= {P (T ∗nTn)P}
2
n = {(TP )∗n(TP )n} 2

n

≥ {P (T ∗T )nP} 2
n

≥ P (T ∗T )2P (by Hansen’s inequality)

= (TP )∗(TT ∗)(TP ) ≥ (TP )∗(TPT ∗)(TP )

= {(TP )∗(TP )}2 =

(
(T ∗1 T1)

2 0
0 0

)
.

On the other hand, if u =

(
u1

u2

)
∈ H,

〈
T k3 u2, u2

〉
=
〈
T k(I − P )u, (I − P )u

〉
=
〈
(I − P )u, T ∗k(I − P )u

〉
= 0.

which implies that T k3 = 0. It is well known that σ(T1) ∪ σ(T3) = σ(T ) ∪ C, where C is
the union of certain of the holes in σ(T ) which happen to be subset of σ(T1) ∩ σ(T3) and
σ(T1) ∩ σ(T3) has no interior points. Therefore, we have

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0} .

�

Lemma 6.2. Let T ∈ QP(n, k) and W be its invariant subspace. Then the restriction
A1 := T |

TkW of T to T kW satisfies

(A∗n1 An1 )
2
n ≥ (A∗1A1)

2.

That is, A1 belongs to class (U, n).

Proof. Let P be the orthogonal projection of H ontoW and Q be the orthogonal projec-
tion of H onto T kW . Since T kW ⊂W , Q ≤ P holds. Decompose

T =

(
A B

0 C

)
on H =W ⊕W⊥,

and

A =

(
A1 A2

0 A3

)
onW = T kW ⊕

(
W 	 T kW

)
.
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Then we have A ⊕ 0 = TP = PTP and (A ⊕ 0)Q = TQ = QTQ = Q(A ⊕ 0)Q =
A1 ⊕ 0⊕ 0. Since T ∈ QP(n, k), we have

PT ∗k(|Tn|2 − |T |2n)T kP ≥ 0.

This implies that
Q(|Tn|2 − |T |2n)Q ≥ 0.

Hence,

Q|Tn|2Q = QT ∗nTnQ = Q(A∗nAn ⊕ 0)Q = (Q(A⊕ 0)Q)∗n(Q(A⊕ 0)Q)n

A∗n1 An1 ⊕ 0 ≥ Q|T |2nQ

∴ (A∗n1 An1 )
2
n ⊕ {0} ≥

(
Q|T |2nQ

) 2
n

≥ Q(|T |2n) 2
nQ = Q(T ∗T )2Q (by Hansen’s inequality)

= (QT ∗)TT ∗(TQ)

≥ (QT ∗)(TQ)(QT ∗)(TQ) = (A∗1A1)
2 ⊕ {0}.

�

Theorem 6.3. If T ∈ QP(n, k) and (T − λ)x = 0 for some λ 6= 0, then (T − λ)∗x = 0.

Proof. Let P be the orthogonal projection onto ker(T − λ). Then TP = λP, TmP =

λmP , PT ∗ = λP, PT ∗m = λ
m
P for all m ≥ 1. And T and P are of the forms

T =

(
λ A

0 B

)
, P =

(
1 0
0 0

)
on PH ⊕ (1 − P )H. Since T ∈ QP(n, k), T satisfies

T ∗(n+k)Tn+k = T ∗k(T ∗nTn)T k ≥ T ∗k(T ∗T )nT k and hence

|λ|2(n+k)P = PT ∗(n+k)Tn+kP ≥ PT ∗k(T ∗T )nT kP = |λ|2kP (T ∗T )nP,

and

|λ|4P =
(
|λ|2nP

) 2
n ≥ (P (T ∗T )nP )

2
n ≥ P (T ∗T )2P (by Hansen’s inequality)

= |λ|2P (TT ∗)P = |λ|2(|λ|2 +AA∗)

This implies that |λ|4 ≥ |λ|4+|λ|2AA∗, soAA∗ = 0 andA = 0 by λ 6= 0. Thus ker(T−λ)
reduces T and the proof is complete. �

A complex number λ is said to be in the point spectrum σp(T ) of T if there is a nonzero
x ∈ H such that (T − λ)x = 0. If in addition, (T ∗ − λ̄)x = 0, then λ is said to be in the
joint point spectrum σjp(T ) of T .

Corollary 6.4. If T ∈ QP(n, k), then σjp(T ) \ {0} = σp(T ) \ {0}.

Corollary 6.5. If T ∈ QP(n, k) and α, β ∈ σp(T ) with α 6= β. Then ker(T − α) ⊥
ker(T − β).
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Proof. Without loss of the generality, we may assume β 6= 0. Let x ∈ ker(T − α) and
y ∈ ker(T − β). Then Tx = αx, Ty = βy and T ∗y = βy. Therefore

α 〈x, y〉 = 〈αx, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 =
〈
x, βy

〉
= β 〈x, y〉 .

Hence α 〈x, y〉 = β 〈x, y〉 and so (α − β) 〈x, y〉 = 0. But α 6= β, hence 〈x, y〉 = 0.
Consequently ker(T − α) ⊥ ker(T − β). �

Theorem 6.6. If T is a class (M,n) operator, then T is normaloid

Proof. If T is a class (M,n) operator, then T is n-paranormal operator and so the result
follows by [26, Proposition 1]. �

Theorem 6.7. Let T ∈ B(H). If T ∈ QP(n, k) with dense range, then T is class (M,n)
operator.

Proof. Since T has dense range, ran(T k) = H. Then there exists a sequence {xm} ⊂ H
such that lim

n−→∞
T kxm = y. Since T ∈ QP(n, k), we have〈
T ∗k|Tn|2T kxm, xm

〉
≥
〈
T ∗k|T |2nT kxm, xm

〉
〈
|Tn|2T kxm, T kxm

〉
≥
〈
|T |2nT kxm, T kxm

〉
for all m ∈ N

By the continuity of the inner product, we have〈
(|Tn|2 − |T |2n)y, y

〉
≥ 0.

Therefore T is a class (M,n) operator. �

Corollary 6.8. Let T ∈ B(H). If T ∈ QP(n, k) and not class (M,n), then T has not
dense range.

Lemma 6.9. Let T ∈ B(H). If T is a class (M,n) and σ(T ) = {λ}, then T = λ

Proof. Since T is a class (M,n), T is n-paranormal. Hence the result follows from [39].
�

Theorem 6.10. Let T ∈ B(H). If T ∈ QP(n, k) and σ(T ) = {λ}, then T = λ if λ 6= 0
and T k+1 = 0 if λ = 0.

Proof. If the range of T k is dense, then T is of class (M.n). Hence T = λ by Lemma 6.9.
If the range of T k is not dense, then

T =

(
T1 T2

0 T3

)
on H = ran(T k)⊕ ker(T ∗k)

where T1 satisfies the relation (T ∗n1 Tn1 )
2
n ≥ (T ∗1 T1)

2, T k3 = 0 and σ(T ) = σ(T1) ∪ {0}
by Lemma 6.1. In this case, λ = 0. Hence T1 = 0 by Proposition 5.7, Lemma 6.1 and
Lemma 6.9. Thus

T k+1 =

(
0 T2

0 T3

)k+1

=

(
0 T2T

k
3

0 T k+1
3

)
= 0.

�
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Corollary 6.11. If T ∈ QP(n, k) and (T − α)x = 0, (T − β)x = 0 with αn+1 6= βn+1,
then 〈x, y〉 = 0.

Proof. We may assume β 6= 0. Then

αn+1 〈x, y〉 =
〈
Tn+1x, y

〉
=
〈
x, T ∗(n+1)y

〉
= βn+1 〈x, y〉

and so 〈x, y〉 = 0. �

The space of all functions that are analytical in the open neighborhoods of σ(T ) shall
be denoted as Hol(σ(T )). Following [10], we state that T ∈ B(H) possesses the single-
valued extension property (SVEP) at point λ ∈ C if the only analytic function f : Oλ −→
H that satisfies the equation (T − µ)f(µ) = 0 is the constant function f ≡ 0 Every
point of the resolvent ρ(T ) := C \ σ(T ) has SVEP for T ∈ B(H), as is well known.
Furthermore, it is clear that T ∈ B(H) has SVEP at every point in the border ∂σ(T ) of
the spectrum from the identity theorem for analytic functions. Any isolated point of σ(T )
at T has SVEP, in particular. Laursen established in [29, Proposition 1.8] that if T is of
finite ascent, then T possesses SVEP.

If each isolated point of σ(T ) is an eigenvalue of T , then an operator T ∈ B(H) is
said to be isoloid. If isoσ(T ) ⊆ π(T ), where isoσ(T ) is the set of isolated points of the
spectrum σ(T ) of T , and π(T ) is the set of all poles of T , then an operator T ∈ B(H) is
said to be polaroid.
A necessary and sufficient condition for λ ∈ π(T ) is that asc(T − λ) = dsc(T − λ) <∞,
where the ascent of T , asc(T ), is the least non-negative integer n such that ker(Tn) =
ker(Tn+1) and the descent of T , dsc(T ), is the least non-negative integer n such that
ran(Tn) = ran(Tn+1). In general, if T is polaroid then it is isoloid. However, the converse
is not true. Consider the following example. Let T ∈ `2(N) be defined by

T (x1, x2, · · · ) = (
x2

2
,
x3

3
, · · · ).

Then T is a compact quasinilpotent operator with dim ker(T ) = 1, and so T is isoloid.
However, since T does not have finite ascent, T is not polaroid.

Recall that T ∈ B(H) is said to have finite ascent if ker(Tn) = ker(Tn+1) for some
positive integer n.

Theorem 6.12. Let T ∈ B(H). If T is a class (M,n), then T has SVEP.

Proof. Since n-perinormal operator T is finite ascent by [31] , hence T has SVEP. �

Corollary 6.13. If T is a (n, k)-quasiperinormal, then T has SVEP.

Proof. Let f be an analytic function on an open set D such that (T − α)f(α) = 0 for
α ∈ D. Let α = reiθ 6= 0 and αm = r1+ 1

m eiθ. Then

‖f(α)‖2
= lim 〈f(α), f(αm)〉 = 0

by Corollary 6.11. �

Corollary 6.14. Suppose that T is non-zero (n, k)-quasiperinormal and it has no nontriv-
ial T -invariant closed subspace. Then T is of class (M,n) operator.
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Proof. Since T has no non-trivial invariant closed subspace, it has no non-trivial hyper-
invariant subspace. But ker(T k) and ran(T k) are hyperinvariant subspaces, and T 6= 0,
hence, ker(T k) 6= H and ran(T k) 6= {0}. Therefore ker(T k) = {0} and ran(T k) = H.
In particular, T has dense range. It follows from Corollary 6.7 that T is of class (M,n)
operator. �

Theorem 6.15. If T ∈ QP(n, k), then ker(T−λ) = ker(T−λ)2 if λ 6= 0 and ker(T k+1) =
ker(T k+2) if λ = 0. Consequently, T − λ has finite ascent for all λ ∈ C.

Proof. Assume 0 6= λ ∈ σp(T ) because the case λ /∈ σp(T ) is obvious. Let 0 6= x ∈
ker(T − λ)2, x = x1 ⊕ x2 ∈ H = ran(T k)⊕ ker(T k) and

T =

(
T1 T2

0 T3

)
on H = ran(T k)⊕ ker(T k).

Then

0 = (T − λ)2x =

(
T1 − λ T2

0 T3 − λ

)2(
x1

x2

)

=

(
(T1 − λ)2x1 + ((T1 − λ)T2 + T2(T3 − λ))x2

(T3 − λ)2x2

)
.

Consequently, x2 = 0 because T3 − λ is invertible by Lemma 6.1. Thus (T1 − λ)2x1 = 0
and (T1 − λ)x1 ∈ ker(T1 − λ) ⊂ ker(T1 − λ)∗ by Theorem 6.3. Therefore

‖(T1 − λ)x‖2 = 〈(T1 − λ)∗(T1 − λ)x, x〉 = 〈0, x〉 = 0,

so (T1 − λ)x = 0 and

(T − λ)x = (T − λ)(x1 ⊕ 0) = (T1 − λ)x1 = 0.

If λ = 0, x ∈ ker(Tn+k), then

0 =
∥∥Tn+k∥∥2

=
〈
T ∗kT ∗nTnT kx, x

〉
=
〈
T ∗k|Tn|2T kx, x

〉
≥

〈
T ∗k|T |2nT kx, x

〉
=
∥∥|T |nT kx∥∥2

.

Hence |T |nT kx = 0 and |T |T kx = 0. Hence T.T kx = U |T |T kx = 0. This implies that
ker(Tn+k) = ker(T k+1) and ker(T k+1) = ker(T k+2) = · · · .

If λ = 0 and x ∈ ker(T k+1), then it follows from Theorem 3.14 that

∥∥T kx∥∥ = ∥∥T (T k−1x)
∥∥ ≤ ∥∥Tn+k−1x

∥∥ 1
n
∥∥T k−1x

∥∥n−1
n = 0.

Hence T kx = 0. Then x ∈ ker(T k). �
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7 Weyl’s theorem and the self-adjointness of any Riesz idempotent
with respect to an arbitrary isolated point of σ(T )

Theorem 7.1. Let T be n-perinormal and λ is an isolated point of σ(T ) then the Riesz
idempotent Eλ satisfies the followings;

(i) E0(H) = kerT (λ = 0)

(ii) Eλ(H) = ker(T − λ) = ker(T − λ)∗, Eλ = E∗λ (λ 6= 0).

for each n ≥ 2.

Proof. (i) Both of E0H and (1 − E0)H are T -invariant closed subspaces which satisfy
that σ(T |E0H) = {0} and σ(T |(1−E0)H) = σ(T ) \ {0}. Since T ∈ P(n), the restrictions
T |E0H, T |(1−E0)H ∈ P(n) and ‖T |E0H‖ = r(T |E0H) = 0 by Theorem 2.2 (e) and hence
T |E0H = 0. This implies thatE0H ⊂ kerT . Conversely, let x = y+z ∈ kerT be arbitrary
where y ∈ E0H and z ∈ (1− E0)H. Since T |E0H = 0 and T |(1−E0)H is invertible,

0 = Tx = Ty + Tz = (T |E0H)y + (T |(1−E0)H)z = (T |(1−E0)H)z

implies z = 0 and hence x = y ∈ E0H. Therefore E0H = kerT holds.
(ii) Both of EλH and (1 − Eλ)H are T -invariant closed subspaces which satisfy that
σ(T |EλH) = {λ} and σ(T |(1−Eλ)H) = σ(T ) \ {λ}. Since, T ∈ P(n) the restrictions
T |EλH, T |(1−Eλ)H ∈ P(n) and ‖T |EλH‖ = r(T |EλH) = |λ| by Theorem 2.2(e) and

also |λ|−1 ≤
∥∥∥(T |E0H)

−1
∥∥∥ ≤ |λ|−n(n−1)

2 + (n+1)(n−2)
2 = |λ|−1 by Theorem 2.2(f). Hence

U =
1
λ
T |EλH is invertible isometry with the spectrum σ(U) = {1}, so U is unitary and

U = 1 on EλH. This implies that T |Eλ = λEλ and (T − λ)Eλ = 0. It follows that
(T − λ)∗Eλ = 0 by Lemma 5.4 or Lemma 5.6, and hence EλH is a reducing subspace of

T . Since (z − T )∗Eλ = (z − λ)Eλ and (z − T )−1∗Eλ =

(
1

z − λ

)
Eλ, it follows that

0 ≤ E∗λEλ = − 1
2πi

∫
|z−λ|=r

(z − T )∗−1Eλ dz

= − 1
2πi

∫
|z−λ|=r

(
1

z − λ

)
Eλ dz =

(
1

2πi

∫
|z−λ|=r

1
z − λ

dz

)
Eλ = Eλ.

Hence Eλ = E∗λ. Thus T is of the form T = λ ⊕ T ′ on H = EλH ⊕ (1 − Eλ)H with
λ 6∈ σ(T ′). Therefore the assertion EλH = ker(T − λ) = ker(T − λ)∗ holds. �

Theorem 7.2. Weyl’s theorem hold for any n-perinormal operators.

Proof. We first show that σ(T )\w(T ) ⊂ π00(T ). Let λ ∈ σ(T )\w(T ) be arbitrary. Then
T − λ is Fredholm operator with the index ind(T − λ) = 0 and (T − λ) is not invertible.

Case (i). λ = 0. Then kerT 6= {0} is finite dimension and ranT is closed. Thus the
range of T ∗ is closed and T is of the form

T =

(
0 A

0 T ′

)
on kerT ⊕ ranT ∗.
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Since A is a finite rank operator, it follows that T ′ is Fredholm with the index ind(T ′) =
ind(T ) = {0}. Let x ∈ kerT ′ be arbitrary. Then T 2(0⊕x) = T (Ax⊕T ′x) = T (Ax⊕0) =
0 ⊕ 0 = 0, so Tn(0 ⊕ x) = 0. Since T is n-perinormal, kerTn = kerT and hence
x ∈ kerT ∩ ranT ∗ = {0}. Therefore T ′ is Weyl with kerT ′ = {0}, so it is invertible.
This implies that 0 is isolated in σ(T ) = {0} ∪ σ(T ′) and 0 ∈ π00(T ).

Case (ii). λ 6= 0. Then ker(T −λ) is finite dimensional subspace which reduces T and
ran (T−λ) is closed, and hence T is of the form T = λ⊕T ′ onH = ker(T−λ)⊕ran (T−
λ)∗. Since T ′ − λ is Fredholm with the index ind(T ′ − λ) = 0 and ker(T ′ − λ) = {0}, it
follows that T ′−λ is invertible and hence λ is isolated in σ(T ) = {λ}∪σ(T ′). Therefore
λ ∈ π00(T ). Thus σ(T ) \ w(T ) ⊂ π00(T ) holds.

Next, we show that π00(T ) ⊂ σ(T ) \ w(T ).
Let λ ∈ π00(T ) be arbitraray. Then λ is isolated in σ(T ) and ker(T − λ) 6= {0} is

finite dimension.
Case (i). λ = 0. Since T is n-perinormal, T |E0(H) is class (U, n) by Lemma 5.5 and

σ(T |E0(H)) = {0}. Hence T |E0(H) = 0 by Proposition 5.7. Then the Riesz idempotent
E0 with respect to 0 for T satisfies that T |E0H = 0 and T ′ := T |(1−E0)H is invertible (so,
it is Weyl) and T ′ ∈ P(n). And T = 0 + T ′ on H = E0H + (1 − E0)H is also Weyl.
Therefore 0 ∈ σ(T ) \ w(T ).

Case (ii). λ 6= 0. Then ker(T −λ) is finite dimensional subspace which reduces T and
T = λ ⊕ T ′ on H = ker(T − λ) ⊕ ran (T − λ)∗, where T ′ is n-perinormal (hence T ′ ∈
P(n)). If λ ∈ σ(T ′) then λ is isolated in σ(T ′) and λ ∈ σp(T ′). This is a contradiction
because ker(T ′ − λ) ⊂ ran (T − λ)∗ ∩ ker(T − λ) = {0}. Thus T ′ − λ is invertible and
T − λ = 0 ⊕ (T ′ − λ) implies that T − λ is Fredholm with the index ind(T − λ) =
ind(T ′ − λ) = 0, so T − λ is Weyl. Therefore λ ∈ σ(T ) \ w(T ) holds. �

8 Riesz Idempotent for QP(n, k) operators

Let µ be an isolated instance of T. Following that, the Riesz idempotent E of T with
respect to µ is defined as

E :=
1

2πi

∫
∂D

(µ− T )−1 dµ,

whereD is a closed disc with a center at µ and no other points of the points of the spectrum
of T . It is understood that E2 = E,ET = TE, σ(T |ran(E)) = {µ} and ker(T − µ) ⊆
ran(E). In [37]„ Stampfli demonstrated that E is self-adjoint and ran(E) = ker(T −µ) if
T meets the growth condition G1. Recently, Stampfli’s result for quasi-class A operators,
paranormal operators, and k-quasi-∗-paranormal operators was obtained by Jeon and Kim
[20], Uchiyama [42] and Rashid [34]. The Riesz idempotent E of T with respect to µ is
typically not necessarily self-adjoint, even if T is a paranormal operator.

Theorem 8.1. Let T ∈ B(H). If T ∈ QP(n, k), then T is isoloid.

Proof. Assume that T has the representation specified by the Lemma 6.1 and Proposition
5.7. Let z represent an isolated point in σ(T ). Then z is an isolated point in σ(T1) or
z = 0 because σ(T ) = σ(T1) ∪ {0}. Lemma 6.1 and Proposition 5.7 states that if z is an
isolated point in σ(T1), then z is a point in σp(T1). Assume that z = 0 and that z /∈ σ(T1).
Since ker(T3) 6= 0 and Tn3 = 0. Then for x ∈ ker(T3), −T−1

1 T2x⊕ x ∈ ker(T ). Thus, the
proof is obtained. �
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Theorem 8.2. Let T ∈ QP(n, k). Then T is polaroid. Let λ be an isolated point of σ(T )
and E be Riesz idempotent for λ. Then EH = ker(T − λ) if λ 6= 0 and EH = ker(Tn+1)
if λ = 0.

Proof. Since EH is an invariant subspace of T and σ(T |EH) = {λ}, we have T |EH = λ
if λ 6= 0 and (T |EH)k+1 = 0 if λ = 0 by Theorem 6.10 and Proposition 5.7. Hence
EH ⊂ ker(T |EH − λ) ⊂ ker(T − λ) if λ 6= 0 and EH ⊂ ker(T |EH)k+1 ⊂ kerT k+1 if
λ = 0. Since ker(T − λ) ⊂ EH is always true, EH = ker(T − λ) if λ 6= 0. And if λ = 0
then kerT k+1 ⊂ EH also holds. Hence, EH = kerT k+1 by Lemma 5.2 of [44]. Hence

T =

(
T1 0
0 T2

)

where σ(T1) = σ(T |EH) = {λ} and σ(T2) = σ(T ) \ {λ}. Then T1 − λ is nilpotent and
T2 − λ is invertible. Hence T − λ has finite ascent and descent. Hence T is polaroid.

�

Theorem 8.3. Let T ∈ QP(n, k) and µ be a non-zero isolated point of σ(T ). Then the
Riesz idempotent E for µ is self-adjoint and

EH = ker(T − µ) = ker(T − µ)∗.

Proof. If T ∈ QP(n, k), then µ is an eigenvalue of T and EH = ker(T − µ) by Theorem
8.1. Since ker(T−µ) ⊆ ker(T−µ)∗ by Theorem 6.3, it suffices to show that ker(T−µ)∗ ⊆
ker(T − µ). Since ker(T − µ) is a reducing subspace of T by Theorem 6.3 and the
restriction of a QP(n, k) operator to its reducing subspace is also a QP(n, k) operator by
Lemma 6.2, T can be written as

T = µ⊕ T1 on H = ker(T − µ)⊕ ker(T − µ)⊥,

where T1 is a n-perinormal with ker(T1 − µ) = {0}. Since µ ∈ σ(T ) = σ(T1) ∪ {µ}
is isolated, only two cases occur: either µ /∈ σ(T1), or µ is an isolated of σ(T1) and
this contradicts the fact that ker(T1 − µ) = {0}. Since T1 is invertible as an operator on
ker(T − µ)⊥, we have ker(T − µ) = ker(T − µ)∗.

Next, we show that E is self-adjoint. Since

EH = ker(T − µ) = ker(T − µ)∗,

we have
((z − T )∗)−1E = (z − µ)−1E.

Therefore

E∗E = − 1
2πi

∫
∂D

((z − T )∗)−1E dz̄ = − 1
2πi

∫
∂D

(z − T )−1E dz̄

=

(
1

2πi

∫
∂D

(z − T )−1 dz

)
E = E.

This achieves the proof. �
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9 Tensor Product

Let’s use the Hilbert spaces’ symbols H and K. H ⊗ K signifies the tensor product on
the product space T ⊗ S for the non-zero operators T ∈ B(H) and S ∈ B(K) that are
specified. In terms of tensor products, the normaloid property is invariant [36]. According
to [12, 38], T ⊗ S is normal if and only if T and S are normal. There are paranormal
operators T and S such that T ⊗ S is not paranormal [1]. I.H. Kim shown in [23] that
for non-zero T ∈ B(H) and S ∈ B(K), T ⊗ S is log-hyponormal if and only if T and S
are log-hyponormal. In in [23], [22], [20], [24] and [33], respectively, this finding was
extended to p-quasihyponormal operators, class A operators, quasi-class A, quasi-class
(A, k) operators, and class Ak operators. In this section, we prove an analogous result for
class (U, n) operators.

Remark 9.1. Let T ∈ B(H) and S ∈ B(K) be non-zero operators, then we have

(i) (T ⊗ S)∗(T ⊗ S) = T ∗T ⊗ S∗S

(ii) |T ⊗ S|t = |T |t ⊗ |S|t for any positive real t.

Lemma 9.2. ( [38]) Let T1, T2 ∈ B(H), S1, S2 ∈ B(K) be non-negative operators. If T1
and S1 are non-zero, then the following assertions are equivalent:

(a) T1 ⊗ S1 ≤ T2 ⊗ S2

(b) there exists c > 0 such that T1 ≤ cT2 and S1 ≤ c−1S2.

Theorem 9.3. ([45]) Let T ∈ B(H) and S ∈ B(K) be non-zero operators. Then T ⊗ S ∈
B(H⊗K) is a class (M,n) operator if and only if T and S are class (M,n) operators.

Theorem 9.4. Let T ∈ B(H) and S ∈ B(K) be non-zero operators. Then T ⊗ S ∈
B(H⊗K) is a class (U, n) operator if and only if T and S are class (U, n) operators.

Proof. It is clear that T ⊗ S is a class (U, n) operator if and only if

|(T ⊗ S)n| 4
n ≥ |T ⊗ S|4

⇐⇒ |Tn ⊗ Sn| 4
n ≥ |T |4 ⊗ |S|4

⇐⇒ |Tn| 4
n ⊗ |Sn| 4

n ≥ |T |4 ⊗ |S|4

⇐⇒ (|Tn| 4
n − |T |4)⊗ |Sn| 4

n + |T |4 ⊗ (|Sn| 4
n − |S|4) ≥ 0

Therefore, the sufficiency is clear.
Conversely, suppose that T ⊗S is a class (U, n) . Let x ∈ H and y ∈ K be arbitrary. Then
we have〈

(|Tn| 4
n − |T |4)x, x

〉〈
|Sn| 4

n y, y
〉
+
〈
|T |4x, x

〉 〈
(|Sn| 4

n − |S|4)y, y
〉
≥ 0 (9.1)

Suppose on the contrary that T is not a class (U, n) operator; then there exists x0 ∈ H
such that { 〈

(|Tn| 4
n − |T |4)x0, x0

〉
= α < 0〈

|T |4x0, x0
〉
= β > 0

(9.2)
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From (9.1), we have

α
〈
|Sn| 4

n y, y
〉
+ β

〈
(|Sn| 4

n − |S|4)y, y
〉
≥ 0 (9.3)

for all y ∈ K; that is,
(α+ β)

〈
|Sn| 4

n y, y
〉
≥ β

〈
|S|4y, y

〉
(9.4)

for all y ∈ K. Therefore, S is a class (U, n) operator. So, we have

(α+ β)
∥∥∥|Sn| 2

n y
∥∥∥2
≥ β

∥∥|S|2y∥∥2
(9.5)

for all y ∈ K by (9.4). By (9.5), we have

(α+ β)
∥∥∥|Sn| 2

n

∥∥∥2
≥ β

∥∥|S|2∥∥2
. (9.6)

Since self-adjoint operators are normaloid, we have

(α+ β) ‖Sn‖
4
n = (α+ β) ‖|Sn|‖

4
n = (α+ β)

∥∥|Sn|2∥∥ 2
n

≥ β
∥∥|S|2∥∥2

= β ‖|S|‖4 = β ‖S‖4
. (9.7)

Hence
β ‖S‖4 ≤ (α+ β) ‖Sn‖

4
n ≤ (α+ β) ‖S‖4

.

This implies that S = 0. This contradicts the assumption S 6= 0. Hence T must be a class
(U, n) operator. A similar argument shows that S is also a class (U, n) operator. �

Theorem 9.5. Let T ∈ B(H) and S ∈ B(K) be non-zero operators. Then T ⊗ S ∈
QP(n, k) if and only if one of the following holds:

(i) T and S are in QP(n, k).
(ii) T k+1 = 0 or Sk+1 = 0.

Proof. By simple calculation we have

T ⊗ S ∈ QP(n, k)⇔ (T ⊗ S)∗k
(
|(T ⊗ S)n|2 − |T ⊗ S|2n

)
(T ⊗ S)k ≥ 0

⇔ T ∗k(|Tn|2 − |T |2n)T k ⊗ S∗k|Sn|2Sk + T ∗k|T |2nT k ⊗ S∗k(|Sn|2 − |S|2n)Sk ≥ 0.

Thus the sufficiency is easily proved because T ∗k|T |2nT k = 0 if T k+1 = 0. Conversely,
suppose that T ⊗ S ∈ QP(n, k). Then for x, y ∈ H we have〈

T k∗(|Tn|2 − |T |2n)T kx, x
〉 〈
Sk∗|Sn|2Sky, y

〉
+
〈
T k∗|T |2nT kx, x

〉 〈
Sk∗(|Sn|2 − |S|2n)Sky, y

〉
≥ 0.

(9.8)

It suffices to show that if the statement (ii) does not hold, the statement (i) holds.Thus,
assume to the contrary that neither of T k+1 and Sk+1 is the zero operator, and T is not in
QP(n, k). Then there exists x0 ∈ H such that〈

T k∗(|Tn|2 − |T |2)T kx0, x0
〉

:= α < 0 and
〈
T k∗|T |2nT kx0, x0

〉
:= β > 0.
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From ( 9.8) we have

(α+ β)
〈
Sk∗|Sn|2Sky, y

〉
≥ β

〈
Sk∗|S|2nSky, y

〉
. (9.9)

Thus S ∈ QP(n, k). By Hölder McCarthy Inequality, we have〈
Sk∗|Sn|2Sky, y

〉
=
∥∥Sn+ky∥∥2

and 〈
Sk∗|S|2nSky, y

〉
≥
〈
|S|2Sky, Sky

〉n ∥∥Sky∥∥2(1−n)
=
∥∥Sk+1y

∥∥2n ∥∥Sky∥∥2(1−n)
.

Therefore, we have

(α+ β)
∥∥Sn+ky∥∥2 ≥ β

∥∥Sk+1y
∥∥2n ∥∥Sky∥∥2(1−n)

. (9.10)

Since S ∈ QP(n, k), from Lemma 6.1 we have a decomposition of S as the following:

S =

[
S1 S2

0 S3

]
on H = <(Sk)⊕ ker(S∗k), where S1 is a class (U, n).

By (9.10) and Lemma 6.2 we have

(α+ β) ‖Sn1 ξ‖
2 ≥ β ‖S1ξ‖2n for all ξ ∈ <(Sk). (9.11)

So, we have
(α+ β) ‖S1‖4 ≥ β ‖S1‖4

,

where equality holds since S1 is normaloid by Proposition 5.7.
This implies that S1 = 0. Since Sk+1y = S1S

ky = 0 for all y ∈ K, we have Sk+1 = 0.
This contradicts the assumption Sk+1 6= 0. Hence T must be a (n, k)-quasiperinormal
operator. A similar argument shows that S is also a (n, k)-quasiperinormal operator. The
proof is complete. �
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