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Abstract In this paper, we introduce the closely-connected vertices and the concept of cc-
domination for simple finite undirected graphs. A cut path in a graph G is a path whose edges
when deleted increases the number of components of G. A subset D of V (G) is called a cc-
dominating set if for every vertex u /∈ D, there exists a vertex v ∈ D such that Γcc(u, v) ≥
1, where Γcc(u, v) is the number of geodesics connecting u and v except the cut paths. The
minimum cardinality of a cc-dominating set is called the cc-domination number of G, denoted
by γcc(G). Analogously, we introduce the cc-covering number αcc(G), cc-independence number
βcc(G) and cc-domatic number dcc(G) of G. Moreover, bounds and some interesting results are
established.

1 Introduction

A characteristic feature that distinguishes distributed systems from single machine systems is
the notion of partial failure. Hence while designing a distributed system paramount importance
should be given to fault tolerance mechanisms so that the system can automatically recover
from partial failures without seriously affecting its overall performance. In the modern era of
cloud computing, fault-tolerance mechanisms are indispensable to ensure high availability and
authenticity to the users. The faults in the cloud environment may occur due to physical faults,
network faults, processor faults, service expiry faults, etc , and so on [11]. Among these, network
faults arise mainly due to link failures. To minimize link failures, the nodes of the network must
be associated “more closely" in such a way that unpredictable disruptions may not fail the whole
network.

Mathematically, the motivation to introduce cycle graphsCn in graph theory was to overcome
the difficulties that may arise due to the lack of multiple paths between graph vertices. Being
free of cut edges, the adjacent vertices of Cn are “so close" in the sense that they share no cut
paths. But this is not true for non-adjacent vertices, since every path in Cn except the edges are
cut paths. Thus the property enjoyed by adjacent vertices in terms of “closeness" does not hold
for non-adjacent vertex pairs in Cn. This structural deficiency of Cn along with the necessity
to tolerate link failures in distributed systems motivated the authors to study closely-connected
vertices of a graph.

By graph G, we mean a finite simple undirected graph. For u, v ∈ V (G), N(u) and N [u] re-
spectively denote the open and closed neighborhoods of u, whereas the distance d(u, v) between
u and v is the number of edges in a geodesic connecting them. The eccentricity of a vertex u
is the greatest distance from u to any other vertex and is denoted by e(u). A dominating set in
G is a set D ⊆ V (G) such that every vertex not in D is adjacent to at least one vertex in D.
The domination number γ(G) is the minimum cardinality of a dominating set in G. The line
graph L(G) is the graph whose vertices correspond to the edges of G and two vertices in L(G)
are adjacent iff the corresponding edges in G are adjacent. For terminologies and notations not
specifically defined here, we refer the reader to [2]. For more details about domination number
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and their related parameters, we refer to [3], [4],[5], [8] and for variations in ordinary domination
[1],[12] and [13] can be referred.

In this paper, we introduce the concept of cc-domination in graphs. In ordinary domination,
a vertex needs to be either dominated by itself or by its neighbor. But in practice, this model
is not always economic. For instance, we have a complicated network system in which control
units have to be placed at various places to monitor the faults and disturbances in the system.
Thus control units have to be introduced at those vertices that can monitor the vertices “closer"
to it. That is, we would like to find out the minimum number of control units required so that
the whole system can be controlled with minimum cost. This idea has motivated the authors
to introduce the concept of cc-domination in graphs. Throughout this paper, G denotes a finite
simple undirected graph with vertex set V (G) and edge set E(G) unless specified otherwise.

2 CC-Dominating sets of graphs

Definition 2.1. Let G = (V,E) be a graph. A path P in G is a cut path if there exists a graph
G

′
= (V,E \ E′

) for some E
′ ⊆ E(P ) such that ω(G

′
) > ω(G).

Definition 2.2. Let G = (V,E) be a graph. For i 6= j, the vertices vi, vj ∈ V are closely-
connected if at least one of the geodesics connecting them is not a cut path in G.
The cc-number of vi and vj is defined as

Γcc(vi, vj) = {p ∈ P (vi, vj)| p is not a cut path in G},

where P (vi, vj) is the set of all geodesics connecting vi and vj in G.

Definition 2.3. Let G = (V,E) be a graph. The open cc-neighborhood of a vertex u ∈ V is
defined as

Ncc(u) = {v ∈ V : Γcc(u, v) ≥ 1}.

and the closed cc-neighborhood of u is defined as Ncc[u] = Ncc(u) ∪ {u}. The cardinality of
Ncc(u) is called the cc-degree of the vertex u, denoted by degcc(u), in G. The maximum and
minimum cc-degree of a vertex in G are given by

∆cc(G) = maxu∈V |Ncc(u)|,
δcc(G) = minu∈V |Ncc(u)|.

The vertex u is said to be cc-isolated if Ncc(u) = φ. An edge e = uv is a cc-edge if v ∈ Ncc(u).
The cc-complement of G is the graph Ḡcc = (V,E

′
), where u

′
v

′ ∈ E′
iff v

′
/∈ Ncc(u

′
) in G for

u
′
, v

′ ∈ V.

Remark 2.4. For a graph G,

(i) a vertex u ∈ V (G) is cc-isolated iff either u is isolated or u has deg(u) cut edges incident
to it.

(ii) an edge in G is a cc-edge iff it is not a cut edge.

Definition 2.5. Let G = (V,E) be a graph. A subset S of V is called a cc-vertex covering of
G if for every cc-edge e = uv either u ∈ S or v ∈ S . The minimum cardinality of a cc-vertex
covering of G is called the cc-covering number, denoted by αcc(G). A subset S′ of V is called
cc-independent if Γcc(u, v) = 0 ∀u, v ∈ S′. The maximum cardinality of a cc-independent set in
G is called the cc-independence number and is denoted by βcc(G).

Definition 2.6. LetG be a graph. The cc-neighborhood graph ofG is the graph ccn(G) satisfying
the following properties:

(i) V (G) = V (ccn(G)).

(ii) For u, v ∈ V (G) with u 6= v, u and v are adjacent in ccn(G) iff {u, v} is not cc-independent
in G.
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The following are immediate consequences of definition 2.6 :

(i) ccn(G) = Kn iff βcc(G) = 1.

(ii) ccn(G) = K̄n iff G is acyclic.

(iii) If G is connected, then ccn(G) = K̄n iff G is a tree.

(iv) ccn(Cn) = Cn ∀n ≥ 3.

(v) For k ≥ 2 and 2 ≤ n1 ≤ · · · ≤ nk,

ccn(Kn1,··· ,nk
) =

{
Kn1,n2 , if k, n1 = 2
Kn1+···+nk

, if k ≥ 2 and n1 > 2.

Proposition 2.7. There does not exist a graph G of order n > 2 satisfying ccn(G) = Ḡ .

Proof. If possible there exists a graph G such that ccn(G) = Ḡ.

Case(i) E(G) = φ.
In this case, G = K̄n so that ccn(G) = K̄n = G, a contradiction since G is not self
complementary.

Case(ii) E(G) 6= φ.
Sub case(i): G has only cut edges.
Since n > 2, the edge set of Ḡ is non empty, but ccn(G) = K̄n.
Sub case(ii): G has at least one cc-edge.
Let uv be a cc-edge in G. Then, Γcc(u, v) ≥ 1 so that u and v are adjacent in ccn(G) = Ḡ,
which is not possible.

This completes the proof.

Corollary 2.8. For a graph G, ccn(G) = Ḡ iff G = P2.

Proposition 2.9. Let G = (V,E) be a cut edge free graph and u, v ∈ V be such that d(u, v) = 2.
Then, u and v are closely-connected iff there exists a path P (u, v) such that both the edges of P
cannot be characterized by a unique cycle in G.

Theorem 2.10. Let G = (V,E) be a graph and u, v ∈ V are closely-connected. Then, there
exists a path free of cut edges with every intermediate vertex of degree atleast 3 in G.

Proof. Assume that u and v are closely-connected. Then, there exists a path P (u, v) in G such
that none of its edges are cut edges. Let w be an intermediate vertex of P so that deg(w) ≥
2. If deg(w) = 2, then the deletion of the edges incident to w in G increases the number of
components of G by isolating w. Therefore, deg(w) ≥ 3.

Remark 2.11. The converse of the above theorem is not true. For example, consider the graph
shown below.

v2

v3

v4

v1

v5

v6

Here the path P = v1v4v3 has the intermediate vertex v4 with deg(v4) = degcc(v4) = 4, but v1
and v3 are not closely-connected.
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Definition 2.12. Let G = (V,E) be a graph. A subset D of V is called cc-dominating set if for
every vertex v ∈ V −D there exists a vertex u ∈ D such that Γcc(u, v) ≥ 1.
The minimum cardinality of a cc-dominating set in G is called the cc-domination number, de-
noted by γcc(G).

For a graph G of order n, the following are some basic properties of γcc(G):

(i) 1 ≤ γcc(G) ≤ n.

(ii) γcc(G) = γ(ccn(G)).

(iii) γcc(G) = n iff G is acyclic.

(iv) If G has no cut edge, then γcc(G) ≤ γ(G).

(v) If G is connected, then γcc(G) = n iff G is a tree.

Proposition 2.13. We have the following:

(i) For a graph G if ccn(G) = Kn, then γcc(G) = 1.

(ii) For any 2-regular graph G, γcc(G) = γ(G).

(iii) For the complete graph Kn,

γcc(Kn) =

{
2, if n = 2
1, if n 6= 2.

(iv) For the complete bipartite graph Km,n,

γcc(Km,n) =

{
2, if m,n = 2
1, if m ≥ 2, n > 2.

(v) For n > 2, γcc(Km1,...,mn
) = 1, where Km1,...,mn

is the complete n-partite graph.

(vi) For n ≥ 3, γcc(Ln) = 1, where Ln is the ladder graph obtained by joining the correspond-
ing vertices of two copies of the path graph Pn.

(vii) For the path graph Pn, γcc(L(Pn)) = n− 1, where n > 1.

(viii) For the cycle graph Cn, γcc(L(Cn)) = γ(Cn), where n ≥ 3.

(ix) For the star graph K1,n, γcc(L(K1,n)) = 1, where n > 1.

(x) For the bistar graph Bm,n,

γcc(L(Bm,n)) =


1, both m > 1 and n > 1
2, either m = 1 or n = 1, not both
3, both m = 1 and n = 1.

Proposition 2.14. Let G be a graph and u ∈ V (G) be cc-isolated. Then, u belongs to every
cc-dominating set of G.

Proposition 2.15. Let G be a graph. Then, we have the following.

(i) If G is acyclic, then γ(G) ≤ γcc(G).

(ii) If G has k cc-isolated vertices, then γcc(G) ≥ k.

Proposition 2.16. For a cut edge free graph G, γcc(G) ≤ γ(G). The equality holds if N(v) =
Ncc(v) ∀v ∈ V (G).

Proof. Being free of cut edges, the adjacent vertices are closely-connected in G so that every
dominating set is a cc-dominating set. Now, if N(v) = Ncc(v) holds ∀v ∈ V (G), we can
conclude that Γcc(u, v) ≥ 1 iff u and v are adjacent ∀ u, v ∈ V (G) with u 6= v. Thus every
cc-dominating set of G will also be its dominating set. Hence γcc(G) = γ(G).
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Remark 2.17. The converse for the equality in the above proposition is not true, in general.
That is, γcc(G) = γ(G) need not always imply N(v) = Ncc(v) ∀v ∈ V (G). For example,
consider the graph shown below. Observe that, every vertex pair is closely-connected so that
γcc(G) = γ(G) = 1. But, N(1) = {2, 4} whereas Ncc(1) = {2, 3, 4} so that N(1) 6= Ncc(1).

1

2

3

4

Proposition 2.18. Let G be a connected graph in which vertex pairs having common neighbors
are closely-connected. Then γcc(G) = 1 if there exists a vertex v ∈ V (G) such that N(v) =
Ncc(v) and e(v) ≤ 2.

Proof. Let v ∈ V (G) be such that N(v) = Ncc(v) and e(v) ≤ 2. If G = K1, there is nothing to
prove. Otherwise, for any u ∈ V (G),

Case(i) If u is adjacent to v, then u ∈ N(v) = Ncc(v) so that Γcc(u, v) ≥ 1.

Case(ii) If u is not adjacent to v, then d(u, v) = 2 since e(v) ≤ 2. Since there exists a path of
length 2 in G from u to v, the vertex pair (u, v) shares a common neighbor. Hence by our
assumption it follows that u and v are closely-connected.

Thus in both the cases, Γcc(u, v) ≥ 1 and hence γcc(G) = 1.

Corollary 2.19. Let G be a connected graph of diameter at most 2 such that the vertex pairs
sharing a common neighbor are closely-connected. Then γcc(G) = 1 iff there exists a vertex
v ∈ V (G) such that N(v) ⊆ Ncc(v).

Corollary 2.20. Let G be either disconnected or having diameter at least 3 such that the vertex
pairs sharing a common neighbor in Ḡ are closely-connected. Then, γcc(Ḡ) = 1 iff there exists
a vertex v ∈ V (Ḡ) such that N(v) ⊆ Ncc(v) in Ḡ.

Proof. This follows from the fact that the diameter of the complement of G is at most 2.

Theorem 2.21. LetG = (V,E) be a graph having no cc-isolated vertices. Then, the complement
of every minimal cc-dominating set in G is again a cc-dominating set.

Proof. Let D be a minimal cc-dominating set in G. If possible, assume that V − D is not a
cc-dominating set of G. Then, there exists u ∈ D such that Γcc(u, v) = 0 ∀v ∈ V − D. But
since G has no cc-isolated vertices, there exists some vertex w ∈ D − {u} such that u and w are
closely-connected. Thus D − {u} is a cc-dominating set in G, a contradiction to the minimality
property of D.

Corollary 2.22. Let G = (V,E) be a graph of order n such that δcc(G) ≥ 1. Then, γcc(G) ≤ n
2 .

Proof. Let D be a minimal cc-dominating set of G. Since δcc(G) ≥ 1, G has no cc-isolated
vertices so that it follows from theorem 2.21 that V −D is a cc-dominating set of G. Therefore,
γcc(G) ≤ min{|D|, |V −D|} ≤ n

2 .

Theorem 2.23. Let G = (V,E) be a graph. A cc-dominating set D of G is minimal iff for every
vertex u ∈ D one of the following conditions hold:

(i) Ncc(u) ⊆ V −D.
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(ii) ∃ v ∈ V −D such that Ncc(v) ∩D = {u}.

Proof. Assume that D is a minimal cc-dominating set of G. Then, for every vertex u ∈ D,D −
{u} is not a cc-domination of G. That is, there exists v ∈ (V −D)∪{u} such that Γcc(v, w) = 0
is ∀w ∈ D − {u}.

Case(i) If v = u, then Ncc(u) ⊆ V −D.

Case(ii) Let v ∈ V −D. Since Γcc(v, w) = 0 is ∀ w ∈ D− {u} and since D is a cc-domination
of G, it follows that Γcc(v, u) ≥ 1. Hence it can be concluded that the only vertex in D to
which v is closely-connected is u.

Conversely, assume that D is not a minimal cc-dominating set in G. Thus there exists u ∈ D
such that D − {u} is a cc-domination of G. That is, Γcc(u,w) ≥ 1 for some w ∈ D − {u} so
that Ncc(u) ∩D 6= φ. Also since every vertex of V −D is closely-connected to some vertex of
D−{u}, there does not exists a vertex v ∈ V −D satisfying Ncc(v)∩D = {u}, a contradiction.
Hence D is a minimal cc-dominating set in G.

Theorem 2.24. A graph G = (V,E) has a unique minimal cc-dominating set iff the set of all
cc-isolated vertices constitutes a cc-domination of G.

Proof. LetD be the unique minimal cc-dominating set inG and let S = {v ∈ V : v is cc-isolated}.
From proposition 2.14, it folows that S ⊆ D.

Case(i) If S = D, then there is nothing to prove.

Case(ii) If S 6= D, then ∃ u ∈ D such that u is not cc-isolated. That is, Γcc(u, v) ≥ 1 for some
v ∈ V so that V − {u} is a cc-dominating set in G. This proves the existence of a minimal
cc-dominating set D

′
different from D and contained in V − {u}, a contradiction to the

uniqueness of D.

The converse of the theorem holds trivially since the set of all cc-isolated vertices is contained
in every cc-dominating set of G.

Theorem 2.25. Let G be a cut edge free graph of diameter at most 2 and maximum degree ∆(G).
Then, γcc(G) ≤ ∆(G).

Proof. Let v ∈ V (G) be such that deg(v) = ∆(G).

Case(i) If diameter of G is 1, then G = Kn for some n. Hence the result holds trivially.

Case(ii) If diameter of G is 2, let V1(G) = {u ∈ V | d(u, v) = 1}. Since the edges of G
are cc-edges, adjacent vertices are closely-connected in G. Thus V1(G) itself constitutes a
cc-dominating set of G.

Hence, γcc(G) ≤ ∆(G).

Theorem 2.26. For a graph G = (V,E) of order n, γcc(G) ≤ n− ∆cc(G). Further, the equality
holds if γcc(G) = 1.

Proof. Let v ∈ V be such that dcc(v) = ∆cc(G). Then, |Ncc(v)| = ∆cc(G). Therefore, V −
Ncc(v) is a cc-dominating set of G so that

γcc(G) ≤ |V −Ncc(v)| = n− ∆cc(G).

If γcc(G) = 1, then ∆cc(G) = n− 1, so that the equality holds.

Theorem 2.27. Let G be a connected graph free of cut edges. Then, G has a cc-dominating set
whose complement is again a cc-dominating set.

Proof. Since G is connected, it has a spanning tree, say T . Let u ∈ V (G) and D be the set of
all vertices in T which are at odd unit distance from u. Then, both D and D̄ are dominating sets
in G. The result follows from the fact that dominating sets in cut edge free graphs are also its
cc-dominations.
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Theorem 2.28. Let G = (V,E) be a disconnected graph with components G1, . . . , Gm such that
|V (Gi)| ≥ 3 ∀i = 1, . . . ,m. Then, γcc(Ḡ) = 1.

Proof. Let u be a fixed vertex and v be an arbitrary vertex of the connected graph Ḡ.

Case(i) v is adjacent to u in Ḡ.
Since |V (Gi)| ≥ 3 ∀i = 1, . . . ,m, Ḡ has no cut edges. Hence Γcc(u, v) ≥ 1 in Ḡ.

Case(ii) v is not adjacent to u in Ḡ.
Since u and v are adjacent in G, they belong to the same component of G, say Gk. Let
w ∈ Gj for some j 6= k. Since |V (Gi)| ≥ 3 ∀i = 1, . . . ,m, ω(Ḡ

′
) = ω(Ḡ), where

Ḡ
′
= (V, Ē − {uw, vw}). Thus, Γcc(u, v) ≥ 1.

Hence it follows that {u} is a cc-dominating set in Ḡ so that γcc(Ḡ) = 1.

Theorem 2.29. Let G be a graph of order n such that n
1+∆cc(G) ≤ γcc(G). Further, the equality

holds if and only if for every minimum cc-dominating set D in G the following conditions are
satisfied:
(i) for any vertex v ∈ D, degcc(v) = ∆cc(G).
(ii) D is cc-independent in G.
(iii) every vertex in V −D is closely-connected to exactly one vertex in D.

Proof. Let D be a minimum cc-dominating set in G. Clearly, every vertex in G cc-dominates at
most ∆cc(G) + 1 vertices so that

n = |Ncc[D]| ≤ γcc(G)(∆cc(G) + 1).

Hence, n
1+∆cc(G) ≤ γcc(G).

Now if the given conditions are satisfied, n = γcc(G)∆cc(G)+γcc(G) so that n
1+∆cc(G) = γcc(G).

Conversely, if one of the above conditions is not satisfied, then n < γcc(G)∆cc(G) + γcc(G) so
that the equality fails.

Example 2.30. Consider the cycle graph C3k ∀ k ≥ 1. Then,

degcc(v) = 2 = ∆cc(G),∀v ∈ V (C3k).

Also, γcc(C3k) = γ(C3k) = k by 2.13. Therefore,

n

1 + ∆cc(G)
=

3k
3

= γcc(C3k).

Lemma 2.31. Every maximal cc-independent set in a graph G is its minimal cc-dominating set.

Proof. Let D be a maximal cc-independent set and v ∈ V −D. If v /∈ Ncc(u) for every u ∈ D,
then D ∪ {v} is cc-independent, a contradiction to the maximality of D. Therefore v ∈ Ncc(u)
for some u ∈ D so that D is a cc-dominating set in G. Now if possible assume that D is not a
minimal cc-domination of G. Then, there exists w ∈ D such that D − {w} is a cc-dominating
set. That is, there exists a vertex closely-connected to w in D, a contradiction since D is cc-
independent . Hence D is a minimal cc-dominating set in G.

Theorem 2.32. For any graph G, γcc(G) ≤ βcc(G).

Proof. The proof of the theorem is a direct consequence of the above lemma.

Theorem 2.33. Let G = (V,E) be a graph of order n. Then,

αcc(G) + βcc(G) = n.

Proof. Assume that S ⊆ V be a cc-vertex covering of G of cardinality αcc(G) and e = uv be
a cc-edge of G. Since either u or v belongs to S, it follows that V − S is cc-independent in G.
Thus,

βcc(G) ≥ |V − S| = n− αcc(G).
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3 CC-Domatic number of graphs

A domatic partition of a graph G is a partition of V (G), all of whose classes are dominating sets
in G. The maximum number of classes of a domatic partition of G is called the domatic number
of G, denoted by d(G). For applications of domatic partition [6], [9] and [14] can be inferred.
Analogously, we introduce the cc-domatic number dcc(G) of a graph G and establish some of its
properties. Moreover, we obtain some bounds for dcc(G) as well.

Definition 3.1. Let G be a graph. The cc-domatic partition of G is a partition {V1, . . . , Vk}
of V (G) in which each Vi is a cc-dominating set of G. The maximum order of a cc-domatic
partition of G is called the cc-domatic number of G and is denoted by dcc(G).
For every graph G there exists at least one cc-domatic partition of V (G), namely {V (G)} so that
dcc(G) is well-defined.

Proposition 3.2. For the complete graph Kn,

dcc(Kn) =

{
1; if n = 2,
n; otherwise.

Proof. Here we have two cases.

Case(i) If n = 2, then K2 = P2, a tree so that dcc(K2) = 1.

Case(ii) If n 6= 2, then every vertex v ∈ V (Kn) cc-dominates all other vertices so that the
maximum order of a partition of V (Kn) into cc-dominating sets is n. Hence, dcc(Kn) = n.

Proposition 3.3. For a graph G, dcc(G) = 1 iff G has at least one cc-isolated vertex.

Proof. It can be noted from proposition 2.14 that if G has a cc-isolated vertex v, then every cc-
dominating set of G contains v. Thus dcc(G) = 1. Conversely, assume that dcc(G) = 1 and G
has no cc-isolated vertex. Since δcc(G) ≥ 1, it follows from corollary 2.22 that γcc(G) ≤ n

2 .Now
for a minimal cc-dominating set D in G, V −D is also a cc-dominating set. Thus dcc(G) ≥ 2, a
contradiction. Hence G has at least one cc-isolated vertex.

Proposition 3.4. Let G be a graph. If dcc(G) = |V (G)|, then γcc(G) = 1.

Proof. Since dcc(G) = |V (G)|, every cc-dominating set in the maximum order cc-domatic par-
tition of G is singleton so that γcc(G) = 1.

Remark 3.5. The converse of the above proposition is not true. For example, consider the com-
plete bipartite graph K2,n, where n > 2. Then, γcc(K2,n) = 1 by proposition 2.13 . But the
vertices of degree n in K2,n are not closely-connected so that dcc(G) = n+ 1 < |V (K2,n)|.

Proposition 3.6. For any graph G, if Ncc(v) = N(v) for any vertex v ∈ V (G), then dcc(G) =
d(G).

Proposition 3.7. Let G be a graph without cut edges. Then, d(G) ≤ dcc(G).

Proof. This follows from the fact that every dominating set of a cut edge free graph is also a
cc-dominating set.

Theorem 3.8. For any graph G of order n, dcc(G) ≤ n
γcc(G) . Further, the equality holds if the

number of cc-dominating sets of minimum cardinality is ( n
γcc(G)).

Proof. Let G be a graph of order n with cc-domatic partition {D1, . . . , Dk}. Since dcc(G) = k
and |Di| ≥ γcc(G) ∀i = 1, . . . , k,

n =
k∑
i=1

|Di| ≥ kγcc(G).

Hence, dcc(G) ≤ n
γcc(G) .

Now, if the number of cc-dominating sets of cardinality γcc(G) is ( n
γcc(G)), then |Di| = γcc(G)

∀i = 1, . . . , k so that dcc(G) = n
γcc(G) .
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Theorem 3.9. Let G be a graph of order n. Then, dcc(G) ≤ δcc(G) + 1. Further, the equality
holds if G is the complete graph Kn for n 6= 2.

Proof. Assume that dcc(G) > δcc(G) + 1 and D = {D1, . . . , Dk} be a cc-domatic partition of
G. Clearly, k ≥ δcc(G) + 2. Let v ∈ V (G) be such that degcc(v) = δcc(G).

Claim v is not cc-dominated by Di for some i = 1, . . . , k.
If possible, Ncc[v] ∩Di 6= φ ∀i = 1, . . . , k. Since D

′

is are mutually disjoint and |Ncc[v]| =
δcc(G) + 1, the cardinality of the cc-domatic partition D of G must not exceed δcc(G) + 1,
a contradiction. Hence there exists a member of D, say Dj , such that Ncc[v] ∩Dj = φ.

Since Dj cannot cc-dominate v, it cannot be a cc-dominating set in G, a contradiction to our
assumption that D is a cc-domatic partition of G. Therefore, dcc(G) ≤ δcc(G) + 1. Now, if G =
Kn, then δcc(G) = n−1 and hence it follows from proposition 3.2 that dcc(G) = δcc(G)+1.

Theorem 3.10. Let G be a graph of order n without cut edges. Then,

dcc(G) = n− 1 iff G = K2,n−2, where n ≥ 5.

Proof. LetG = K2,n−2 with partite setsM andN of cardinalities 2 and n−2 respectively. Then,
the vertex pairs ofG except the one belonging toM are closely-connected. Thus, dcc(G) = n−1.
Conversely, assume that G 6= K2,n−2 and dcc(G) = n − 1. Since n ≥ 5, there exists adjacent
vertices u, v ∈ V (G) such that w ∈ V (G) is a common neighbor of u and v. Since G has no
cut edges, the vertex w cc-dominates u and v so that δcc(G) ≤ 2. From theorem 3.9, we get
dcc(G) ≤ δcc(G) + 1 ≤ 2 + 1 = 3. That is, dcc(G) ≤ 3 ≤ n − 2, a contradiction. Therefore,
G = K2,n−2.

Theorem 3.11. For any graph G of order n, dcc(G) ≥
⌊

n
n−δcc(G)

⌋
.

Proof. Let D be any subset of V (G) with |D| ≥ n− δcc(G).

Claim D is a cc-dominating set of G.
If possible, let v ∈ D̄ be such that Ncc(v) ∩D = φ. Clearly, |Ncc(v)| ≥ δcc(G). But, since
|D| ≥ n− δcc(G), we get |Ncc(v)| < δcc(G), a contradiction. Hence Ncc(v) ∩D 6= φ.

Now, if we take any
⌊

n
n−δcc(G)

⌋
disjoint subsets each of cardinality n − δcc(G), it will be a

cc-domatic partition of G. Therefore,

dcc(G) ≥

⌊
n

n− δcc(G)

⌋
.

Theorem 3.12. Let G be a graph of order n. Then, dcc(G) + d(Ḡcc) ≤ n+ 1.

Proof. It follows from theorem 3.9 that dcc(G) ≤ δcc(G) + 1. Also,
d(Ḡcc) ≤ δ(Ḡcc) + 1. Thus,

dcc(G) + d(Ḡcc) ≤ δcc(G) + δ(Ḡcc) + 2.

But, δ(Ḡcc) = n− 1− ∆cc(G) so that,

dcc(G) + d(Ḡcc) ≤ δcc(G)− ∆cc(G) + n+ 1 ≤ n+ 1.

This completes the proof.

Theorem 3.13. Let G be a graph of order n. Then,

2 ≤ γcc(G) + dcc(G) ≤ n+ 1.

Further, the equality holds if every vertex of G is cc-isolated.
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Proof. Since γcc(G) ≥ 1 and dcc(G) ≥ 1, the lower bound follows. Now, from theorem 2.26
and theorem 3.9, it follows that

γcc(G) ≤ n− ∆cc(G) ≤ n− δcc(G) and dcc(G) ≤ δcc(G) + 1.

Thus,
γcc(G) + dcc(G) ≤ n− δcc(G) + δcc(G) + 1 = n+ 1.

Now, if every vertex of G is cc-isolated, then γcc(G) = n and dcc(G) = 1 by propositions 2.15
and 3.3 respectively. Hence γcc(G) + dcc(G) = n+ 1.
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