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Abstract In this article the (weakly) sign symmetric
[
(w)ss

]
Q1-matrix completion prob-

lems are studied. Some necessary and sufficient conditions for a digraph to have (weakly) sign
symmetric Q1-completion are shown. Lastly the digraphs of order at most four having (w)ss
Q1-completion have been sorted out.

1 Introduction

Matrix Completion Problems was initiated by Professor Burg in 1984. He studied positive defi-
nite matrix completion problem [1] in his thesis in geophysical perspective. After that a couple
of researchers carried out research on matrix completion problems in their own way and applied
it to different engineering fields (e.g.,[3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15]). The main aim of
the matrix completion problem is to complete a real partial m×m matrix to a desired type in a
combinatorial approach.

A partial matrix is a matrix in which some entries are specified and others are not. A comple-
tion of a partial matrix is a process to obtain a desired type of matrix by choosing value for the
unspecified entries. A real m×m matrix B = [brs] is a Q-matrix if for every l ∈ {1, 2, . . . ,m},
Sl(B) > 0, where Sl(B) is the sum of all l × l principal minors of B. The matrix B is Q1-
matrix if all diagonals are positive. The matrix B is sign symmetric (ss) if brsbsr > 0 or
brs = 0 = bsr for each pair of r, s ∈ {1, . . . ,m}. The matrix B is weakly sign symmetric
(wss) if brsbsr ≥ 0. The Q-matrix completion problem and its related classes are discussed in
paper [6, 16, 17, 18, 19, 20, 21] respectively. Here we use the term (w)ss in a result to mean that
the result is true for the cases wss as well as ss matrix completion problems.

Graphs and digraphs are closely associated with the matrix completion problems. A prelimi-
nary concept regarding graph theory can be found in any standard book i.e. [2, 8]. However we
request all the readers of the article to follow any of the reference [16, 17, 21] for preliminary
terms and definitions which is used through out this article.

2 Partial (w)ss Q1-matrix

A partial Q-matrix B = [bij ] with specified positive diagonal entries is said to be a partial Q1-
matrix. A partial (w)ss Q1-matrix is a partial Q1-matrix in which all fully specified principal
submatrices are (w)ss. We characterize a partial (w)ss Q1-matrix as following:

Proposition 2.1. Suppose B = [bij ] is a partial (w)ss matrix. Then B is a partial (w)ss Q1-matrix
if and only if exactly one of the following occurs:

(i) B excludes one diagonal entry.

(ii) B has specified diagonals and trace(B) ≥ 0. B excludes an off diagonal entry.

(iii) B is complete as well as a (w)ss Q1-matrix.

A completion A of a partial (w)ss Q1-matrix B is called a (w)ss Q1-completion of B if A is
a (w)ss Q1-matrix.
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3 The (w)ss Q1-matrix completion problem

A digraph D = (VD, AD) of order k > 0 is a finite set VD with |VD| = k of objects defined
as vertices along a set (possibly empty) AD of ordered pairs of vertices, defined as arcs. We
associate a m × m partial matrix B with D = ({1, 2, . . . ,m}, AD) by drawing an arc (i, j) ∈
AD, 1 ≤ i, j ≤ m for a specified (i, j)-th entry of B. A digraph D has (w)ss Q1-completion if
every partial (w)ss Q1-matrix specifying D can be completed to a (w)ss Q1-matrix. The (w)ss
Q1-matrix completion problems are studied for classifying all digraphs based on (w)ss Q1-matrix
completion.

4 Relationship between wss Q1-completion and ss Q1-completion

Consider X and Y are two different classes of matrices. It is impossible for us to get a conclusion
that Y -completion of a digraph always implies X-completion or vice versa since a partial Y -
matrix (X-matrix) always is not a X-matrix (Y -matrix). But there are some instances in which
it is possible to give a decision that X-completion implies Y -completion or vice versa for two
classes of matrices X and Y . Prof L. Hogben studied this types of results in [10] and called them
as “Relationship theorem" . In this section, we will study the relationship theorems of ss and wss
Q1-completion problem. Here for a symmetric pair bij , xij in a partial matrix B we denote xij

as the unspecified entry corresponding to the specified entry bij .

Theorem 4.1. Suppose a digraph D has wss Q1-completion, where for any partial wss Q1-
matrix specifying D, there is a wss Q1-completion in which zero is allotted to any unspecified
entry whose corresponding specified entry is zero. Then D has ss Q1-completion.

Proof. Suppose B be a partial ss Q1-matrix specifying D. Then B is also a partial wss Q1-
matrix. Consider a wss Q1-completion A = [aij ] of B obtained by putting 1 and 0 respectively
to unspecified diagonal entries and to those unspecified entries whose specified entries are 0. But
there may exist some nonzero aij in A where as corresponding aji is zero. Since a few principal
minors of A are to be considered, which are continuous functions of the entries of A, we will
slightly perturb originally unspecified zero entries keeping the sum of all principal minors of
same order as positive. Then A can be converted into a ss Q1-matrix.

Corollary 4.2. Any symmetric digraph D that has wss Q1-completion has ss Q1-completion.

The following result is quite obvious.

Theorem 4.3. Any asymmetric digraph D that has ss Q1-completion if and only if it has wss
Q1-completion.

5 Some results on the (w)ss Q1 Completion

It is quite clear that any (w)ss partial matrix with unspecified diagonals must have (w)ss Q1-
completion. A desired completion can be obtained with the choice of extremely big values for
the unspecified diagonals. Suppose a partial (w)ss Q1-matrix B has unspecified diagonals at
(i, i) positions (i = k + 1, . . . , n). If B[1, . . . , k] is fully specified, a (w)ss Q1-completion of B
may not be obtained as seen from the partial wss Q1-matrix B1 where

B1 =

 2 2 0.1
2 2 0.1
2 2 ∗

 ,

with unspecified entries labeled a ∗. For any value of unspecified entry ∗, we always have
det(B1) = 0. Hence completion of B1 to a (w)ss Q1-matrix cannot be possible. Again if
B[1, . . . , k] has an unspecified entry as well as a (w)ss Q1-completion, then B has a (w)ss Q1-
completion which is obtained with sufficiently large choice of unspecified diagonals.

Theorem 5.1. Suppose a partial wss Q1-matrix B has unspecified diagonal at (r + 1, r + 1)
position. Then the wss Q1-completion of a not fully specified principal submatrix B[1, . . . , r] of
B implies wss Q1-completion of B.
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Proof. Consider B is of the form,

B =

[
B11 B12

B21 B22

]
,

where, B11 = B[1, . . . , r] and B22 = B[r + 1, r + 1]. Take a wss Q1-matrix completion A1 of
B[1, . . . , r]. In that case

B̃ =

[
A1 B12

B21 B22

]
,

is a partial wss Q1-matrix due to the presence of an unspecified diagonal entry in B22. For t > 0,
consider a completion A = [aij ] of B̃ obtained by choosing aii = t, i = r + 1 and aij = 0
against all other unspecified entries in B̃. Then A is of the form,

A =

[
A1 A12

A21 t

]
.

Since A1 is a wss Q1-matrix, Si(A1) > 0 for 1 ≤ i ≤ r. For 2 ≤ j ≤ r + 1,

Sj(A) = Sj(A1) + tSj−1(A1) + sj ,

where sj is a constant. For sufficiently large values of t A turns in to a wss Q1-matrix.

The Theorem 5.1 also holds for ss Q1-completion and in that case the proof is quite similar.
A may not be a ss Q1-matrix if some ars is nonzero where as corresponding asr is zero. Here
also we will change zero entries in a very small manner to turn A into a ss Q1-matrix.

Corollary 5.2. Suppose a partial (w)ss Q1-matrix B has unspecified diagonals at at (i, i) posi-
tions where (i = r + 1, . . . , n). Then the (w)ss Q1-completion of a not fully specified principal
submatrix B[1, . . . , r] of B implies (w)ss Q1-completion of B.

However the counter part of the above Corollary 5.2 is not valid.

Example 5.3. Consider a partial (w)ss Q1-matrix

B =


d1 b12 b13 ? b15

b21 d2 ? ? ?
b31 ? d3 ? ?
? ? ? d4 b45

b51 b52 b53 ? ?

 ,

where di > 0, i = 1, 2, 3, 4 and bij , i ̸= j, i, j = 1, 2, 3, 4, 5 are specified diagonal and off-
diagonal entries respectively and ? denotes the unspecified entries. Now for t, ϵ > 0 we take a
matrix A where:

A =


d1 b12 b13 ϵ b15

b21 d2 ϵ t ϵ

b31 t d3 ϵ ϵ

ϵ ϵ t d4 b45

b51 b52 b53 ϵ t

 ,

in which we define,

ϵ =


γ, if bij > 0 and the {j, i} − th entry of A is unspecified

−γ, if bij < 0 and the {j, i} − th entry of A is unspecified

0 otherwise
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Sk(A(t, ϵ)) = tk + g(t, ϵ), ∀ k = 1, 2, 3, 4,

detA = βt4 + g(t, ϵ).

where β > 0 is a constant and g(t, ϵ) is a polynomial of degree ≤ k − 1. Thus by choosing
t > 0 sufficiently large and ϵ > 0 as a sufficiently small we can conclude that A is (w)ss
Q1-matrix completion of B. But the principal partial submatrix B[1, 2, 3] does not have (w)ss
Q1-completion. To verify this consider a partial submatrix B[1, 2, 3] of B as follows;

B[1, 2, 3] =

 1 10 10
10 1 ?
10 ? 1

 .

It is quite clear that B[1, 2, 3] does not have (w)ss Q1-completion.

Theorem 5.4. Suppose B is a partial (w)ss Q1-matrix specifying a digraph D. If the partial
submatrices of B induced by every strongly connected induced subdigraph of D has (w)ss Q1-
completion then B has (w)ss Q1-completion.

Proof. We restrict our proof by considering two strongly connected induced subdigraph H(1)
and H(2) of D. The generalization of the proof can be done by the method of induction. To prove
this result we at first rename the vertices (if needed) and we obtain

B =

[
B(11) B(12)

XB B(22)

]
,

where the digraph H(i), i = 1, 2 is specified by a partial (w)ss Q1-matrix B(ii) and XB has all
unspecified entries. Since by our assumption B(ii) has a (w)ss Q1-completion say A(ii) hence we
can obtain our desired completion

A =

[
A(11) A(12)

A(21) A(22)

]
,

by substituting all unspecified entries in XB and B(12) as ϵ. We can choose ϵ to be a sufficiently
small positive negative or zero number according to the sign of corresponding specified entry.
Then for 2 ≤ j ≤ |D| and by choosing ϵ sufficiently small we have

Sj(A) = Sj(A(11)) + Sj(A(22)) +
j−1∑
r=1

Sr(A(11))Sj−r(A(22)) + ϵ hj(ϵ) > 0,

where each hk is a polynomial in ϵ. Here we take Sj(A(ii)) = 0 whenever j exceeds the size of
A(ii). Now choosing ϵ sufficiently small A can be completed to a (w)ss Q1-matrix.

Theorem 5.5. Let a digraph D contains strongly connected components H(1),H(2),
. . . , H(j) such that |H(j)| ≥ 2 ∀ j. If for each j, H(j) has (w)ss Q1-completion then D has (w)ss
Q1-completion.

We have omitted proof of the above Theorem 5.5 since it follows easily from the Theorem 5.4.
The next theorem is obvious.

Theorem 5.6. Let a digraph D consists components H(1),H(2), . . . , H(j) such that |H(j)| ≥ 2 ∀ j.
If for each j, H(j) is not complete and has (w)ss Q1-completion, then D has (w)ss Q1-completion.

Remark 5.7. The counter part of the Theorem 5.4 is not valid. Here the digraph D0 has (w)ss
Q1-completion but its strong component D[1, 2, 3] does not have (w)ss Q1-completion(See Ex-
ample 5.3).
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Figure 1. A digraph D0 having (w)ss Q1-completion

6 Sufficient conditions for (w)ss Q1-matrix completion

Theorem 6.1. Any spanning subdigraph of a digraph D ̸= Kn, |D| = n with (w)ss Q1-completion
also has (w)ss Q1-completion.

Proof. Consider a spanning subdigraph D̂ of D and B̂ be a partial (w)ss Q1-matrix specifying
D̂. Now we obtain a partial (w)ss Q1-matrix B specifying the digraph D from partial (w)ss
Q1-matrix B̂ as follows:

(i) For ss Q1-matrix we choose the entries which are associated to (i, j) ∈ AD \ AD̂ as µ,
where µ is chosen as per with the ss condition of the corresponding twin.

(ii) For wss Q1-matrix we choose the entries which are associated to (i, j) ∈ AD \AD̂ as 0.

Considering both the cases and by Proposition 2.1, we can say that B is a partial (w)ss Q1-
matrix specifying D. Since D ̸= Kn has (w)ss Q1-completion, hence we consider a (w)ss
Q1-completion A of B. In that case A is also a (w)ss Q1-completion of B̂.

Theorem 6.2. A digraph D ̸= Kn without a cycle of even length has (w)ss Q1-completion.

Proof. Consider a partial (w)ss Q1-matrix B which specifies D. Take a completion A of B
obtained by putting all unspecified diagonal entries as t > 0 and all unspecified off diagonal
entries as ϵ, where ϵ is either zero or very small positive or negative entry, chosen according to
their twin keeping the (w)ss condition of the corresponding specified entries. Since D has no
cycle of even length so for j ∈ {2, 3, . . . , n}

Sj(A) = αtj + pj−1(t, ϵ)

where α is a real positive constant and pj−1(t, ϵ) is a polynomial of degree < j − 1. Now we
choose ϵ = 1

t5 . Then for sufficiently large t A becomes a (w)ss Q1-matrix.

Theorem 6.3. Suppose D ≠ Kn be a asymmetric digraph s.t. D contains a cycle of even length
> 2. D contains a symmetric 3-cycle D̂ satisfying the following:

(i) The digraph D̂ contains an absolutely asymmetric spanning 3-cycle C = ⟨u1, u2, u3⟩.

(ii) C does not form a negative permutation digraph with any permutation digraph in D.

Then D has (w)ss Q1-completion.

Proof. Suppose B = [bij ] be a partial (w)ss Q1-matrix which specifies D. Now for t, ϵ > 0,
consider a completion A = [aij ] of B as follows:

aij =



bij , if (i, j) ∈ AD

t, if (i, j) ∈ AC

t, if (i, i) ∈ AD

ϵ, otherwise
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where ϵ is either zero or very small positive or negative entry, chosen according to the ss condi-
tion of the corresponding twin. Also D does not have a 2-cycle, hence S2(A) > 0. Now choosing
ϵ = 1

t4 we have,
Sk(A) = βt3 + pk−1(t), ∀k = 3, 4, . . . , n, (6.1)

where pk−1(t) is a polynomial in t of total degree at most k − 1 and β is a positive number.
Since C does not form a negative permutation digraph in D, hence by choosing sufficiently large
values of t, we have Si(A) > 0 i ∈ {1, 2, . . . , n}. Therefore A is a (w)ss Q1-matrix completion
of B.

However the conditions of the Theorem 6.3 is not necessary. To see this consider the digraph
D1 in Figure 2. Although D1 is asymmetric, contains a cycle of length 3 and D1 does not satisfy
the statement of the Theorem 6.3, but the digraph D1 has (w)ss Q1-matrix completion. Consider

b

4
b

3

b

2
b

1

D1

Figure 2. A digraph D1 having (w)ss Q1-completion

a partial (w)ss Q1-matrix

B =


d1 ? b13 ?
b21 d2 ? ?
? b32 d3 ?
? ? ? d4

 ,

specifying D1, where ? denotes the unspecified entries. If all specified entries are zero or positive
then we are done. Suppose not. Consider b21 ̸= 0. Then for t, ϵ > 0 consider a completion

A =


d1 ϵ b13 sgn(b21)t

b21 d2 ϵ ϵ

ϵ b32 d3 ϵ

ϵ t ϵ d4

 ,

of B where ϵ is chosen according to ss condition of corresponding twin. Now choosing t > 0
sufficiently large A becomes a (w)ss Q1-matrix.

Theorem 6.4. Suppose a digraph D ̸= K∗
n such that D is symmetric as well as stratified. If it

is possible to sign the arcs of an absolutely asymmetric spanning stratified subdigraph D̂ of D
such that the sign of every cycle is positive, then D has (w)ss Q1-completion.

Proof. Consider a (weakly) partial ss Q1-matrix B = [bij ] which specifies D. Now s,Ψ > 0, a
completion A(t, γ) = [aij ] of C can be obtained in a following manner:

aij =



bij , if (i, j) ∈ AD

t, if (i, i) ∈ AD

sgn(i, j)t, if (i, j) ∈ AD̂ ∩AD, i ̸= j

Ψ, otherwise

where Ψ can be chosen as small positive or negative or zero as per the ss condition of the
corresponding twin. Then for k = 1, 2, . . . , n,

Sk(A(t,Ψ)) = βtk + p(t), (6.2)

where p(t) is a polynomial of degree at most k − 1 and β > 0. Hence we are done
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Consider a digraph D2 in Figure 3 which satisfies the statement of both Theorem 6.3 and
Theorem 6.4. Hence the digraph D2 has (w)ss Q1-completion. However the counter part of
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b

4
b

1

D2

Figure 3. A digraph D2 having (w)ss Q1-completion

Theorem 6.4 is not valid. Take a digraph D3 which is obtained by removing an arc (3, 4) from
D2. The complement D3 of D3 is not symmetric. However D3 has (w)ss Q1-completion.

7 Necessary conditions for (w)ss Q1-completion

Theorem 7.1. Suppose a digraph D ̸= Km with |D| = m with loops at each of its vertices and
has (w)ss Q1-completion. Then D omits all 2-cycle.

Proof. Let a 2-cycle [l, k] is present in D and B = [bij ] be a partial (w)ss Q1-matrix specifying

D s.t. bii = 1 (1 ≤ i ≤ m) and blkbkl >

(
m

2

)
. For any (w)ss Q1-completion A = [aij ] of B,

we have
S2(A) =

∑
r ̸=s

brrbss −
∑
r ̸=s

brsbsr < −
∑

r,s/∈{l,k}

arsasr < 0,

and therefore A is not a (w)ss Q1-matrix.

Our next corollary is obvious.

Corollary 7.2. If a digraph D ̸= Km has more than 1
2m(m+ 1) arcs then D fails to have (w)ss

Q1-completion.

Theorem 7.3. Suppose a digraph D ̸= K4 has a cycle of length > 2. If D has ss Q1-completion
then D must contain a 2-cycle.

Proof. Suppose D is completely asymmetric. Consider VD = {v1, v2, . . . , v4}, D contains a
cycle C1 = ⟨v1, v2, v3⟩ s.t. |C1| = 3. Consider a partial ss Q1-matrix B = [bij ] specifying D
such that

bij =



1, if (i, i) ∈ AD

2, if (v1, v2), (v3, v1) ∈ AC1

−2, if (v2, v3) ∈ AC1

0, otherwise

Now for any ss Q1-completion A of B, we always have S3(A) ≤ 0. Hence ss Q1-completion of
D is not possible.

Example 7.4. The Theorem 7.3 is not sufficient. Consider D4 in Figure 4. The digraph contains
a 4-cycle ⟨1, 2, 3, 4⟩ and it’s complement digraph D4 contains a 2-cycle ⟨1, 3⟩. Although D4 does
not have ss Q1-completion. Take any partial matrix

B =


1 2 ? ?
? 1 0 ?
? ? 1 0
0 0 ? 1

 ,

specifying D4. One can easily observe that completion of B is not possible.
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Figure 4. A digraph D4 not having (w)ss Q1-completion

7.1 Algorithm for (w)ss Q1-completion of digraph D, |D| ≤ 4

The following steps should be followed to check whether a digraph D ̸= K4 has (w)ss Q1-
completion or not:

(i) If D omits all loops, then D has (w)ss Q1-completion. Otherwise, we will proceed to step
(ii).

(ii) Suppose D includes all loops. If D has no cycle of even length then D has (w)ss Q1-
completion.

(iii) If D contains 2-cycle, thee (w)ss Q1-completion of D is not possible. If not, we will proceed
to step (iv).

(iv) Suppose D contains a cycle of length m > 2 and D is completely asymmetric. Then D
does not have ss Q1-completion. If not consider the step (v).

(v) Consider D contains a cycle of length m > 2 and D is not completely asymmetric. If D
follows the hypothesis of Theorem 6.3, then D has (w)ss Q1-completion. If not then we
will proceed to step (vi).

(vi) Check whether D is symmetric or not. If D is symmetric and satisfies the conditions of the
Theorem 6.4, then D has (w)ss Q1-completion.

(vii) Finally D does not satisfy all of the above conditions, then we have to check whether it has
(w)ss Q1-completion or not manually.

8 A (w)ss Q1-completion based classification

Now we will classify all digraphs (with all specified loops) up to order 4 on the basis of (w)ss
Q1-completion. For this we follow the atlas of digraphs as given in [8]. We denote a digraph
Dp(q, n) as the n-th digraph with p vertices and q (non-loop) arcs.

Theorem 8.1. For p ∈ {1, 2, 3, 4}, the below mentioned digraphs Dp(q, n) have (w)ss Q1-
completion,

p = 2; q = 0, 1, 2 n = 1
p = 3; q = 0; n = 1

q = 1; n = 1
q = 2; n = 2, 3, 4
q = 3; n = 3
q = 6; n = 1

p = 4; q = 0, 1; n = 1
q = 2; n = 1–5
q = 3; n = 1–13
q = 4; n = 10, 11, 12, 17–23, 25–27
q = 5; n = 4, 5, 29–31, 33–38
q = 6; n = 1, 46–48
q = 12. n = 1.
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Proof. If q = 0 or a complete digraph we are done. The digraphs D3(3, 3), D4(6, 46), D4(6, 47),
D4(6, 48) have (w)ss Q1-completion by Theorem 6.2. The digraph D4(6, 1) has (w)ss Q1-
completion by Theorem 6.4. Rest of the each above listed digraph is a spanning digraph of any
one the digraph say D3(3, 3), D4(6, 46), D4(6, 47), D4(6, 48), D4(6, 1) and hence it has (w)ss
Q1-completion. Hence the result follows.

9 Conclusions

Here we have discussed the completion problem of (w)ss Q1-matrices. Some results regarding
(w)ss Q1-completion of a digraph are obtained but our main goal of complete factorization of
digraphs on the basis of (w)ss Q1-matrix completion are still missing. In future we will try to
develop to fill up the gaps of our obtained results.
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