On Matrix Properties of Generalised Srivastava's Triple Hypergeometric Matrix Function $H_{C, P, Q}(\cdot)$

S. A. Dar, M. Kamarujjama and Waseem Ahmad Khan*
Communicated by Harikrishnan Panackal

MSC 2010 Classifications: 33C20, 33C05, 44A10, 33E20.
Keywords and phrases: Srivastava's triple hypergeometric matrix functions, Beta and Gamma matrix functions, Gauss hypergeometric matrix function, Laguerre matrix polynomials.

Abstract

The main objects of the present paper is to investigate and study a matrix version (P, Q) - generalization of Srivastava's triple hypergeometric function $H_{C}(\cdot)$, together with its integral representations, by using the extended Beta matrix function $B_{P, Q}(x, y)$. For a matrix that satisfies an appropriate spectral property. An exact integral expression of $H_{C, P, Q}(\cdot)$ function in terms of the Laguerre matrix polynomials is obtained. Moreover, we give some of its main matrix version properties, namely a derivative matrix identity, recursive matrix relations and a bounded matrix inequality.

1 Introduction

The theory of special matrix functions has influenced in the last two decades. The attention of special matrix function has been initiated by Jódar, Cortés,[4, 6] and this work has been carried for several variable special functions in [3,12, 14]. This matrix functions appear in the literature allied to the Gauss hypergeometric matrix function, Appell matrix functions, Lauricella matrix functions, Beta and gamma matrix functions, and Srivastava's triple hypergeometric matrix functions (see; for example [1, 2, 9]). A number of authors have intended integral representations, recursion relations, differential and transformations formulae of the extended special hypergeometric matrix functions; see $[1,3,8,9]$. Inspired by this study, the authors establishes matrix version properties, namely a derivative identity, recursion relations and a bounded inequality for a generalised Srivastava's triple hypergeometric matrix function $H_{C, P, Q}(\cdot)$.

2 Preliminaries

Let $\mathbb{C}^{N \times N}$ be a N-square matrices contains complex entries. Then for any matrix $M \in \mathbb{C}^{N \times N}$, its spectrum $\sigma(M)$ is the set of eigenvalues of M. If $h(z)$ and $f(z)$ are two holomorphic functions of a complex variable z, which are defined in an open set Ω of the complex plane and $M \in \mathbb{C}^{N \times N}$ with $\sigma(M) \subset \Omega$, then from the properties of the matrix functional calculus; see [15], we consider $h(M) f(M)=f(M) h(M)$. If $L \in \mathbb{C}^{N \times N}$, is a matrix for which $\sigma(L) \subset \Omega$, and if $M L=L M$, then $h(M) f(L)=f(L) h(M)$. A square matrix M in $\mathbb{C}^{N \times N}$ is said to be positive stable if $\Re(\eta)>0$ for all $\eta \in \sigma(M)$.

The image of $\Gamma^{-1}(z)$ acting on a matrix M, denoted by $\Gamma^{-1}(M)$, is a well defined matrix in $\mathbb{C}^{N \times N}$. If $M+n I$ is an invertible for all integers $n \geq 0$, then the reciprocal gamma matrix function is defined in [4] as $\Gamma^{-1}(M)=(M)_{n} \Gamma^{-1}(M+n I)$, where $(M)_{n}$ is a Pochhammer's (or the shifted factorial) matrix function for $M \in \mathbb{C}^{N \times N}$, defined by [6]

$$
(M)_{n}:= \begin{cases}I, & (n=0) \tag{2.1}\\ M(M+I) \ldots(M+n-I), \quad(n \geq 1)\end{cases}
$$

for I being identity N-square matrix in $\mathbb{C}^{N \times N}$.
If U, V and $U+V$ be positive stable matrices in $\mathbb{C}^{N \times N}$ such that $U V=V U$, then the classical
simple beta matrix function is defined by [4]

$$
\mathfrak{B}(U, V)=\left\{\begin{array}{l}
\int_{0}^{1} t^{U-1}(1-t)^{V-1} d t \tag{2.2}\\
\Gamma(U) \Gamma(V) \Gamma^{-1}(U+V)
\end{array}\right.
$$

Let M_{1}, M_{2}, M_{3} be positive stable matrices in $\mathbb{C}^{N \times N}$ such that $M_{3}+\ell I$ is an invertible for all integers $\ell>0$. Then the Gauss hypergeometric matrix function is defined by [4]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
M_{1}, M_{2} \tag{2.3}\\
M_{3}
\end{array} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(M_{1}\right)_{n}\left(M_{2}\right)_{n}}{\left(M_{3}\right)_{n}} \frac{z^{n}}{n!} .
$$

Here (2.3) converges absolutely for $|z|<1$ and for $z=1$. A generalisation of this matrix function to add P numerator matrices $M_{j}(1 \leq j \leq P)$ and Q denominator matrices $M_{j}(1 \leq$ $j \leq Q$; see[4]. Srivastava and Karlsson [19, Chapter 3] introduced and explored a table of distinct 205 triple hypergeometric functions. Some triple hypergeometric functions denoted as H_{A}, H_{B} and H_{C} of the second order are introduced by Srivastava, see [17, 18].

The matrix analogs of the three Srivastava's triple hypergeometric functions H_{A}, H_{B} and H_{C}; see [3]. We study Srivastava's hypergeometric matrix function H_{C} of three variables given by $H_{C}(\cdot)$; see [1]. Let L_{1}, L_{2}, L_{3} and L_{4} be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integer $\ell>0$, and I is a square matrix in $\mathbb{C}^{N \times N}$. Then

$$
\begin{array}{r}
H_{C}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right):=\sum_{h, m, k=0}^{\infty}\left(L_{1}\right)_{h+k}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{h+m+k}\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
=\sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \mathfrak{B}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \\
\times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \tag{2.4}
\end{array}
$$

We introduce an additional parameters r and s into matrix function $H_{C}(\cdot)$ in the form

$$
\begin{align*}
& H_{C}^{(r, s)}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& \qquad \begin{array}{rl}
=\sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} & \mathfrak{B}\left(L_{1}+r+(h+k) I, L_{4}+s+m I-L_{1}\right) \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!}
\end{array}
\end{align*}
$$

The region of convergence for the Srivastava's triple hypergeometric matrix function $H_{C}(\cdot)$ is defined by [3] as $\alpha\left(L_{1}\right)<1, \alpha\left(L_{2}\right)<1, \alpha\left(L_{3}\right)<1$ and $\beta\left(L_{4}\right)>1$, where $\left|z_{1}\right|<1,\left|z_{2}\right|<$ $1,\left|z_{3}\right|<1$. For $L_{1}, L_{2}, L_{3}, L_{4}$ and $L_{4}-L_{1}$ are positive stable matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integers $\ell>0$ and I is a square matrix in $\mathbb{C}^{N \times N}$. Then the Appell hypergeometric matrix function $F_{1}(\cdot)$ is defined by [12]

$$
\begin{align*}
& F_{1}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}\right) \\
& \qquad:=\sum_{n, m=0}^{\infty}\left(L_{2}\right)_{n}\left(L_{3}\right)_{m} \mathfrak{B}\left(L_{1}+(m+n) I, L_{4}-L_{1}\right)\left[\mathfrak{B}\left(L_{1}, L_{4}-L_{1}\right)\right]^{-1} \frac{z_{1}^{m}}{m!} \frac{z_{2}^{n}}{n!}, \tag{2.6}
\end{align*}
$$

where $\left|z_{1}\right|<1,\left|z_{2}\right|<1$ and this function has been extended in matrix form by Ashish Verma; see [12]. An integral representation of Gauss hypergeometric matrix function ${ }_{2} F_{1}(\cdot)$ is given by [4]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
M_{1}, M_{2} \tag{2.7}\\
M_{3}
\end{array} ; z\right)=\int_{0}^{1} t^{M_{2}-1}(1-t)^{M_{3}-M_{2}-1}(1-z t)^{-M_{1}} d t\left[\mathfrak{B}\left(L_{2}, L_{4}-L_{2}\right)\right]^{-1}
$$

for positive stable matrices M_{1}, M_{2}, M_{3} and $M_{3}-M_{2}$ in $\mathbb{C}^{N \times N}$. The generalised beta matrix function $\mathfrak{B}\left(W_{1}, W_{2} ; P\right)$ in terms of integral is defined by [1]

$$
\begin{equation*}
\mathfrak{B}\left(W_{1}, W_{2} ; P\right)=\int_{0}^{1} t^{W_{1}-1}(1-t)^{W_{2}-1} \exp \left[\frac{-P}{t(1-t)}\right] d t . \tag{2.8}
\end{equation*}
$$

where W_{1}, W_{2} and P be positive stable and commuting matrices in $\mathbb{C}^{N \times N}$ and are invertible for all integers $\ell>0$. A further extension of the Beta matrix function is defined by

$$
\begin{equation*}
\mathfrak{B}\left(W_{1}, W_{2} ; P, Q\right) \equiv \mathfrak{B}_{P, Q}\left(W_{1}, W_{2}\right)=\int_{0}^{1} t^{W_{1}-1}(1-t)^{W_{2}-1} \exp \left\{-\frac{P}{t}-\frac{Q}{1-t}\right\} d t, \tag{2.9}
\end{equation*}
$$

where W_{1}, W_{2}, P and Q are positive stable and commuting matrices in $\mathbb{C}^{N \times N}$. When $P=$ Q this matrix function reduces to $\mathfrak{B}\left(W_{1}, W_{2} ; P\right)$. Also, Ashish Verma et al.[1] discussed the further extension of the beta and gamma matrix function, Gauss hypergeometric and confluent hypergeometric matrix functions.

3 On matrix version generalized Srivastava's triple hypergeometric function $H_{C, P, Q}(\cdot)$

The matrix analog of the Srivastava's hypergeometric triple functions associated with its recursive relations have been discussed in [7]. Here we investigate (P, Q)-generalized of the Srivastava's triple hypergeometric matrix function $H_{C}(\cdot)$, which we identified by $H_{C, P, Q}(\cdot)$, depend on the extended Beta matrix function $\mathfrak{B}_{P, Q}\left(M_{1}, M_{2}\right)$. We have

Theorem 3.1. Let $L_{1}, L_{2}, L_{3}, L_{4}$ and $L_{4}-L_{1}$ be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integer $\ell>0$ and I is a square matrix in $\mathbb{C}^{N \times N}$. Then

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& \qquad=\sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \\
& \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \tag{3.1}\\
& \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!},
\end{align*}
$$

The region of convergence for this generalised matrix function $H_{C, P, Q}(\cdot)$ is defined as $\alpha\left(L_{1}\right)<$ $1, \alpha\left(L_{2}\right)<1, \alpha\left(L_{3}\right)<1$ and $\beta\left(L_{4}\right)>1$, where $\left|z_{1}\right|<1,\left|z_{2}\right|<1,\left|z_{3}\right|<1$. This definition implies to the original classical function (2.4) when $P=0=Q$.

Theorem 3.2. Let $L_{1}, L_{2}, L_{3}, L_{4}$ and $L_{4}-L_{1}$ be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integer $\ell>0$. Then the hypergeometric matrix function $H_{C, P, Q}(\cdot)$ holds the following integral representations

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& =\int_{0}^{1} t^{L_{1}-I}(1-t)^{L_{4}-L_{1}-I}\left(1-z_{1} t\right)^{-L_{2}}\left(1-z_{3} t\right)^{-L_{3}} \times \\
& \quad \times \exp \left\{-\frac{P}{t}-\frac{Q}{1-t}\right\}{ }_{2} F_{1}\left(\begin{array}{l}
L_{2}, L_{3} ; \\
L_{4}-L_{1} ;
\end{array} \quad X\right) d t \Gamma_{\left(L_{4}, L_{1}\right)}, \tag{3.2}
\end{align*}
$$

where

$$
X:=\frac{z_{2}(1-t)}{\left(1-z_{1} t\right)\left(1-z_{3} t\right)}, \quad \Gamma_{\left(L_{4}, L_{1}\right)}=\Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1}
$$

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\int_{0}^{\infty} \mu^{L_{1}-I}(1+\mu)^{L_{2}+L_{3}-L_{4}}\left\{\Omega_{1}\right\}^{-L_{2}}\left\{\Omega_{2}\right\}^{-L_{3}} \times \\
& \quad \times \exp \left\{-\frac{P(1+\mu) I}{\mu}-Q(1+\mu) I\right\}_{2} F_{1}\left(\begin{array}{c}
L_{2}, L_{3} ; \\
L_{4}-L_{1} ;
\end{array} z_{2} \Omega\right) d \mu \Gamma_{\left(L_{4}, L_{1}\right)} \tag{3.3}
\end{align*}
$$

where $\Omega_{1}=1+\mu-z_{1} \mu, \Omega_{2}=1+\mu-z_{3} \mu, \Omega=\frac{(1+\mu)}{\Omega_{1} \Omega_{2}}, \Gamma_{\left(L_{4}, L_{1}\right)}=\Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1}$,

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} \mu\right)^{L_{1}-\frac{I}{2}}\left(\cos ^{2} \mu\right)^{L_{4}-L_{1}-\frac{I}{2}}\left(\vartheta_{1}\right)^{-L_{2}}\left(\vartheta_{2}\right)^{-L_{3}} \times \\
& \times \exp \left\{-\frac{P}{\sin ^{2} \mu}-\frac{Q}{\cos ^{2} \mu}\right\}{ }_{2} F_{1}\left(\begin{array}{c}
L_{2}, L_{3} ; \\
L_{4}-L_{1} ;
\end{array} \frac{z_{2} \cos ^{2} \mu}{\vartheta_{1} \vartheta_{2}}\right) d \mu \Gamma_{\left(L_{4}, L_{1}\right)} \tag{3.4}
\end{align*}
$$

where $\vartheta_{1}=1-z_{1} \sin ^{2} \mu$, and $\vartheta_{2}=1-z_{3} \sin ^{2} \mu, \quad \Gamma_{\left(L_{4}, L_{1}\right)}=2 \Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1}$

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\frac{(\beta-\gamma)^{L_{1}}(\alpha-\gamma)^{L_{4}-L_{1}}}{(\beta-\alpha)^{L_{4}-L_{2}-L_{3}-I}} \int_{\alpha}^{\beta} \frac{(\mu-\alpha)^{L_{1}-I}(\beta-\mu)^{L_{4}-L_{1}-I}}{(\mu-\gamma)^{L_{4}-L_{2}-L_{3}}} \times \\
& \quad \times\left\{\sigma_{1}\right\}^{-L_{2}}\left\{\sigma_{2}\right\}^{-L_{3}} \exp \left\{-P \sigma_{3}-Q \sigma_{4}\right\}_{2} F_{1}\left(\begin{array}{c}
L_{2}, L_{3} \\
L_{4}-L_{1}
\end{array} \quad \sigma z_{2}\right) d \mu \Gamma_{\left(L_{4}, L_{1}\right)} \tag{3.5}
\end{align*}
$$

where

$$
\begin{gathered}
\sigma_{1}=\left[(\beta-\alpha)(\mu-\gamma)-z_{1}(\beta-\gamma)(\mu-\alpha)\right] \\
\sigma_{2}=\left[(\beta-\alpha)(\mu-\gamma)-z_{3}(\beta-\gamma)(\mu-\alpha)\right] \\
\sigma_{3}=\frac{(\beta-\alpha)(\mu-\gamma)}{(\beta-\gamma)(\mu-\alpha)} \text { and } \sigma_{4}=\frac{(\beta-\alpha)(\mu-\gamma)}{(\alpha-\gamma)(\beta-\mu)} \\
\sigma=\frac{(\alpha-\gamma)(\beta-\mu)}{\sigma_{1} \sigma_{2}} \\
\Gamma_{\left(L_{4}, L_{1}\right)}=\Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1}
\end{gathered}
$$

and

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\int_{0}^{1} \frac{(\mu)^{L_{1}-I}(1-\mu)^{L_{4}-L_{1}-I}}{(1+\lambda \mu)^{L_{4}-L_{2}-L_{3}}}\left\{\nabla_{1}\right\}^{-L_{2}}\left\{\nabla_{2}\right\}^{-L_{3}}(1+\lambda)^{L_{1}} \times \\
& \quad \times \exp \left\{\frac{-P(1+\lambda \mu) I}{\mu(1+\lambda)}-\frac{Q(1+\lambda \mu) I}{1-\mu}\right\}_{2} F_{1}\left(\begin{array}{c}
L_{2}, L_{3} ; \\
L_{4}-L_{1} ;
\end{array} \quad \nabla z_{2}\right) d \mu \Gamma_{\left(L_{4}, L_{1}\right)}, \tag{3.6}
\end{align*}
$$

where

$$
\begin{array}{r}
\nabla_{1}=\left[1+\lambda \mu-z_{1}(1+\lambda) \mu\right] \\
\nabla_{2}=\left[1+\lambda \mu-z_{3}(1+\lambda) \mu\right] \\
\nabla=\frac{(1-\mu)(1+\lambda \mu)}{\nabla_{1} \nabla_{2}} ; \lambda>-1 \\
\Gamma_{\left(L_{4}, L_{1}\right)}=\Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1} .
\end{array}
$$

Proof: We can prove first integral (3.2) by using extended beta matrix function (2.9) in (3.1), then change the order of integration and summation (since integral is uniform convergent) and finally using Gauss hypergeometric matrix function (2.3). We get after simplification the righthand side of (3.2). Furthermore, we can prove the integrals expressed by (3.3)-(3.6), by using the below transformations

$$
\begin{equation*}
t=\frac{\mu}{1+\mu}, \quad \frac{d t}{d \mu}=\frac{1}{(1+\mu)^{2}} \tag{3.7}
\end{equation*}
$$

$$
\begin{gather*}
t=\sin ^{2} \mu, \quad \frac{d t}{d \mu}=2 \sin \mu \cos \mu \tag{3.8}\\
t=\frac{(\beta-\gamma)(\mu-\alpha)}{(\beta-\alpha)(\mu-\gamma)}, \quad \frac{d t}{d \mu}=\frac{(\beta-\alpha)(\beta-\gamma)(\alpha-\gamma)}{(\beta-\alpha)^{2}(\mu-\gamma)^{2}} \tag{3.9}\\
t=\frac{(1+\lambda) \mu}{1+\lambda \mu}, \quad \frac{d t}{d \mu}=\frac{(1+\lambda)}{(1+\lambda \mu)^{2}} \tag{3.10}
\end{gather*}
$$

in (3.2), we get the right hand side of respective results.
Theorem 3.3. Let $L_{1}, L_{2}, L_{3}, C_{1}, L_{4}-L_{1}, P, Q$ and $P-Q$ be positive stable matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integers $\ell>0$. Then integral representation of matrix function $H_{C, P, Q}(\cdot)$ involving infinite sum of Laguerre matrix polynomials

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\sum_{n, m=0}^{\infty} L_{n}(P) L_{m}(Q) \exp (-P-Q) \Gamma\left(L_{4}\right)\left[\Gamma\left(L_{1}\right) \Gamma\left(L_{4}-L_{1}\right)\right]^{-1} \\
& \times \int_{0}^{1} \kappa^{L_{1}+m I}(1-\kappa)^{L_{4}-L_{1}+n I}\left(1-z_{1} \kappa\right)^{-L_{2}}\left(1-z_{3} \kappa\right)^{-L_{3}} F_{1}\left(\begin{array}{c}
L_{2}, L_{3} ; \\
L_{4}-L_{1} ;
\end{array}, X\right) d t, \tag{3.11}
\end{align*}
$$

where $X:=z_{2}(1-\kappa) /\left(1-z_{1} \kappa\right)\left(1-z_{3} \kappa\right)$ and I is an identity square matrix in $\mathbb{C}^{N \times N}$.
Proof. We can get exponential factor expressed in (2.9) involving Laguerre polynomials $L_{m}\left(z_{1}\right)\left(m \in N_{0}\right)$ associated with generating function [16, P. 202]

$$
\begin{equation*}
e^{\left(-\frac{z_{1} \kappa}{1-\kappa}\right)}=(1-\kappa) \sum_{n=0}^{\infty} \kappa^{n} L_{n}\left(z_{1}\right), \quad-1<\kappa<1 \tag{3.12}
\end{equation*}
$$

for $z_{1}>0$. From this we see that P and Q are positive stable matrices in $\mathbb{C}^{N \times N}$, then we have

$$
\begin{equation*}
e^{\left(-\frac{Q}{1-\kappa}\right)}=e^{-Q}(1-\kappa) \sum_{m=0}^{\infty} \kappa^{m} L_{m}(Q), \quad-1<\kappa<1 \tag{3.13}
\end{equation*}
$$

Replacement of κ by $1-\kappa$, which gives

$$
\begin{equation*}
e^{\left(-\frac{P}{\kappa}\right)}=e^{-P} \kappa \sum_{n=0}^{\infty}(1-\kappa)^{n} L_{n}(P), \quad 0<\kappa<2 \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.13), we get

$$
\begin{equation*}
e^{\left(-\frac{P}{\kappa}-\frac{Q}{1-\kappa}\right)}=e^{-P-Q} \sum_{n, m=0}^{\infty}(1-\kappa)^{n+I} \kappa^{m+I} L_{n}(P) L_{m}(Q), \quad 0<\kappa<1 \tag{3.15}
\end{equation*}
$$

Using (3.15) in (3.2), we get the required result stated in (3.11).

4 A derivative matrix identity for $\boldsymbol{H}_{C, P, Q}(\cdot)$

Theorem 4.1. Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{4}-L_{1}, P$ and Q be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integers $\ell>0$. Then the following derivative identity for hypergeometric matrix function $H_{C, P, Q}(\cdot)$ holds:

$$
\begin{align*}
& \frac{\partial^{J+M+K}}{\partial z_{1}^{J} \partial z_{2}^{M} \partial z_{3}^{K}} H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\frac{\left(L_{1}\right)_{J+K}\left(L_{2}\right)_{J+M}\left(L_{3}\right)_{M+K}}{\left(L_{4}\right)_{J+M+K}} \times \\
\times & H_{C, P, Q}\left(L_{1}+(J+K) I, L_{2}+(J+M) I, L_{3}+(M+K) I ; L_{4}+(J+M+K) I ; z_{1}, z_{2}, z_{3}\right), \tag{4.1}
\end{align*}
$$

where $J, M, K \in \mathbb{N}_{0}$ and I is a square identity matrix in $\mathbb{C}^{N \times N}$.

Proof: Differentiate the matrix series for $\mathcal{H} \equiv H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)$ in (3.1) with respect to z_{1} we obtain

$$
\begin{align*}
\frac{\partial \mathcal{H}}{\partial z_{1}}=\sum_{j=1}^{\infty} \sum_{m, k=0}^{\infty}\left(L_{2}\right)_{j+m}\left(L_{3}\right)_{m+k}\left(L_{4}\right)_{m} & \mathfrak{B}_{P, Q}\left(L_{1}+(j+k) I, L_{4}+m I-L_{1}\right) \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{j-1}}{(j-1)!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!}, \tag{4.2}
\end{align*}
$$

Using matrix identity

$$
\begin{equation*}
\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)=\left[L_{1}\right]^{-1}\left(L_{4}+m I\right) \mathfrak{B}\left(L_{1}+I, L_{4}+m I-L_{1}\right) \tag{4.3}
\end{equation*}
$$

and algebraic matrix property $(A)_{j+m}=(A)_{j}(A+j I)_{m}$, we consider $j \rightarrow j+1$

$$
\begin{gather*}
\frac{\partial \mathcal{H}}{\partial z_{1}}=L_{1} L_{2}\left[L_{4}\right]^{-1} \sum_{j, m, k=0}^{\infty}\left(L_{2}+I\right)_{j+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}+I\right)_{m}\right]^{-1} \mathfrak{B}_{P, Q}\left(L_{1}+I+(j+k) I, L_{4}+m I-L_{1}\right) \\
 \tag{4.4}\\
\times\left[\mathfrak{B}\left(L_{1}+I, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{j}}{j!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \tag{4.5}
\end{gather*}
$$

Repeated differentiation of (4.5) then gives for $\mathrm{J}=1,2, \ldots$

$$
\begin{equation*}
\frac{\partial^{J} \mathcal{H}}{\partial z_{1}^{J}}=\left(L_{1}\right)_{J}\left(L_{2}\right)_{J}\left[\left(L_{4}\right)_{J}\right]^{-1} H_{C, P, Q}\left(L_{1}+J, L_{2}+J, L_{3} ; L_{4}+J ; z_{1}, z_{2}, z_{3}\right) \tag{4.6}
\end{equation*}
$$

A uniform processing shows that

$$
\begin{align*}
\left.\frac{\partial^{J+1} \mathcal{H}}{\partial z_{1}^{J} \partial z_{2}}=\left(L_{1}\right)_{J}\left(L_{2}\right)_{J}\right)\left[\left(L_{4}\right)_{J}\right]^{-1} \sum_{j, m, k=0}^{\infty} & \left(L_{2}+J\right)_{j+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}+J\right)_{m}\right]^{-1} \\
\times \mathfrak{B}_{P, Q}\left(L_{1}+J\right. & \left.+(j+k) I, L_{4}+J+m I-L_{1}\right) \\
\times & {\left[\mathfrak{B}\left(L_{1}+J, L_{4}+J+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{j}}{j!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} } \tag{4.7}
\end{align*}
$$

$=\left(L_{1}\right)_{J}\left(L_{2}\right)_{J+I}\left(L_{3}\right)\left[\left(L_{4}\right)_{J+I}\right]^{-1} H_{C, P, Q}\left(L_{1}+J, L_{2}+J+I, L_{3}+I ; L_{4}+J+I ; z_{1}, z_{2}, z_{3}\right)$,
Replacing $m \rightarrow m+1$ and employing the Beta matrix function in (4.8). Continued differentiation of (4.8) M times with respect to z_{2} then produces

$$
\begin{align*}
& \frac{\partial^{J+M} \mathcal{H}}{\partial z_{1}^{J} \partial z_{2}^{M}}=\left(L_{1}\right)_{J}\left(L_{2}\right)_{J+M}\left(L_{3}\right)_{M}\left[\left(L_{4}\right)_{J+M}\right]^{-1} \\
& \times H_{C, P, Q}\left(L_{1}+J, L_{2}+J+M, L_{3}+M ; L_{4}+J+M ; z_{1}, z_{2}, z_{3}\right) \tag{4.9}
\end{align*}
$$

Following the same methods and differentiation with respect to z_{3} then we will get the result stated in (4.1).

5 On matrix version bounded inequality for $H_{C, P, Q}(\cdot)$

Theorem 5.1. Let P, Q, L_{4} and $L_{j}(1 \leq j \leq 3)$ be positive stable matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integers $\ell>0$ and the variables $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. Then

$$
\begin{equation*}
\left|H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)\right|<\varphi_{E} H_{C}\left(L_{1}, L_{2}, L_{3} ; L_{4} ;\left|z_{1}\right|,\left|z_{2}\right|,\left|z_{3}\right|\right) \tag{5.1}
\end{equation*}
$$

where $\varphi_{E}:=e^{[-P-Q-2 \sqrt{P Q}]}$.

Proof. Assume $P, Q, L_{4}, L_{j}(1 \leq j \leq 3)$ be positive stable matrices in $\mathbb{C}^{N \times N}$. Then

$$
\begin{align*}
& \left|H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)\right| \leq \sum_{h, m, k \geq 0}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \\
& \quad \times \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right) \frac{\left|z_{1}\right|^{h}}{h!} \frac{\left|z_{2}\right|^{m}}{m!} \frac{\left|z_{3}\right|^{k}}{k!} . \tag{5.2}
\end{align*}
$$

Let U, V, P and Q be positive stable matrices in $\mathbb{C}^{N \times N}$. Then extended Beta matrix function $\mathfrak{B}_{P, Q}(U, V)$ defined in (2.9) can be written as

$$
\begin{gathered}
B_{P, Q}(U, V) \leq \int_{0}^{1} t^{U-1}(1-t)^{V-1} E_{P, Q}(t) d t, E_{P, Q}(t):=\exp \left(-\frac{P}{t}-\frac{Q}{1-t}\right), \\
\quad<\int_{0}^{1} t^{U-1}(1-t)^{V-1} E_{P, Q}(t) d t
\end{gathered}
$$

Since, $E_{P, Q}(t)$ is maximum at $t^{*}=r /(1+r), r=\sqrt{P Q}$. We then derive that

$$
B_{P, Q}(U, V)<\varphi_{E} B(U, V), \varphi_{E}:=\exp [-P-Q-2 \sqrt{P Q}] .
$$

Therefore, from (5.2), we have

$$
\begin{align*}
& \left|H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)\right| \\
& <\varphi_{E} \sum_{h, m, k \geq 0}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \mathfrak{B}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{\left|z_{1}\right|^{h}}{h!} \frac{\left|z_{2}\right|^{m}}{m!} \frac{\left|z_{3}\right|^{k}}{k!}, \tag{5.3}
\end{align*}
$$

Comparing of this last sum by (2.4) then employ the result stated in (5.1).
Note that if $P=Q=\mu I$, then $\varphi_{E}=e^{-4 \mu I}$.

6 On recursive matrix relations for $H_{C, P, Q}(\cdot)$

We investigate two recursive matrix relations for the generalized Srivastava's triple hypergeometric matrix function $H_{C, P, Q}(\cdot)$.

Theorem 6.1. Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{4}-L_{1}, P$ and Q be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{4}+\ell I$ is an invertible matrix for all positive integers $\ell>0$. Then the recursive relations for a matrix function $H_{C, P, Q}(\cdot)$ with respect to the matrices L_{2} and L_{3} holds true:

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{1} L_{1}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}+I, L_{2}+I, L_{3} ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{2} L_{3}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right), \tag{6.1}
\end{align*}
$$

and

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3}+I ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{2} L_{2}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{3} L_{1}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}+I, L_{2}, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right), \tag{6.2}
\end{align*}
$$

for I is an identity square matrix in $\mathbb{C}^{N \times N}$.

Proof. Using (3.1) and the matrix identity $\left(L_{2}+I\right)_{h+m}=\left(L_{2}\right)_{h+m}\left(I+h I\left[L_{2}\right]^{-1}+\right.$ $\left.m I\left[L_{2}\right)\right]^{-1}$, which implies

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=\sum_{h, m, k=0}^{\infty}\left(L_{2}+I\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \\
& \times \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right)\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \tag{6.3}\\
& =H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)+z_{1}\left[L_{2}\right]^{-1} \sum_{h=1}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \\
& \times \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right)\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h-1}}{(h-1)!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
& +z_{2}\left[L_{2}\right]^{-1} \sum_{h=0}^{\infty} \sum_{m=1}^{\infty} \sum_{k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left(L_{4}\right)_{m} \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \\
& \tag{6.4}\\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m-1}}{(m-1)!} \frac{z_{3}^{k}}{k!}
\end{align*}
$$

We esteem the preceding sum in (6.4) by S_{1}. Set $m \rightarrow m+1$ and employ the matrix identity $(A)_{m+1}=A(A+I)_{m}$, we find

$$
\begin{array}{r}
S_{1}=z_{1}\left[L_{2}\right]^{-1} \sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+1+m}\left(L_{3}\right)_{m+k}\left(L_{4}\right)_{m} \mathfrak{B}_{P, Q}\left(L_{1}+I+(h+k) I, L_{4}+m I-L_{1}\right) \\
\times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
=z_{1}\left[L_{2}\right]^{-1} \sum_{h, m, k=0}^{\infty}\left(L_{2}+I\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \mathfrak{B}_{P, Q}\left(L_{1}+I+(h+k) I, L_{4}+m I-L_{1}\right) \\
\times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} . \tag{6.5}
\end{array}
$$

Applying (4.3), we then obtain

$$
\begin{align*}
S_{1}= & z_{1} L_{1}\left[L_{4}\right]^{-1} \sum_{h, m, k=0}^{\infty}\left(L_{2}+I\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}+I\right)_{m}\right]^{-1} \\
& \times \mathfrak{B}_{P, Q}\left(L_{1}+I+(h+k) I, L_{4}+m I-L_{1}\right)\left[\mathfrak{B}\left(L_{1}+I, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
& =z_{1} L_{1}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}+I, L_{2}+I, L_{3} ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \tag{6.6}
\end{align*}
$$

Applying the same procedure for second sum in (6.4) by replacing $m \rightarrow m+1$, we find

$$
\begin{equation*}
S_{2}=z_{2} L_{3}\left[L_{4}\right]^{-1} H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \tag{6.7}
\end{equation*}
$$

Combining of the above equations (6.6) and (6.7) with (6.4) then gives the result showed in (6.1). Similarly, the solution of (6.2) is investigated in the same way by interchanging the matrix L_{3}.

Corollary 1. The relation (6.1) gives the following recursive relation

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}+s I, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{1} L_{1}\left[L_{4}\right]^{-1} \sum_{n=1}^{s} H_{C, P, Q}\left(L_{1}+I, L_{2}+n I, L_{3} ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{2} L_{3}\left[L_{4}\right]^{-1} \sum_{n=1}^{s} H_{C, P, Q}\left(L_{1}, L_{2}+n I, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \tag{6.8}
\end{align*}
$$

for $L_{4}+s I$ is an invertible matrix for all positive integers $s>0$ and I is an identity square matrix in $\mathbb{C}^{N \times N}$.
Corollary 2. The relation (6.2) gives the following recursive relation

$$
\begin{align*}
H_{C, P, Q}\left(L_{1}, L_{2}, L_{3}+s I\right. & \left.; L_{4} ; z_{1}, z_{2}, z_{3}\right)=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right) \\
& +z_{2} L_{2}\left[L_{4}\right]^{-1} \sum_{n=1}^{s} H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+n I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \\
& +z_{3} L_{1}\left[L_{4}\right]^{-1} \sum_{n=1}^{s} H_{C, P, Q}\left(L_{1}+I, L_{2}, L_{3}+n I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \tag{6.9}
\end{align*}
$$

for $L_{4}+s I$ is an invertible matrix for all positive integers $s>0$ and I is an identity square matrix in $\mathbb{C}^{N \times N}$.
Theorem 6.2. Let $L_{1}, L_{2}, L_{3}, C_{1}, L_{4}-L_{1}, P$ and Q be positive stable and commutative matrices in $\mathbb{C}^{N \times N}$ such that $L_{1}+\ell I$ is an invertible matrix for all positive integers $\ell>0$. Then the following recursive matrix relation for $H_{C, P, Q}(\cdot)$ function with respect to the matrix L_{4} holds:

$$
\begin{align*}
& H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right) \\
& \quad+z_{2} L_{2} L_{3}\left[L_{4}\left(L_{4}+I\right)\right]^{-1} H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+I ; L_{4}+2 I ; z_{1}, z_{2}, z_{3}\right) \tag{6.10}
\end{align*}
$$

for I is an identity square matrix in $\mathbb{C}^{N \times N}$.
Proof. The matrix L_{4} is reduced by I, namely

$$
\begin{equation*}
\mathbb{H}: \equiv H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4}-I ; z_{1}, z_{2}, z_{3}\right) \tag{6.11}
\end{equation*}
$$

and upon the use of matrix identity $\left(L_{4}-I\right)_{m}=\left(L_{4}\right)_{m}\left\{I+m\left[L_{4}-I\right]^{-1}\right\}^{-1}$. Then

$$
\begin{align*}
& \mathbb{H}=\sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}-I\right)_{m}\right]^{-1} \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \\
& \times \mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right) \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
&=\sum_{h, m, k=0}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right) \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1}\left(I+m\left[L_{4}-I\right]^{-1}\right) \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
&= H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)+z_{2}\left[L_{4}-I\right]^{-1} \sum_{h, k=0}^{\infty} \sum_{m=1}^{\infty}\left(L_{2}\right)_{h+m}\left(L_{3}\right)_{m+k}\left[\left(L_{4}\right)_{m}\right]^{-1} \\
& \times \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+m I-L_{1}\right)\left[\mathfrak{B}\left(L_{1}, L_{4}+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m-1}}{(m-1)!} \frac{z_{3}^{k}}{k!} . \tag{6.12}
\end{align*}
$$

Setting $m \rightarrow m+1$, we obtain

$$
\begin{aligned}
& \mathbb{H}=H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ; z_{1}, z_{2}, z_{3}\right)+z_{2} B_{2} L_{3}\left[L_{4}\left(L_{4}-I\right)\right]^{-1} \\
& \times \sum_{h, m, k=0}^{\infty}\left(L_{2}+I\right)_{h+m}\left(L_{3}+I\right)_{m+k}\left[\left(L_{4}+I\right)_{m}\right]^{-1} \mathfrak{B}_{P, Q}\left(L_{1}+(h+k) I, L_{4}+I+m I-L_{1}\right) \\
& \times\left[\mathfrak{B}\left(L_{1}, L_{4}+I+m I-L_{1}\right)\right]^{-1} \frac{z_{1}^{h}}{h!} \frac{z_{2}^{m}}{m!} \frac{z_{3}^{k}}{k!} \\
& =H_{C, P, Q}\left(L_{1}, L_{2}, L_{3} ; L_{4} ;\right. \\
& \left.; z_{1}, z_{2}, z_{3}\right)+z_{2} L_{2} L_{3}\left[L_{4}\left(L_{4}-I\right)\right]^{-1} \\
& \\
& \quad \times H_{C, P, Q}\left(L_{1}, L_{2}+I, L_{3}+I ; L_{4}+I ; z_{1}, z_{2}, z_{3}\right)
\end{aligned}
$$

Change of matrix L_{4} by $L_{4}+I$ then gives the result showed in (6.10).

Conclusion

We investigate the matrix version of a generalized Srivastava's triple hypergeometric function denoted by $H_{C, P, Q}($.$) in (3.1), together with the integral representations. Also, we have given$ an integral expression of the generalised Srivastava's matrix function $H_{C, P, Q}(\cdot)$ associated with Laguerre matrix polynomials. In addition, we have also investigated some properties of this matrix function, namely, a differential matrix identity, a matrix version upper bound inequality and matrix recursive relations.

Acknowledgment

The author (S.A. Dar) acknowledges financial support from the University Grants Commission of India for the award of a Dr. D. S. Kothari Post Doctoral Fellowship (Grant number F.4-2/2006 (BSR)/MA/20-21/0061).

References

[1] Verma Ashish, Some results on Srivastava's triple hypergeometric matrix functions. Asian-European Journal of Mathematics, World Scientific Publishing Company, 4(14), 2021, 1-16.
[2] Abd-Elmageed H., Abdalla M., Abul-Ez M. and Saad N., Some results on the first Appell matrix function. Linear Multilinear Algebra (2018), doi:10.1080/03081087.2018.1502254.
[3] Dwivedi R., and Sahai V., On the hypergeometric matrix functions of several variables, J. Math. Phys. 59(2) (2018), 1-15
[4] Jodar L., and C. Cortes J., On the hypergeometric matrix function, J. Comput. Appl.Math. 99(1998) 205217.
[5] Jodar L. and C. Cortes J., Some properties of gamma and beta matrix functions.Appl. Math. Lett., 11, 89-93, 1998.
[6] Jodar L., Cortes J.C., On the hypergeometric matrix function. Proceedings of the 8th Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997). J. Comput. Appl.Math. 99 (1998), 205217.
[7] Sahai V. and Verma A., Recursion formulas for Srivastava's general triple hypergeometric function, AsianEur. J. Math. 9, 1-17, 2016.
[8] Sahai V. and Verma A., On the recursion formulas for the matrix special functions of one and two variables, Bull. Braz. Math. Soc., New Ser. Communicated (2020).
[9] Verma Ashish, Dwivedi Ravi, On the matrix version of new extended Gauss, Appell and Lauricella hypergeometric functions. arXiv:2108.11310v1 [math.CA] 25 Aug 2021.
[10] Abdalla M., Bakhet A., Extension of Beta matrix function, Asian J. Math. Comput. Res. 9, 253-264, 2016.
[11] Abdalla M., Bakhet A., Extended Gauss hypergeometric matrix functions. Iran. J. Sci. Technol. Trans. A Sci. 3(42), 1465-1470, 2018.
[12] Altin A., ekim B.C. and Sahin R., On the matrix versions of Appell hypergeometric functions. Quaest. Math. 37, 31-38, 2014.
[13] Abdalla, M., On the incomplete hypergeometric matrix functions. The Ramanujan Journal 1(43), 663678.
[14] Dwivedi R., Sahai V., On the hypergeometric matrix functions of two variables, Linear Multilinear Algebra, 9(66), (2018), 1819-1837.
[15] Dunford N. and Schwartz J., Linear Operators Vol. I, (Interscience, New York, 1957).
[16] Rainville, E. D. ; Special Functions. Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
[17] Srivastava, H. M. ; Hypergeometric functions of three variables. Ganita, 15(1964), 97-108.
[18] Srivastava, H. M. ; Some integrals representing triple hypergeometric functions. Rend. Circ. Mat. Palermo (Ser. 2), 16(1967), 99-115.
[19] Srivastava,H. M. and Karlsson, P. W. ; Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

Author information

S. A. Dar, M. Kamarujjama and Waseem Ahmad Khan*, Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India.
*Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O Box 1664, Al Khobar 31952, Saudi Arabia.
E-mail: showkatjmi34@gmail.com, mdkamarujjama@rediffmail.com, wkhan1@pmu.edu.sa
Received: 2022-05-07.
Accepted: 2023-05-04.

