
Palestine Journal of Mathematics

Vol. 12(3)(2023) , 65–73 © Palestine Polytechnic University-PPU 2023

A FURTHER EXTENSIONS OF BETA AND RELATED
FUNCTIONS

Musharraf Ali*

Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: 33B15, 33B20, 33C05, 33C15.

Keywords and phrases: Beta function, extended beta function, Gauss hypergeometric function, extended Gauss hyper-
geometric function, confluent hypergeometric function, extended confluent hypergeometric function, Bessel-Struve kernel
function, Beta dispersion.

Abstract In this article, we propose a new extension of beta function by utilizing the Bessel-
Struve kernel function. Here, first we derive some basic properties of this new beta function
and thereafter present a new extension of the well-known beta dispersion as an application of
our proposed beta function. Additional to that we elaborate and explore one more extension
of Gauss and confluent hypergeometric functions by utilizing the definition of the same. Some
significant properties of the above mentioned hypergeometric functions like integral represen-
tations, differential formulae, transformation formulae, summation formulae and a generating
relation are are also pointed out in a systematic manner.

1 Introduction and preliminaries

Special functions have a great significance in various fields of Mathematics, Physics, engineer-
ing and other related research areas including function analysis, differential equations, quantum
mechanics, mathematical physics, and so on. Recently, a function has captivated various re-
searcher thought due on very basic level to different applications, which are more wide than the
beta type function B(ζ1, ζ2), prominently known as generalized beta type functions. In addition,
generalized beta functions have played significant part in the headway of additional investigation
and have end up being excellent in nature.

All through in this exploration article, let N, R and C be the arrangements of regular num-
bers, real numbers and complex numbers, respectively, and let

N := {1, 2, 3, ...}, N0 := {0, 1, 2, 3, ...} = N ∪ {0}.

For our purpose, we begin by recalling here the definitions of some known functions and their
generalizations. The classical beta function is a function of two complex variable ζ1 and ζ2,

B(ζ1, ζ2) =

∫ 1

0
wζ1−1 (1− w)ζ2−1dw (1.1)

(<(ζ1) > 0, <(ζ2) > 0).

was defined and studied by Leonhard Euler (see [15], see additionally [16]).
On account of arranged usages of this function in a wide scope of engineering furthermore

sciences, various researchers have presented and explored several extensions of this important
function (1.1) (see, for example, [1]–[5], [8], [10], [12], [13], [14] and [17]).

In 1997, Chaudhry et al. [5] presented an exceptionally valuable generalization of the classi-
cal beta function (1.1) by

Bκ(ζ1, ζ2) =

∫ 1

0
wζ1−1 (1− w)ζ2−1 exp

[
− κ

w(1− w)

]
dw (1.2)

(<(ζ1) > 0, <(ζ2) > 0, <(κ) > 0).
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It is effortlessly observed that for κ = 0, (1.2) reduces to (1.1). By using (1.2), Chaudhry et
al. [6] generalized the Gauss hypergeometric function (GHF) and the confluent hypergeometric
function (CHF), respectively, as follows:

Fκ(η1, η2; η3; z) =
∞∑
`=0

(η1)` Bκ(η2 + `, η3 − η2)

B(η2, η3 − η2)

z`

`!

(κ ≥ 0, |z| < 1, <(η3) > <(η2) > 0)

(1.3)

and

Φκ(η2; η3; z) =
∞∑
`=0

Bκ(η2 + `, η3 − η2)

B(η2, η3 − η2)

z`

`!

(κ ≥ 0, <(η3) > <(η2) > 0).

(1.4)

In [6], the authors additionally characterized the resulting Euler’s type integral representations
of Fκ(η1, η2; η3; z) and Φκ(η2; η3; z), respectively:

Fκ(η1, η2; η3; z) =
1

B(η2, η3 − η2)
(1.5)

×
∫ 1

0
wη2−1 (1− w)η3−η2−1 (1− zw)−η1 exp

[
− κ

w(1− w)

]
dw

(κ ≥ 0, | arg(1− z)| < π, <(η3) > <(η2) > 0)

and
Φκ(η2; η3; z) =

1
B(η2, η3 − η2)

(1.6)

×
∫ 1

0
wη2−1 (1− w)η3−η2−1 exp

[
zw − κ

w(1− w)

]
dw

(κ ≥ 0, <(η3) > <(η2) > 0).

If we set κ = 0 in (1.5) and (1.6) then we easily recover the integral representations of the
classical GHF and CHF as follows (see [15] and also [16]):

F (η1, η2; η3; z) =
1

B(η2, η3 − η2)

∫ 1

0
wη2−1 (1− w)η3−η2−1 (1− zw)−η1dw (1.7)

(| arg(1− z)| < π, <(η3) > <(η2) > 0)

and

Φ(η2; η3; z) =
1

B(η2, η3 − η2)

∫ 1

0
wη2−1 (1− w)η3−η2−1 exp(zw)dw (1.8)

(<(η3) > <(η2) > 0).

By presenting an additional parameter µ, Lee et al. [12] defined a further extension of (1.2)
as follows:

Bµκ(ζ1, ζ2) =

∫ 1

0
wζ1−1 (1− w)ζ2−1 exp

[
− κ

wµ(1− w)µ

]
dw (1.9)

(<(ζ1) > 0, <(ζ2) > 0, <(κ) > 0, µ > 0).

The case µ = 1 in (1.9), yields the extended beta function given in (1.2). Further setting κ = 0,
this definition clearly reduces to the classical beta function.

The Bessel-Struve kernel function Sη(λu), λ ∈ C is the unique solution of the initial value
problem Lηw(u) = λ2w(u) subject to the initial conditions w(0) = 1 and w′(0) = λΓ(η+1)√

π Γ(η+ 3
2 )

,
where

Lη =
d2w(u)

du2 +
2η + 1
u

(
dw(u)

du
− dw(0)

du

)
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is the Bessel-Struve differential operator. This function is given by (see [7] and also [11])

Sη(λu) = jη(iλu)− ihη(iλu), ∀ u ∈ C,

where jη and hη are the normalized Bessel and Struve functions. The series representation of
the Bessel-Struve kernel function is given as follows:

Sη(u) =
Γ(η + 1)√

π

∞∑
k=0

ukΓ(k+1
2 )

k! Γ(k2 + η + 1)
. (1.10)

Additionally, we have the following relations of Bessel-Struve kernel function with the exponen-
tial functions, modified Bessel function and Struve function (see, [7], see also [11]):

S− 1
2
(u) = eu, (1.11)

S 1
2
(u) =

eu − 1
u

, (1.12)

S0(u) = I0(u) + L0(u) (1.13)

and

S1(u) =
2I1(u) + L1(u)

u
. (1.14)

where I0, L0 and I1, L1 are the modified Bessel and Struve functions of order zero and one indi-
vidually (see, [15], see additionally [16]).

The key object of this paper is to presented a new extension of the beta function by utilizing
the Bessel-Struve kernel function (1.10). This is applied to extend the notable beta dispersion
emerging in statistical distribution theory. We additionally characterize another class of the usual
GHF and CHF regarding our presented beta function.

2 An Extended beta function

This section deals with the new development of beta function by utilizing the Bessel-Struve ker-
nel function Sη(λu) given in (1.10):

Definition 2.1. The new extended beta function Bµ,ηκ (ζ1, ζ2) for <(η) > −1 is defined by

Bµ,ηκ (ζ1, ζ2) =

∫ 1

0
wζ1−1 (1− w)ζ2−1 Sη

[
− κ

wµ(1− w)µ

]
dw (2.1)

(<(ζ1) > 0, <(ζ2) > 0, κ ≥ 0, µ > 0)

where Sη(u) denotes the Bessel-Struve kernel function given by (1.10).

Remark 2.2. We note that the case η = − 1
2 in (2.1) leads to the corresponding results given in

Lee et al. [12], which further for µ = 1 gives the familiar extension of the beta function given by
Chaudhry et al. [5]. Obviously, when κ = 0, (2.1) reduces to the traditional beta function (1.1).

Integral representation of Bµ,ηκ (ζ1, ζ2)

Theorem 2.3. For <(η) > −1, κ ≥ 0 and µ > 0, we have the resulting integral representations
of Bµ,ηκ (ζ1, ζ2):

Bµ,ηκ (ζ1, ζ2) = 2
∫ π

2

0
cos2ζ1−1 u sin2ζ2−1 u Sη(−κ sec2 u csc2 u)du; (2.2)
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Bµ,ηκ (ζ1, ζ2) =

∫ ∞
0

uζ1−1

(1 + u)ζ1+ζ2
Sη

[
−κ
(

2 + u+
1
u

)]
du; (2.3)

Bµ,ηκ (ζ1, ζ2) = 21−ζ1−ζ2

∫ 1

−1
(1 + u)ζ1−1 (1− u)ζ2−1 Sη

[
− 4κ
(1− u2)

]
du. (2.4)

Proof. On putting w = cos2 u, w = u
1+u and w = 1+u

2 in (2.1) gives, respectively, the integral
representations (2.2)–(2.4).

3 Properties of extended beta function

This section makes do with some crucial properties of our presented beta function Bµ,ηκ (ζ1, ζ2).

Theorem 3.1. The following functional relation holds true for extended beta function Bµ,ηκ (ζ1, ζ2):

Bµ,ηκ (ζ1, ζ2) =
l∑
s=0

(
l

s

)
Bµ,ηκ (ζ1 + s, ζ2 + l − s), where l ∈ N0. (3.1)

Proof. From (2.1), we have

Bµ,ηκ (ζ1, ζ2) =

∫ 1

0
wζ1−1 (1− w)ζ2−1{w + (1− w)} Sη

[
− κ

wµ(1− w)µ

]
dw

Bµ,ηκ (ζ1, ζ2) = Bµ,ηκ (ζ1 + 1, ζ2) + Bµ,ηκ (ζ1, ζ2 + 1). (3.2)
Once more, applying the similar argument on the right hand side of (3.2), we acquire

Bµ,ηκ (ζ1, ζ2) = Bµ,ηκ (ζ1 + 2, ζ2) + 2Bµ,ηκ (ζ1 + 1, ζ2 + 1) + Bµ,ηκ (ζ1, ζ2 + 2),

continuing this process, by induction on s, we obtain the stated result.

Theorem 3.2. The extended beta function satisfies the following summation formula:

Bµ,ηκ (ζ1, 1− ζ2) =
∞∑
s=0

(ζ2)s
s!

Bµ,ηκ (ζ1 + s, 1). (3.3)

Proof. We have

(1− w)−ζ2 =
∞∑
s=0

(ζ2)s
s!

ws (|w| < 1),

where (a)` = Γ(a+ `)/Γ(a) is the Pochhammer symbol, therefore (2.1) can be written as

Bµ,ηκ (ζ1, 1− ζ2) =

∫ 1

0
wζ1−1 (1− w)−ζ2 Sη

[
− κ

wµ(1− w)µ

]
dw

=

∫ 1

0
wζ1−1

∞∑
s=0

(ζ2)s ws

s!
Sη

[
− κ

wµ(1− w)µ

]
dw.

Interchanging the order of integration and summation (which is verified by uniform convergence
of the involved progression) in the last expression and further by using (2.1), we easily obtain
the stated result (3.3).

Theorem 3.3. The following identity holds true for extended beta function Bµ,ηκ (ζ1, ζ2):

Bµ,ηκ (ζ1, ζ2) =
∞∑
s=0

Bµ,ηκ (ζ1 + s, ζ2 + 1). (3.4)

Proof. Replacing (1− w)ζ2−1 in (2.1) by its series representation

(1− w)ζ2−1 = (1− w)ζ2

∞∑
s=0

ws

We easily obtain the stated result (3.4). We omit the details.
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4 The beta distribution of Bµ,ηκ (ζ1, ζ2)

In this section, we consider the possible utilization of our extended beta function by characteriz-
ing the following new extended beta distribution:

f(w) =


1

Bµ,ηκ (ζ1,ζ2)
wζ1−1 (1− w)ζ2−1 Sη

[
− κ
wµ(1−w)µ

]
(0 < w < 1)

0 otherwise

(4.1)

(<(η) > −1, ζ1, ζ2 ∈ R, κ ≥ 0, µ > 0).

Next, we currently introduced here few crucial properties of presented beta dispersion (4.1).

If p is any real number, then the pth moment of the above said probability density function
about the origin is given by

E(W p) =
Bµ,ηκ (ζ1 + p, ζ2)

Bµ,ηκ (ζ1, ζ2)
(4.2)

(ζ1, ζ2 ∈ R, µ ≥ 0, <(k) > −1).

The particular case of (4.2) when p = 1

µ = E(W ) =
Bµ,ηκ (ζ1 + 1, ζ2)

Bµ,ηκ (ζ1, ζ2)
(4.3)

represents the mean of the above said presented beta dispersion.
The variance of our presented dispersion is defined by

V ar(W ) = E[(W − E(W ))2]

V ar(W ) =
Bµ,ηκ (ζ1 + 2, ζ2) Bµ,ηκ (ζ1, ζ2)− [Bµ,ηκ (ζ1 + 1, ζ2)]2

[Bµ,ηκ (ζ1, ζ2)]2
. (4.4)

The C.V. of this dispersion can be determined as follows:

C.V =

√
Bµ,ηκ (ζ1 + 2, ζ2) Bµ,ηκ (ζ1, ζ2)

[Bµ,ηκ (ζ1 + 1, ζ2)]2
− 1. (4.5)

The moment generating function about origin of this presented dispersion can be deter-
mined as follows:

MW (u) =
∞∑
s=0

us

s!
E(W s)

MW (u) =
1

Bµ,ηκ (ζ1, ζ2)

∞∑
s=0

Bµ,ηκ (ζ1 + s, ζ2)
us

s!
. (4.6)

The characteristic function of the presented dispersion can be calculated as

E(eiuw) =
∞∑
s=0

isus

s!
E(W s)

E(eiuw) =
1

Bµ,ηκ (ζ1, ζ2)

∞∑
s=0

Bµ,ηκ (ζ1 + s, ζ2)
isus

s!
. (4.7)

In probability theory and statistics, the CDF of a random variable W of above mentioned
extended beta dispersion (4.1) can be written as

F (w) = P [W < w] =

∫ w

0
f(w)dw
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F (w) =
Bµ,η,wκ (ζ1, ζ2)

Bµ,ηκ (ζ1, ζ2)
, (4.8)

where Bµ,η,wκ (ζ1, ζ2) signifies the (lower) incomplete extended beta function defined by

Bµ,η,wκ (ζ1, ζ2) =

∫ w

0
wζ1−1 (1− w)ζ2−1 Sη

[
− κ

wµ(1− w)µ

]
dw.

The reliability function of above mentioned dispersion can be written as

R(w) = P [W ≥ w] = 1− F (w) =
∫ ∞
w

f(w)dw

R(w) =
Bµ,η,wκ (ζ1, ζ2)

Bµ,ηκ (ζ1, ζ2)
, (4.9)

where B̂µ,η,wκ (ζ1, ζ2) signifies the (upper) incomplete extended beta function defined by

B̂µ,η,wκ (ζ1, ζ2) =

∫ ∞
w

wζ1−1 (1− w)ζ2−1 Sη

[
− κ

wµ(1− w)µ

]
dw.

5 Extensions of Gauss and confluent hypergeometric functions and related
properties

In this section, we present the following extensions of GHF and CHF by utilizing our extended
beta function Bµ,ηκ (ζ1, ζ2):

Fµ,ηκ (ζ1, ζ2; ζ3; t) =
∞∑
`=0

(ζ1)` Bµ,ηκ (ζ2 + `, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

t`

`!

(<(ζ3) > <(ζ2) > 0, <(η) > −1, κ ≥ 0, µ > 0, |t| < 1)

(5.1)

and

Φ
µ,η
κ (ζ2; ζ3; t) =

∞∑
`=0

Bµ,ηκ (ζ2 + `, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

t`

`!

(<(ζ3) > <(ζ2) > 0, <(η) > −1, κ ≥ 0, µ > 0).

(5.2)

Remark 5.1. We note that the case η = − 1
2 in (5.1) and (5.2), yields the known extensions of

GHF and CHF defined by Lee et al. [12], which further for µ = 1 gives the familiar extensions
of GHF and CHF defined by Chaudhry et al. [5]. Unmistakably, for κ = 0, (5.1) and (5.2)
reduces to the traditional Gauss and confluent hypergeometric functions (see [15] and also [16]).

Theorem 5.2. For the new extended Gauss also, confluent hypergeometric functions, we have
the following integral representations:

Fµ,ηκ (ζ1, ζ2; ζ3; t) =
1

B(ζ2, ζ3 − ζ2)

×
∫ 1

0
wζ2−1 (1− w)ζ3−ζ2−1 (1− tw)−ζ1 Sη

[
− κ

wµ(1− w)µ

]
dw

(κ ≥ 0, µ > 0, | arg(1− t)| < π, <(ζ3) > <(ζ2) > 0, <(η) > −1)

(5.3)

and

Φ
µ,η
κ (ζ2; ζ3; t) =

1
B(ζ2, ζ3 − ζ2)

∫ 1

0
wζ2−1 (1− w)ζ3−ζ2−1 etw Sη

[
− κ

wµ(1− w)µ

]
dw

(κ ≥ 0, µ > 0, <(ζ3) > <(ζ2) > 0, <(η) > −1).

(5.4)
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Proof. All of the above representations can be effortlessly settled by utilizing the integral rep-
resentation of the extended beta function (2.1) on the right hand sides of (5.1) and (5.2), sepa-
rately.

Theorem 5.3. The extended Gauss and Confluent hypergeometric functions satisfies the follow-
ing differential formulas:

dm

dtm
{Fµ,ηκ (ζ1, ζ2; ζ3; t)} = (ζ1)m(ζ2)m

(ζ3)m
Fµ,ηκ (ζ1 +m, ζ2 +m; ζ3 +m; t) (5.5)

(κ ≥ 0, µ > 0, <(η) > −1, m ∈ N0)

and
dm

dtm
{Φµ,η

κ (ζ2; ζ3; t)} = (a2)m
(a3)m

Φ
µ,η
κ (ζ2 +m; ζ3 +m; t) (5.6)

(κ ≥ 0, µ > 0, <(η) > −1, m ∈ N0).

Proof. On differentiating (5.1) with regard to t, we get

d

dt
{Fµ,ηκ (ζ1, ζ2; ζ3; t)} =

∞∑
l=1

(ζ1)` Bµ,ηκ (ζ2 + `, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

t`−1

(`− 1)!
.

On replacing l by l+ 1, we have

d

dt
{Fµ,ηκ (ζ1, ζ2; ζ3; t)} =

∞∑
l=0

(ζ1)`+1 Bµ,ηκ (ζ2 + `+ 1, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

t`

`!
.

Now by using B(ζ2, ζ3 − ζ2) =
ζ3
ζ2

B(ζ2 + 1, ζ3 − ζ2) and (ζ1)`+1 = ζ1(ζ1 + 1)`, we get

d

dt
{Fµ,ηκ (ζ1, ζ2; ζ3; t)} = ζ1ζ2

ζ3

∞∑
l=0

(ζ1 + 1)` Bµ,ηκ (ζ2 + `+ 1, ζ3 − ζ2)

B(ζ2 + 1, ζ3 − ζ2)

t`

`!
. (5.7)

=
ζ1ζ2

ζ3
Fµ,ηκ (ζ1 + 1, ζ2 + 1; ζ3 + 1; t).

Again differentiating (5.7) with respect to t, we get

d2

dt2
{Fµ,ηκ (ζ1, ζ2; ζ3; t)} = ζ1(ζ1 + 1)ζ2(ζ2 + 1)

ζ3(ζ3 + 1)
Fµ,ηκ (ζ1 + 2, ζ2 + 2; ζ3 + 2; t).

Continuing this process, we acquire the desired result (5.5).
Also we can set up the result (5.6).

Theorem 5.4. The extended Gauss and Confluent hypergeometric functions satisfies the follow-
ing transformation formulas:

Fµ,ηκ (ζ1, ζ2; ζ3; t) = (1− t)−ζ1Fµ,ηκ

(
ζ1, ζ3 − ζ2; ζ2;− t

(1− t)

)
(5.8)

(κ ≥ 0, µ > 0, <(η) > −1)

and
Φ
µ,η
κ (ζ2; ζ3; t) = etΦµ,η

κ (ζ3 − ζ2; ζ3;−t) (5.9)

(κ ≥ 0, µ > 0, <(η) > −1).

Proof. On supplanting w by 1 − w in (5.3) and afterward by utilizing [1 − t(1 − w)]−ζ1 =

(1− t)−ζ1

[
1 + t

1−tw
]−ζ1

, we obtain

Fµ,ηκ (ζ1, ζ2; ζ3; t); t) =
(1− t)−ζ1

B(ζ2, ζ3 − ζ2)

×
∫ 1

0
wζ3−ζ2−1 (1− w)ζ2−1

(
1 +

t

1− t
w

)−ζ1

Sη

[
− κ

wµ(1− w)µ

]
dw,

which in view of (5.3), yields the right hand side of (5.8). Likewise, we can set up (5.9).
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Theorem 5.5. The extended Gauss and Confluent hypergeometric functions satisfies the follow-
ing summation formulas:

Fµ,ηκ (ζ1, ζ2; ζ3; 1) =
Bµ,ηκ (ζ2, ζ3 − ζ1 − ζ2)

B(ζ2, ζ3 − ζ2)
(5.10)

(κ ≥ 0, µ > 0, <(η) > −1, <(ζ3 − ζ1 − ζ2) > 0).

Proof. On setting t = 1 in (5.3) and then by using (2.1), we arrive at our stated result (5.10).

Theorem 5.6. The extended Gauss hypergeometric function satisfies the following generating
function:

∞∑
`=0

(ζ1)` F
µ,η
κ (ζ1 + `, ζ2; ζ3; t)

w`

`!
= (1− w)−ζ1Fµ,ηκ

(
ζ1, ζ2; ζ3;

t

1− w

)
(5.11)

(κ ≥ 0, µ > 0, <(η) > −1, |w| < 1).

Proof. On utilizing (5.1) in the left hand side of (5.11), we acquire

∞∑
`=0

(ζ1)` F
µ,η
κ (ζ1 + `, ζ2; ζ3; t)

w`

`!

=
∞∑
`=0

(ζ1)`

[ ∞∑
m=0

(ζ1 + `)m Bµ,ηκ (ζ2 +m, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

tm

m!

]
w`

`!
.

Now by using the identity (ζ)m(ζ +m)` = (ζ)`(ζ + `)m, in the above expression, we obtain

∞∑
`=0

(ζ1)` F
µ,η
κ (ζ1 + `, ζ2; ζ3; t)

w`

`!

=
∞∑
m=0

(ζ1)m
Bµ,ηκ (ζ2 +m, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)

[ ∞∑
`=0

(ζ1 +m)`
w`

`!

]
tm

m!
.

=
∞∑
m=0

(ζ1)m
Bµ,ηκ (ζ2 +m, ζ3 − ζ2)

B(ζ2, ζ3 − ζ2)
(1− w)−(ζ1)+m) t

m

m!
,

which upon further use of (5.1), yields the stated result (5.11).
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