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Abstract. The generalized Jones result in A J Kennedy et al.(2004) which says Pk(x,G), a
G-vertex colored partition is a centralizer algebra of the action of the direct product of Sn, sym-
metric group and G (i.e., Sn × G) on the tensor products of its permutation representation. In
this paper, specifically we restricted the action of the direct product of Sn, symmetric group and
G (i.e., Sn ×G) to the action of the direct product of an alternating group and G (i.e., An ×G).
Herein, we determine the basis for the centralizer algebra and exhibit that at that moment, the
centralizer is isomorphic to Pk(x,G). Also, we do the same for P̂k(x,G), the Extended G-vertex
colored partition algebras.

1 Introduction

At the beginning of the 1990s, V.F.R. Jones and P. Martin studied partition algebra individually
as generalizations of the Temperley-Lieb algebras and the Potts model in statistical mechan-
ics. In [5, 6], and exclusively in [7], the partition algebras were presented completely. They
started putting effort into understanding partition algebra by taking inspiration from [6] and re-
lated problems. After that, Martin and others minutely studied partition algebra’s representation
theory and structure. In [3], Jones observed that the partition algebra is the centralizer algebra
of the symmetric group Sn on V ⊗k. Therefore, generalized Jones result in A J Kennedy et al.
(2004) which says “Pk(x,G) G-vertex colored partition is centralizer algebra of action of the
direct product of Sn symmetric group and G (i.e., Sn × G) on the tensor products of its permu-
tation representation” is restricted to the action of the direct product of An alternating group and
G (i.e., An × G). Hence, we determine the basis for the centralizer algebra and exhibit at that
moment, the centralizer is isomorphic to Pk(x,G). Also, we do the same for P̂k(x,G), Extended
G-vertex colored partition algebras.
Let permutation representation of Sn symmetric group is V. Let An be an alternating group that
acts diagonally on V ⊗k by restriction. In [2], Bloss proved that for n ≥ 2k+ 2, EndAn

(V ⊗k) ∼=
Pk(x). Let Sn×G be the direct product of any finite groupG and the symmetric group Sn. In this
paper, Let W = Cn|G| in [8] shown that for n ≥ 2k, EndSn×G(W

⊗k) ∼= Pk(x,G), and here we
show that for n ≥ 2k + 2, EndAn×G(W

⊗k) ∼= Pk(x,G), where Pk(x,G) denotes the G-vertex
color partition algebra. We have given a clear calculation of the basis for EndAn×G(W

⊗k).
We compute the dimension of EndAn×G(W

⊗k) and describe when EndAn×G(W
⊗k) is simply

the G-vertex color partition algebra Pk(x,G) and also we do the same for P̂k(x,G), Extended
G-vertex colored partition algebras which were studied in [10].

2 Partition Algebras Pk(x)

Here two rows each have k-vertices; one above another is a simple graph called k-partition
diagram. The partition diagram p, with 2k vertices into l distinct subsets where 1 ≤ l ≤ 2k is
connected components of p. It is clear that if any k-partition diagrams form a similar partition
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with the same number of vertices, it is equivalent. The following two 5-diagrams are equivalent
to the aforementioned.

'

One thing essential here is when talking about diagrams, it precisely means the equivalence class.
Let us name the vertices of the top row in k-diagram from left to right 1, 2, . . . , k and vertices of
the bottom row from left to right k + 1, k + 2, . . . , 2k.

In this article, a field of any arbitrary characteristic is denoted by F, and an element of F will
be denoted as x. Here the multiplication is defined by diagram concatenation as follows where p
and p′ be k-partition diagrams :

• Put p above p′.

• Combine the (k + j)th vertex in p with jth vertex in p′ where j = 1, 2, . . . , k. Now the
partition diagram has three rows of vertices, top, bottom, and middle.

• Let p′′ is a diagram obtained by taking the upper and lower row particularly, exchange every
“component” by a variable x where the components are entirely present in the middle row
(i.e., p′p = xλp′′ such that λ represent the number of components we exchange).

See the following diagram,

p =

p′ =

p′p =

p′′ = x2

The above multiplication is well-defined and associative.
Let x ∈ F and k ∈ Z≥1, then the partition algebra is indicated by Pk(x), which is F -span

of k-partition diagrams, and it is an associative algebra with identity e. Here e is an identity
of this algebra, defined as the k partition diagram in which every jth vertex in the first row is
connected to j′ vertex in the second row corresponding to each j where j = 1, 2, . . . , k and
j′ = k + 1, k + 2, . . . , 2k. The dimension of partition algebra Pk(x) is Bell number B(2k), that
is

B(2k) =
2k∑
l=1

S(2k, l)

S(2k, l) is a Stirling number [11]. By convenience, P0(x) = F.

2.1 G-vertex Colored Partition Algebras Pk(x,G)

Here we take any finite group G, and in k-partition diagram, every vertex is named by an ele-
ment of G, then it is (G, k)-partition diagram. Hereafter, let us denote (G, k)-partition diagrams
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by G-diagrams whenever k is known. In G-diagram, whenever we say bottom (resp. top) label
sequence are the k-sequence of the bottom (resp. top) row labels, read from left to right. Com-
bine bottom and top label sequence ofG-diagram which are 2k−sequence and is defined as label
sequence of G-diagram.
Now G-diagram ṗ with underlying partition diagram p. Every h ∈ G, we formulate G-diagram
h(ṗ), by left multiple of h to the label sequence of ṗ. In this, we name the first vertex of the top
row by e, an identity element of G.

Two G-diagrams ṗ1 and ṗ2 are said to be equivalent iff ṗ1 = h(ṗ2) for some h ∈ G. For any
two G-vertex colored diagrams are equivalent if

• Given partition diagrams are equivalent.

• Vertex labels on (G, k) are equal correspondingly.

Below, we show the equivalence of diagrams as follows: let tb, uc ∈ G (2 ≤ b, c ≤ 10):

'

e t2 t3 t4 t5

t6 t7 t8 t9 t10

e u2 u3 u4 u5

u6 u7 u8 u9 u10

If and only if t2 = u2, t3 = u3, . . . , t10 = u10. Here, the G-diagrams are nothing but their
equivalence class. Whenever G is an infinite group, then there exists an infinite number of
(G, k)-diagrams; otherwise, the number of (G, k)-diagrams are |G|2k−1B(2k).
Now the product of the two (G, k)-diagrams ṗ1 and ṗ2 are:

• The underlying partition diagram for the G-diagrams ṗ2ṗ1 was obtained by multiplying the
underlying partition diagrams ṗ1 and ṗ2.

• The bottom and top label sequence of ṗ2ṗ1 are bottom and top label sequence of h(ṗ2) and
ṗ1, provided the top label sequence of h(ṗ2) is same as bottom label sequence of ṗ1 for
certain h ∈ G. If ṗ1ṗ2 = 0, provided top label sequence of h(ṗ2) differs from that of the
bottom label sequence of ṗ1.

• A power of x is obtained from every connected component, which is completely in the
middle row when multiplying.

It can be illustrated for tb, uc ∈ G (2 ≤ b, c ≤ 12), and e ∈ G is an identity element.

ṗ1 =

e t2 t3 t4 t5 t6

t7 t8 t9 t10 t11 t12

ṗ2 =

e u2 u3 u4 u5 u6

u7 u8 u9 u10 u11 u12

ṗ2ṗ1 = x2δ
(t7,t8,...,t12)
(t7,t7u2,...,t7u6)

e t2 t3 t4 t5 t6

t7u7 t7u8 t7u9 t7u10 t7u11 t7u12

The multiplication is generally associative in nature and well-defined until the equivalence of
G-diagrams. Hence, Pk(x,G) is F -span of (G, k)-diagrams under the overhead product and it
is an associative algebra with an identity element, then it is called G-vertex colored partition



666 A. Joseph Kennedy and Sundaresan P.

algebra. Identity element of Pk(x,G)

e t2 t3 tktk−1

e t2 t3 tk−1 tk
. . .

. . .∑
t2, t3, . . . , tk ∈ G

The dimension of Pk(x,G) is |G|2k−1B(2k) which denotes the number of equivalence relations
on 2k vertices and dimension signifies the number of (G, k)-diagrams.

In case,H being a subgroup ofG, the subalgebra of Pk(x,G),which is denoted as Pk(x,GH),
where it is spanned by the diagrams in Pk(x,G), which are named here by using elements of H,
is isomorphic to Pk(x,H). For H = {e} we have Pk(x,H) ' Pk(x). For G being an infinite
group, Pk(x,G) is defined as an infinite dimensional associative algebra.

2.2 Structure of P̂k(x,G)

We postulate without specifying anything on equivalence relation to the definition of a different
multiplication (∗) on the (G, k)-diagrams:

Two diagrams possessing the nature of (G, k) - diagrams are denoted as (p, t) and (p′, t′) and
t = (t1, t2), t′ = (t′1, t

′
2) ∈ G2k.

(p′, t′) ∗ (p, t) =

{
xλ(p′′, (t1, t′2)) if t2 = t′1
0 otherwise,

in which p′p = xλp′′. From the above definition, we equivalently state that the ∗ of two G-
diagrams (p, t) and (p′, t′) are:

• Let (p′, t′) ∗ (p, t) is obtained by multiplying the underlying partition diagrams (p, t) and
(p′, t′).

• The top and bottom label sequence of (p′, t′) ∗ (p, t) are the top and bottom label sequence
of (p, t) and (p′, t′), provided the bottom label sequence of (p, t) is equal to the top label
sequence of (p′, t′). If (p′, t′) ∗ (p, t) = 0, provided the top label sequence of (p′, t′) differs
from the bottom label sequence of (p, t).

• A factor of x is obtained in the multiplication from every entirely connected component in
the middle row.

It can be illustrated for ub, wc ∈ G (1 ≤ b, c ≤ 12).

(p, t) =

u1 u2 u3 u4 u5 u6

u7 u8 u9 u10 u11 u12

(p′, t′) =

w1 w2 w3 w4 w5 w6

w7 w8 w9 w10 w11 w12

(p′, t′) ∗ (p, t) = x2δ
(u7,u8,...,u12)
(w1,w2,...,w6)

u1 u2 u3 u4 u5 u6

w7 w8 w9 w10 w11 w12
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Notation δ(u7,u8,...,u12)
(w1,w2,...,w6)

is the Kronecker delta, which is defined as

δ
(u7,u8,...,u12)
(w1,w2,...,w6)

=

{
1 if (u7, u8, ..., u12) = (w1, w2, ..., w6)

0 if (u7,8 , ..., u12) 6= (w1, w2, ..., w6).

The multiplication ∗ is generally associative, the equivalence of (G, k)-diagrams are well
defined. Let P̂k(x,G) is Extended G-Vertex Colored Partition Algebra is an associative algebra
with an identity element e, as is the F-span of the (G, k)-diagrams under ∗. Take p to be the
identity partition diagram, then identity element of P̂k(x,G) is

∑
f∈G2k
t1=t2

(p, t) (i.e).,

u1 u2 u3 ukuk−1

u1 u2 u3 uk−1 uk
. . .

. . .∑
u1, u2, u3, . . . , uk ∈ G

LetN is a subgroup of groupG, then P̂k(x,N) is a subalgebra of P̂k(x,G). ForN = {e}, we
have P̂k(x,H) ' Pk(x). ForG being finite, then the dimension of P̂k(x,G) is |G|2kB(2k) which
is denoted by the number of equivalence relations of 2k vertices and dimension signifies the
number of (G, k)-diagrams. Otherwise, P̂k(x,G) is defined as an infinite dimensional associative
algebra.

3 Two bases

3.1 Two bases for EndSn×G(W⊗k)

Here for finite group which is denoted byG andW = Cn|G|,we define two bases for EndSn×G(W
⊗k).

For a symmetric group Sn and a finite groupG,which is arbitrary, the direct product of Sn and G
is denoted as Sn × G. For all such permutations in Sn, which fixes the nth symbol and it pos-
sesses the group structure and it is a subgroup of Sn isomorphic to Sn−1; therefore, Sn−1 is a
subgroup of Sn ×G and which in turn is isomorphic to Sn−1 × e.
Let direct product Sn × G consist of elements that can be specified as πg where π ∈ Sn and
g ∈ G. For any two different elements πg, σg ∈ Sn × G, the multiplication is defined as
πgσh = (πσ)gh. Moreover, the order of such direct product is |G|n.
Define W = SpanC{w(i,h) | h ∈ G; 1 ≤ i ≤ n} is Sn × G-permutation module by the
action πgw(i,h) = wπg(i,h) = w(π(i),gh). To be precise, G is a group with a unique element,
Sn × {e} ∼= Sn and then W is similar to V, which is the permutation representation of Sn.

Define I = ((i1, g1), (i2, g2), . . . , (ik, gk)), J = ((ik+1, gk+1), (ik+2, gk+2), . . . , (i2k, g2k)) in Sk.
Definition of action of Sn × G on S2k is defined by πg(I, J) = (πg(I), πg(J)), where it is an
extension of componentwise action of Sn ×G on S which is πg(i, h) = (π(i), gh).

Let the action of Sn ×G on W diagonally extend to an action of Sn ×G on W⊗k is:

πg(w(i1,g1) ⊗ · · · ⊗ w(ik,gk)) = w(π(i1),gg1) ⊗ · · · ⊗ w(π(ik),ggk),

such that πg ∈ Sn ×G. The action overhead is written as πg(wI) = wπg(I).

Suppose A ∈ End(W⊗k). Define A(wJ) =
∑
I A

J
I (wI), such that AJI ∈ C is the (I, J)th entry

of A (I, J ∈ Sk) and wI is a basis element of W⊗k.
One of the analogs of Jones’s result is stated by AJ Kennedy [9].

Lemma 3.1. A ∈ EndSn×G(W
⊗k) ⇔ AJI = A

πg(J)
πg(I)

for all πg ∈ Sn ×G.

Lemma 3.2.

dim EndSn×G(W
⊗k) = |G|2k−1

n∑
l=1

S(2k, l).

If n ≥ 2k,
dim EndSn×G(W

⊗k) = |G|2k−1 B(2k).
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A matrix T IJ ∈ End(W⊗k) is defined for each orbit [(I, J)], in Sn ×G as

T IJ =
∑

(I′,J′)∈[(I,J)]

EI
′

J′ , (3.1)

in which EI
′

J′ is the matrix unit, where for every nonzero entry at (J ′, I ′)th position, the value
is 1. Interestingly, T IJ ∈ EndSn×G(W

⊗k), as it satisfies the requirements of the lemma 3.1,
according to which the matrix entries are equivalent on Sn×G-orbits. Now with the application
of lemma 3.2, we obtain

T
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k)

=
∑
E

(j1,gg1),(j2,gg2),...,(jk,ggk)
(jk+1,ggk+1),(jk+2,ggk+2),...,(j2k,gg2k)

, (3.2)

For the summation being taken over g ∈ G and ip = iq ⇔ jp = jq, (1 ≤ p, q ≤ 2k). As every
T IJ is nothing but the sum of different matrix units and the set {T IJ | [(I, J)] is an Sn×G−orbit}
is a linearly independent set. Given any A ∈ EndSn×G(W

⊗k), the lemma 3.1 is used to obtain:
A =

∑
[(I,J)]A

I
JT

I
J . Thus, the matrices T IJ span EndSn×G(W

⊗k), hence they are a basis for
EndSn×G(W

⊗k).

Lemma 3.3. [ [4] (2.2.4)](
L
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k)

)(
L
(j1,h1),(j2,h2),...,(jk,hk)
(jk+1,hk+1),(jk+2,hk+2),...,(j2k,h2k)

)
= 0

⇔ g′(g1, g2, . . . , gk) 6= (hk+1, hk+2, . . . , h2k) for all g′ ∈ G.

Lemma 3.4. [ [4]( 2.2.5)] Given any g′ ∈ G,(
L
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k)

)(
L
(j1,h1),(j2,h2),...,(jk,hk)
(jk+1,g′g1),(jk+2,g′g2),...,(j2k,g′gk)

)
= xλ

∑
h∈G

1≤s1,s2,...,s2k≤n

p∼q in d ⇒ sp=sq

E
(s1,hh1),(s2,hh2),...,(sk,hhk)
(sk+1,hg′gk+1),(sk+2,hg′gk+2),...,(s2k,hg′g2k)

, (3.3)

in which λ denotes the number of middle components in the product
[d(i1, i2, . . . , i2k)][d(j1, j2, . . . , j2k)] := xλ d. Furthermore, when n ≥ 2k, (3.3) is equal to

xλ L
(s1,h1),(s2,h2),...,(sk,hk)
(sk+1,g′gk+1),(sk+2,g′gk+2),...,(s2k,g′g2k)

,

where [d(i1, i2, . . . , i2k)][d(j1, j2, . . . , j2k)] = xλ d(s1, s2, . . . , s2k).

3.2 Two bases for EndSn
(W⊗k)

We restricted the action of Sn on W and it is defined as π(v(i,g)) = v(π(i),g).

For W = Cn|G|, here we form two bases for EndSn(W
⊗k), and also we define the action of

Sn on W⊗k which is a diagonal action as:
Now S = [n]×G and I = ((i1, g1), (i2, g2), . . . , (ik, gk)),

J = ((ik+1, gk+1), (ik+2, gk+2), . . . , (i2k, g2k)) be in Sk. The action of Sn on S is given by

π(i, g) = (π(i), g) (3.4)

possibly we extended component-wise to an action on S2k which is defined by π(I, J) =
(π(I), π(J)), and Diagonally the action of Sn on W extends to an action of Sn on W⊗k : for
π ∈ Sn

π(v(i1,g1) ⊗ · · · ⊗ v(ik,gk)) = v(π(i1),g1) ⊗ · · · ⊗ v(π(ik),gk) (3.5)

The action above is written as π(vI) = vπ(I).

For A ∈ End(W⊗k), we state A(vJ) =
∑
I A

J
I (vI), where AJI ∈ C is the (I, J)th entry of

A, (I, J ∈ Sk) and vI is a basis element of W⊗k. We have,

EndSn|G|(W
⊗k) ⊆ EndGoSn

(W⊗k) ⊆ EndSn×G(W
⊗k) ⊆ EndSn

(W⊗k).
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The below-mentioned lemma is the corresponding analogue of the Jones result.

Lemma 3.5. A ∈ EndSn
(W⊗k)⇔ AJI = A

π(J)
π(I) for all π ∈ Sn.

Lemma 3.6.

dim EndSn
(W⊗k) = |G|2k

n∑
l=1

S(2k, l).

When n ≥ 2k,
dim End Sn

(W⊗k) = |G|2k B(2k).

4 Schur - Weyl Duality

4.1 Schur - Weyl Duality of Pk(x,G)

Let W is the permutation representation of Sn × G (with respect to Sn−1), then we have the
diagonal action of Sn × G on W⊗k. We obtain an action of Pk(x,G) on W⊗k, stated here by
numbering the vertices of a (G, k)-diagram as 1, 2, . . . k from left to right in the top row, and in
the similar format k + 1, k + 2, . . . , 2k for the bottom row. A map φ : Pk(x,G) −→ End(W⊗k)
is defined on a G-diagram ḋ with any label sequence (e, g2, . . . , gk, gk+1, gk+2, . . . , g2k), then

φ(ḋ) = (φ(ḋ)
(i1,h1),(i2,h2),...,(ik,hk)
(ik+1,hk+1),(ik+2,hk+2),...,(i2k,h2k)

)

= (ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k
δ
h1(e,g2,g3,...,g2k)
(h1,h2,...,h2k)

) ,

in which δh1(e,g2,g3,...,g2k)
(h1,h2,...,h2k)

is the Kronocker delta and ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k
is defined as in equation

[4](1.7). In other words, with respect to the matrix unit, we have

φ(ḋ) =
∑

g∈G
p∼q in d⇒ip=iq
1≤i1,i2,...,i2k≤n

E
(i1,g),(i2,gg2),...,(ik,ggk)
(ik+1,ggk+1),(ik+2,ggk+2),...,(i2k,gg2k)

. (4.1)

With respect to which an action of Pk(x,G) on W⊗k is defined by

ḋ(vJ) = φ(ḋ)(vJ) for all J ∈ Sk.

Let G be a group with only one element then the above-defined action restricts the action of the
partition algebra as defined in [3] on tensors.

Therefore, the action of a G-partition diagram ḋ ∈ Pk(x,G) on W⊗k is stated with respect to
standard basis as

ḋ.(v(i1,h1) ⊗ v(i2,h2) ⊗ · · · ⊗ v(ik,hk))

= δ
h1(e,g2,g3,...,g2k)
(h1,h2,...h2k)

∑
1≤ik+1,ik+2,...,i2k≤n

ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k
v(ik+1,hk+1) ⊗ · · · ⊗ v(i2k,h2k)

Lemma 4.1. The map φ : Pk(x,G) −→ End(W⊗k) is an algebra homomorphism onto EndSn×G(W
⊗k).

Proof. We have the (G, k)-diagram ḋ with underlying partition diagram d, which are the label
sequence (g1, g2, . . . , g2k). From (4.1), we have,

φ(ḋ) =
∑

g∈G
d(i1,i2,...,i2k)≤d

E
(i1,gg1),(i2,gg2),...,(ik,ggk)
(ik+1,ggk+1),(ik+2,ggk+2),...,(i2k,gg2k)

(4.2)

where 1 ≤ i1, i2, . . . , i2k ≤ n.

(i.e., ) φ(ḋ) =
∑

d(i1,i2,...,i2k)≤d

T
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k)

, (4.3)
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where the sum is over one representative (i1, g1), (i2, g2), . . . , (i2k, g2k) for one Sn × G-orbit.
Thus, φ(ḋ) ∈ EndSn×G(W

⊗k), for all (G, k)-diagrams ḋ.
As in the proofs of Lemma 3.3 and Lemma 3.4, we have φ(ḋ2ḋ1) = φ(ḋ2)φ(ḋ1), where ḋ1, ḋ2

are G-diagrams, and hence φ is an algebra homomorphism.

Observe that every LIJ has a pre image ḋ :

φ(ḋ) = L
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),...,(i2k,g2k)

,

in which the underlying partition diagram of ḋ is d(i1, i2, . . . , i2k) with label sequence g1, g2, . . . , g2k.
Hence, φ is onto EndSn×G(W

⊗k). Hence the lemma is proved.

Theorem 4.2. C[Sn × G] and Pk(x,G) generate full centralizers of each other in End(W⊗k).
That is for n ≥ 2k, we have
(i) Pk(x,G) ∼= EndSn×G(W

⊗k),
(ii) Sn ×G generates EndPk(x,G)(W

⊗k).

Proof. (i). For n ≥ 2k, dim Pk(x,G) = dim EndSn×G(W ⊗ k). From Lemma 4.1, we ob-
tained φ(Pk(x,G)) ⊆ EndSn×G(W

⊗k). As ḋ ranges overall G-diagrams, all Lḋ are obtained.
Hence, the representation φ takes a basis of Pk(x,G) into a basis of EndSn×G(W

⊗k), therefore
Pk(x,G) ∼= EndSn×G(W

⊗k).

(ii). The proof from (i) and the double centralizer Theorem.

As the centralizer of the semisimple group algebra C[Sn × G], the C-algebra Pk(x,G) is
semisimple for n ≥ 2k.

4.2 Schur - Weyl Duality of P̂k(x,G)

The action of P̂k(x,G) on W⊗k is stated here by numbering the vertices of a (G, k)-diagram as
1, 2, . . . k in the top row from the left to the right-hand side and in a similar format k + 1, k +

2, . . . , 2k for the bottom row. A map φ̂ : P̂k(x,G) −→ End(W⊗k) is defined on a G-diagram
(d, f) as:
for f = (g1, g2, . . . , gk, gk+1, gk+2, . . . , g2k) be any label sequence of d, then

φ̂(d, f) =
(
φ̂(d, f)

(i1,h1),(i2,h2),...,(ik,hk)
(ik+1,hk+1),(ik+2,hk+2),...,(i2k,h2k)

)
=

(
ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k

δ
(g1,g2,...,g2k)
(h1,h2,...,h2k)

)
in which δ(g1,g2,...,g2k)

(h1,h2,...,h2k)
is the Kronecker delta and ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k

is similar to the definition in
equation [4] 1.7. In other words, with respect to the matrix unit, we have

φ̂(d, f) =
∑

p∼q in d⇒ip=iq
1≤i1,i2,...,i2k≤n

E
(i1,g1),(i2,g2),...,(ik,gk)
(ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k)

. (4.4)

With respect to which an action of P̂k(x,G) on W⊗k is defined by

(d, f)(vJ) = φ̂(d, f)(vJ), for all J ∈ Sk.

Let G be a group with only one element, then the above-defined action restricts the action of the
partition algebra as defined in [3] on tensors.

Therefore, the action of a G-partition diagram (d, f) ∈ P̂k(x,G) on W⊗k is stated with
respect to standard basis as

(d, f).(v(i1,h1) ⊗ v(i2,h2) ⊗ · · · ⊗ v(ik,hk))

= δ
(g1,g2,...,g2k)
(h1,h2,...h2k)

∑
ik+1,ik+2,...,i2k

ψ(d)i1,i2,...,ikik+1,ik+2,...,i2k
v(ik+1,hk+1) ⊗ v(ik+2,hk+2) ⊗ · · · ⊗ v(i2k,h2k)
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Lemma 4.3. The map φ̂ : P̂k(x,G) −→ End(W⊗k) is an algebra homomorphism onto EndSn
(W⊗k).

Proof. It holds from the lemma 4.1.

The following is our analogue of Theorem 4.2.

Theorem 4.4. C[Sn] and P̂k(x,G) generate full centralizers of each other in End(W⊗k), which
is, for n ≥ 2k, we obtain
(i) P̂k(x,G) ∼= EndSn

(W⊗k),
(ii) Sn generates EndSn(W

⊗k).

Proof. (i). For n ≥ 2k, dim P̂k(x,G) = dim EndSn
(W ⊗ k). From Lemma 4.3, we obtained

φ̂(P̂k(x,G)) ⊆ EndSn(W
⊗k). As (d, f) ranges over all G-diagrams, all L(d,f) are obtained.

Hence, the representation φ takes a basis of P̂k(x,G) to a basis of EndSn
(W⊗k), therefore

P̂k(x,G) ∼= EndSn
(W⊗k).

(ii). The proof from (i) and the double centralizer Theorem.

5 ALGEBRA EndAn×G(W
⊗k)

Let An signify the group of even permutations on n elements, and W represents the permutation
module of the symmetric group Sn|G|. Similar to Section 3.2, Sn ×G acts diagonally on W⊗k,
and this action restricted to An ×G ⊂ Sn ×G. We formulate a basis for the centralizer algebra
EndAn×G(W

⊗k). Clearly EndSn×G(W
⊗k) ⊆ EndAn×G(W

⊗k). We calculate the dimension
of EndAn×G(W

⊗k) and describe when EndAn×G(W
⊗k) is simply the G-vertex color partition

algebra Pk(x,G).

Lemma 5.1. A ∈ EndAn×G(W
⊗k) ⇔ AJI = A

πg(J)
πg(I)

for all πg ∈ An ×G.

Proof. Given is

A ∈ EndAn×G(W
⊗k) ⇔ πgA = Aπg ∀ πg ∈ An ×G

⇔ πgA(wJ) = Aπg(wJ) ∀ wJ

⇔ πg
∑
I

AJI (wI) = A(wπg(J))

⇔
∑
I

AJI πg(wI) =
∑
I

A
πg(J)
I (vI)

⇔
∑
I

AJI (wπg(I)) =
∑
I

A
πg(J)
πg(I)

(wπg(I))

As the action of An ×G is by the permutation representation, an ensuing conclusion is deduced
from linear independence and equating the scalars.

Because the action of An ×G is by the permutation representation. Hence, it holds by linear
independence and equating the scalars.

Therefore, we can form a basis of EndAn×G(W
⊗k) by describing An ×G-orbits on

S2k =(I, J) ={[((i1,g1),(i2,g2),...,(ik,gk))
((ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k))

] : 1 ≤ i1, i2, . . . , i2k ≤ n}.

The action of Sn × G on S2k by πg(I, J) = (πg(I), πg(J)). As we saw in Section 3, the
number of Sn ×G-orbits on S2k gives the dimension of EndSn×G(W

⊗k).

Every orbit corresponds to a basis element T∼l
, of EndSn×G(W

⊗k) (from Equation 3.2).
From Section 3, we obtained that the Sn × G-orbits are in one-to-one correspondence with the
set partitions of 1, 2, . . . , 2k and a 2k-tuple (e, g′2, g

′
3, . . . , g

′
2k) and vice-versa. Whereas, we know

that the An×G-orbits are not necessarily in 1−1 correspondence with the equivalence relations
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on 1, 2, . . . , 2k and a 2k−tuple (e, g′2, g
′
3, . . . , g

′
2k). Because what was an entire Sn×G-orbits can

be regarded as the disjoint union of more than one An ×G-orbits.
Let ∼l denote an equivalence relation with l classes on 1, 2, . . . , 2k and a 2k−tuple
(e, g′2, g

′
3, . . . , g

′
2k). There are |G|2k−1S(2k, l) such equivalence relations; then corresponding to

∼l are |G|2k−1S(2k, l) basis elements T of EndSn×G(W
⊗k). Now T∼l

represent a basis ele-
ment of EndSn×G(W

⊗k) from the nature of the partition ∼l, we conclude that T∼l
is of type

|G|2k−1S(2k, l). Once again T∼l
be a basis element of type |G|2k−1S(2k, l) in EndSn×G(W

⊗k),
such that the entries of T∼l

have indices partitioned according to ∼l. Define

S2k(T∼l
)={[((i1,g1),(i2,g2),...,(ik,gk))

((ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k))
] : 1 ≤ i1, i2, . . . , i2k ≤ n,

where i1, i2, . . . , i2k are partitioned according to ∼l},

then S2k(T∼l
) represents the positions of the nonzero entries in T∼l

. When α ε S2k(T∼l
)

and Oα represent the An × G-orbit of α. Now, |S2k(T∼l
)|=n!/(n − l)! along with |Oα| =

|G|2k−1n!/2|(An × G)α|, where (An × G)α ⊆ An × G is the stabilizer of α. If S2k(T∼l
) is

the disjoint union of two An ×G-orbits, then it is concluded that T∼l
∈ EndSn×G(W

⊗k) splits
when lifted to EndAn×G(W

⊗k).

Proposition 5.2. i) For 2 < n ≤ 2k, we obtain

dim EndAn×G(W
⊗k) = |G|2k−1(

n−2∑
l=1

S(2k, l) + 2S(2k, n− 1) + 2S(2k, n))

ii) For n = 2k + 1, we obtain

dim EndAn×G(W
⊗k) = |G|2k−1(

2k−1∑
l=1

S(2k, l) + 2S(2k, 2k)) = |G|2k−l(B(2k) + 1)

iii) For n ≥ 2k + 2, we obtain

dim EndAn×G(W
⊗k) = |G|2k−1

2k∑
l=1

S(2k, l) = |G|2k−1B(2k)

Proof. i) As observed from lemma 3.2 dim EndSn×G(W
⊗k) = |G|2k−1∑n

l=1 S(2k, l). Observe
that EndAn×G(W

⊗k) = |G|2k−1∑n
l=1 clS(2k, l) where cl is the number of disjoint An × G-

orbits that S2k(T∼l
) comprises when T∼l

is of type |G|2k−1S(2k, l) (cl is independent of ∼, and
only depends on l). We will see that cl is either 1 or 2. In other words, T∼l

∈ EndSn×G(W
⊗k)

of type |G|2k−1S(2k, l) either splits as T∼l
= T−∼l

+ T+
∼l

into a sum of two basis elements of
EndAn×G(W

⊗k) when lifted to EndSn×G(W
⊗k), or remains a basis element of type |G|2k−1

S(2k, l) in EndSn×G(W
⊗k). Let α ∈ S2k(T∼l

) where T∼l
∈ EndSn×G(W

⊗k) is of type
|G|2k−1S(2k, n). Then, it can be easily deduced that the identity is the only element of An ×G
which fixes the entire n different entries of α. Hence |Oα| = n!/2, where S2k(T∼l

) = n!,
cn = 2. Following the above discussion, we also obtain for cn−1 = 2. For α ∈ S2k(T∼l

),
(T∼l

) ∈ EndSn×G(W
⊗k) is of the form of |G|2k−1S(2k, l), 1 ≤ l ≤ n−2. We infer (An×G)α ∼=

An−l × G. Therefore |Oα| = ((n!/2)/(n − l)!/2) = n!/(n − l)! = S2k(T∼l
), so cl = 1,

1 ≤ l ≤ n− 2, hence the condition follows.

ii) As observed from lemma 3.2 dim EndSn×G(W
⊗k) = |G|2k−1Σ2k

l=1S(2k, l) = |G|2k−1B(2k).
Again, we assume dim EndAn×G(W

⊗k) = |G|2k−1Σ2k
l=1clS(2k, l) and from (i), the only T∼l

∈
EndSn×G(W

⊗k) that can split are of type S(2k, n) or S(2k, n − 1). As cn = c2k+1 is absent
in the above mentioned sum, only T∼l

∈ EndSn×G(W
⊗k) of type S(2k, n − 1) = S(2k, 2k)

splits. Hence, c2k = 2 and cl = 1, 1 ≤ l ≤ n − 2 = 2k − 1. To point out S(2k, 2k) = 1,
so dim EndAn×G(W

⊗k) = |G|2k−1(Σ2k−1
l=1 S(2k, l) + 2S(2k, 2k)) = |G|2k−1(Σ2k

l=1S(2k, l) +
S(2k, 2k)) = |G|2k−1(B(2k) + 1).

iii) Similarly, dim EndSn×G(W
⊗k) = |G|2k−1Σ2k

l=1S(2k, l) = |G|2k−1B(2k). As n ≥ 2k+2, cn
and cn−1 do not appear in the sum dim EndAn×G(W

⊗k) = |G|2k−1Σ2k
l=1S(2k, l) and therefore,

cl = 1, 1 ≤ l ≤ 2k (≤ n− 2). Hence the condition holds.
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The EndAn×G(W
⊗k) always remains similar for higher values of n, and theorem 5.3 pro-

vides the necessary proof.

Theorem 5.3. When n ≥ 2k + 2, C[An × G] and Pk(x,G) generate full centralizers of each
other in End(W⊗k). Mathematically, these are represented as n ≥ 2k + 2. We have,
(i) Pk(n,G) ∼= EndAn×G(W

⊗k),
(ii) An ×G generates EndPk(n,G)(W

⊗k).

Proof. (i). Recall that for n ≥ 2k, Pk(x,G) ∼= EndSn×G(W
⊗k). Then EndSn×G(W

⊗k)
is a subalgebra of EndAn×G(W

⊗k); under proposition 5.2 the subdivision (iii) validates that
dim EndSn×G(W

⊗k) = dim EndAn×G(W
⊗k) for n ≥ 2k + 2. Thus EndSn×G(W

⊗k) =
EndAn×G(W

⊗k) for n ≥ 2k+2. Specifically, Pk(x,G) ∼= EndSn×G(W
⊗k) = EndAn×G(W

⊗k)
for n ≥ 2k + 2.

Proof of (ii). The double centralizer Theorem and from the proof of subdivision (i), the result of
subdivision (ii) holds.

6 ALGEBRA EndAn(W
⊗k)

Let An signify the group of even permutations on n elements and W represent the permutation
module of the symmetric group Sn|G|. Similar to Section 3.2, Sn acts diagonally on W⊗k, and
this action restricted toAn ⊂ Sn. We formulate a basis for the centralizer algebra EndAn

(W⊗k).
Clearly, EndSn

(W⊗k) ⊆ EndAn
(W⊗k). We calculate the dimension of EndAn

(W⊗k) and de-
scribe when EndAn

(W⊗k) is simply the Extended G- vertex colored partition algebra Pk(x,G).

Lemma 6.1. A ∈ EndAn(W
⊗k) ⇔ AJI = A

π(J)
π(I) for all π ∈ An

Proof.

We have A ∈ EndAn(W
⊗k) ⇔ πA = Aπ ∀ π ∈ An,

⇔ πA(vJ) = Aπ(vJ) ∀ vJ

. ⇔ π
∑
I

AJI (vI) = A(vπ(J))

⇔
∑
I

AJI π(vI) =
∑
I

A
π(J)
I (vI)

⇔
∑
I

AJI (vπ(I)) =
∑
I

A
π(J)
π(I) (vπ(I)).

Since the action of Sn is permutation representation. Hence, it holds from linear indepen-
dence and equating the scalars.

S = [n]×G The action of Sn on S defined by

π(i, g) = (π(i), g)

Hence, we can describe a basis of EndAn
(W⊗k) by describing An-orbits on

S2k =(I, J) ={[((i1,g1),(i2,g2),...,(ik,gk))
((ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k))

] : 1 ≤ i1, i2, . . . , i2k ≤ n}

The action of Sn on S2k by π(I, J) = (π(I), π(J)). As we saw in Section 3, the number of
Sn-orbits on S2k gives the dimension of EndSn(W

⊗k).

Each orbit corresponds to a basis element T ofEndSn(W
⊗k) (From Equation 3.2). In Section

3, we obtained that the Sn-orbits are in one-to-one correspondence with the set partitions of
1, 2, . . . , 2k and a 2k-tuple (e, g′2, g

′
3, . . . , g

′
2k) and vice versa . Whereas we know that the An-

orbits are not necessarily in 1− 1 correspondence with the equivalence relations on 1, 2, . . . , 2k
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and a 2k−tuple (e, g′2, g
′
3, . . . , g

′
2k). Because what was an entire Sn-orbits can be regarded as the

disjoint union of more than one An-orbits.
Let ∼l denote an equivalence relation with l classes on 1, 2, . . . , 2k and a 2k−tuple

(e, g′2, g
′
3, . . . , g

′
2k). There are |G|2kS(2k, l) such equivalence relations; then corresponding to

∼l are |G|2kS(2k, l) basis elements T of EndSn(W
⊗k). Now T∼l

represent a basis element of
EndSn

(W⊗k) from the nature of the partition ∼l, we conclude that T∼l
is of type |G|2kS(2k, l).

Once again T∼l
be a basis element of type |G|2kS(2k, l) in EndSn(W

⊗k), such that the entries
of T∼l

have indices partitioned according to ∼l. Define

S2k(T∼l
)={[((i1,g1),(i2,g2),...,(ik,gk))

((ik+1,gk+1),(ik+2,gk+2),...,(i2k,g2k))
] : 1 ≤ i1, i2, . . . , i2k ≤ n,

where i1, i2, . . . , i2k are partitioned according to ∼l}

then S2k(T∼l
) represents the positions of the nonzero entries in T∼l

. When α ε S2k(T∼l
) and Oα

represent theAn-orbit of α. Now we observe |S2k(T∼l
)|=n!/(n−l)! along with |Oα|=n!/2|(An×

G)α|, where (An)α ⊆ An is the stabilizer of α. If S2k(T∼l
) is the disjoint union of twoAn-orbits,

then it is concluded that T∼l
∈ EndSn

(W⊗k) splits when lifted to EndAn
(W⊗k).

Proposition 6.2. i) For 2 < n ≤ 2k, we obtain

dim EndAn
(W⊗k) = |G|2k(

n−2∑
l=1

S(2k, l) + 2S(2k, n− 1) + 2S(2k, n))

ii) For n = 2k + 1, we obtain

dim EndAn
(W⊗k) = |G|2k(

2k−1∑
l=1

S(2k, l) + 2S(2k, 2k)) = |G|2k(B(2k) + 1)

iii) For n ≥ 2k + 2, we obtain

dim EndAn
(W⊗k) = |G|2k

2k∑
l=1

S(2k, l) = |G|2kB(2k)

Proof. i) As observed from lemma 3.6, dim EndSn
(W⊗k) = |G|2k

∑n
l=1 S(2k, l). Observe

that EndAn(W
⊗k) = |G|2k

∑n
l=1 clS(2k, l) in this cl is the number of disjoint An-orbits that

S2k(T∼l
) comprises when T∼l

is of type |G|2kS(2k, l) (cl is independent of ∼, and only de-
pends on l). We will see that cl is either 1 or 2. In other words, T∼l

∈ EndSn(W
⊗k) of type

|G|2kS(2k, l) either splits as T∼l
= T−∼l

+T+
∼l

into a sum of two basis elements of EndAn
(W⊗k)

when lifted to EndSn
(W⊗k), or remains a basis element of type |G|2kS(2k, l) in EndSn

(W⊗k).
Let α ∈ S2k(T∼l

) where T∼l
∈ EndSn(W

⊗k) is of type |G|2kS(2k, n). Then, it can be easily
deduced that the identity is the only element of An that fixes the entire n different entries of
α. Hence |Oα| = n!/2 as S2k(T∼l

) = n!, cn = 2. Following the above discussion, we also
obtain for cn−1 = 2. For α ∈ S2k(T∼l

), (T∼l
) ∈ EndSn

(W⊗k) is of the form of |G|2kS(2k, l),
1 ≤ l ≤ n− 2. We infer (An)α ∼= An−l. Therefore |Oα| = ((n!/2)/(n− l)!/2) = n!/(n− l)! =
S2k(T∼l

), so cl = 1, 1 ≤ l ≤ n− 2, hence the condition follows.

ii) As observed from lemma 3.6, dim EndSn
(W⊗k) = |G|2kΣ2k

l=1S(2k, l) = |G|2kB(2k). Again,
we use dim EndAn(W

⊗k) = |G|2kΣ2k
l=1clS(2k, l) and from (i), the only T∼l

∈ EndSn(W
⊗k)

that can split are of type S(2k, n) or S(2k, n − 1). As cn = c2k+1 is absent in the above men-
tioned sum, only T∼l

∈ EndSn(W
⊗k) of type S(2k, n − 1) = S(2k, 2k) splits. Hence c2k = 2

and cl = 1, 1 ≤ l ≤ n − 2 = 2k − 1. To point out S(2k, 2k) = 1, so dim EndAn
(W⊗k) =

|G|2k(Σ2k−1
l=1 S(2k, l) + 2S(2k, 2k)) = |G|2k(Σ2k

l=1S(2k, l) + S(2k, 2k)) = |G|2k(B(2k) + 1).

iii) Similarly, dim EndSn
(W⊗k) = |G|2kΣ2k

l=1S(2k, l) = |G|2kB(2k). As n ≥ 2k + 2, cn
and cn−1 are not present in the sum dim EndAn(W

⊗k) = |G|2kΣ2k
l=1clS(2k, l) and cl = 1,

1 ≤ l ≤ 2k(≤ n− 2). Hence the condition holds.

EndAn(W
⊗k) always remains similar for higher values of n, and theorem 6.3 provides the

necessary proof.
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Theorem 6.3. When n ≥ 2k+ 2, C[An] and P̂k(x,G) generate full centralizers of each other in
End(W⊗k). Mathematically, these are represented as
(i) P̂k(x,G) ∼= EndAn

(W⊗k),
(ii) An ×G generates End

P̂k(x,G)(W
⊗k).

Proof. (i). Recall that for n ≥ 2k, P̂k(x,G) ∼= EndSn
(W⊗k). Then EndSn

(W⊗k) is a subalge-
bra of EndAn(W

⊗k); under proposition 6.2 subdivision (iii) validates that dim EndSn(W
⊗k) =

dim EndAn
(W⊗k) for n ≥ 2k + 2. Hence, EndSn

(W⊗k) = EndAn
(W⊗k) for n ≥ 2k + 2.

Specifically, P̂k(x,G) ∼= EndSn
(W⊗k) = EndAn

(W⊗k) for n ≥ 2k + 2.
(ii). The double centralizer Theorem and from the proof of subdivision (i), the result of subdivi-
sion (ii) holds.
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