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Abstract The purpose of this paper is to introduce the concept of partial E-cone metric
spaces as a generalization of partial metric and E-metric spaces. Analog to Banach contraction
principle, some fixed point results are proved investigating the T -stability of Picard’s iteration as
well as a Hardy-Rogers type mapping in such cone metric spaces.

1 Introduction

In 1912 Luitzen E. Brouwer [15] published a famous paper discussing results on fixed point the-
ory. Many of its proofs were later adapted in a topological sense. Banach, 1922, [12], presented
a method for finding the fixed point of a self operator in complete metric spaces in a systematic
manner. Later, a great deal of work on variants and generalizations was published to improve the
Banach contraction principle by modifying the topology of the space or acting on the contraction
requirement, ( see, e.g., [1]− [4], [7], [8], [11], [13], [19], [21], [30], [35], [36]).

In some works on non-convex analysis, the authors define an order specially in ordered
normed spaces by using a cone in a vector space, [18], [23] − [25]. In this manner Huang and
Zhang, [20] presented the notion of cone metric space with a fresh point of view in which Cauchy
and convergent sequences are analyzed in terms of the interior points with respect to the cone
partial ordering. Many mathematicians followed Huang’s lead and focused on fixed point prob-
lems in such spaces (see, [9], [23]-[27]) and the references therein).

In this sequel, Mehmood et al. [24] introduced the concept of E-metric spaces as general-
ization of metric spaces. They proved the contraction mapping principle in E-metric spaces that
generalized the famous Banach contraction principle in such spaces.

On the other hand, Matthews, [22] introduced the notion of partial metric space as a part of
the study of denotational semantics of dataflow network. In partial metric spaces, the distance of
a point in the self may not be zero. Introducing partial metric space, Matthews proved the Banach
fixed point theorem in the setting of partial metric. Many authors considered such spaces and
introduced interesting fixed point results and generalizations (see, e.g., [8], [13], [36]).

In solving some real life problems, for example in Physics, finance, or transportation, nu-
merical procedures that compute an iterative sequence are considered to be useful if they posses
some convergence and stability properties, (see, e.g., [5], [6], [17], [27], [31]-[33]). In 1991,
Rhoades [29], provided a survey paper on the stability of some iteration techniques used to ob-
tain fixed points for maps satisfying certain contractive conditions. While Asadi et al. [10], and
Yousefi [34], proved and investigated T -stability iteration procedure in cone metric spaces. For
more on stability of Picard’s iteration, see [27], [28].

In this paper, we generalize both E-metric and partial cone metric by introducing the partial
E-cone metric space. We give some basic properties in E-metric spaces with regard to cones
containing semi-interior points. Furthermore, as we cape the existence and uniqueness of fixed
points for Hardy-Rogers type mapping, we established the T -stability of Picard’s iteration and
the equivalence between two distinct e-sequences in such spaces. Throughout this paper, N and
R denote the set of all natural numbers and the set of all real numbers respectively. The following
definitions and results will be needed in this paper.

Definition 1.1. [20] An ordered space E is a vector space over the real numbers, with a partial
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order relation ” � ” such that

(i) for all x, y and z ∈ E, x � z implies x+ y � z + y

(ii) for all α ∈ R+ and for all x ∈ E with x � 0E , αx � 0E , where 0E stands for the zero of
E.

Moreover, if E is equipped with a norm ||.||, then E is called normed ordered space.

Definition 1.2. [18] Let E be a real normed space, E+ be a non-empty closed and convex subset
of E, and 0E be a zero element in E. Then E+ is called a positive cone if it satisfies

(i) x ∈ E+ and a ≥ 0 imply ax ∈ E+;

(ii) x ∈ E+ and −x ∈ E+ imply x = 0E .

Definition 1.3. [18] The positive cone E+ of a normal ordered space E is called normal if there
exists a constant K > 0, such that

0 � y � x implies ‖y‖ ≤ K ‖x‖ for all such y, x ∈ E.

Equivalently the coneE+ is regular if and only if every decreasing sequence which is bounded
from below is convergent. It is well known that a regular cone is a normal cone.

The following definition of an E-metric space defined in [24].

Definition 1.4. Let X be a non-empty set and let E be an ordered space over the real scalars. An
ordered E-metric on X is an E-valued function dE : X ×X → E such that for all x, y, z ∈ X,
we have

(i) 0E � dE (x, y) , dE (x, y) = 0E if and only if x = y;

(ii) dE (x, y) = dE (y, x) ;

(iii) dE (x, y) � dE (x, z) + dE (z, y) .

Then the pair dE (X, d) is called E-metric space.

2 Partial E-cone metric space

Rezapour and Hamlbarani, [26] extended the notion of K-metric spaces and convergence in an
ordered Banach space X with a solid cone E without normality assumption. Most fixed point
issues in cone metric spaces are embedded in solid cones, which are cones with non empty
interior. Unfortunately, there were just a few results that took non-solid cones into account,
[14, 24].

Fortunately, by embedding non-solid cones that contain semi-interior points in E-metric
spaces, Basile et al. [14] established the concept of the semi-interior point and took fixed point
results in E-metric spaces into consideration. Embedding such cones in the setting of E-metric
spaces, Mehmood et al. [24] and Huang, [18], obtained some fixed Theorems in 2019.

As examples in [14] illustrate, the class of cones with semi-interior point and empty interior
is wider than the one with non empty interior, fixed points results for ordered normed spaces also
hold for this wider class of cones with semi-interior points, which is quite fascinating.

Let E be an ordered normed space ordered by the positive cone E+, we shall denote by 0E
the zero of E. The set

B = {x ∈ E : ‖x‖ ≤ 1} is the closed unit ball of E,

and that
B+ = B ∩ E+ is the positive part of B.

The point x0 ∈ E+ is called a semi-interior point of E+ if there exists a real number λ > 0
such that

x0 − λB+ ⊆ E+.
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Hereafter, we denote by (E+)
� the set of all semi-interior points of E+.

Now, let E be a normed space ordered by its positive cone E+.
For x, y ∈ E+, x � y if and only if y − x ∈ E+ and x≪ y if and only if y − x ∈ (E+)

�
.

It is easy to see that
x ∈

(
E+
)� if and only if 0E ≪ x.

Proposition 2.1. Let x, y, z ∈ E. Then 0E � z, x � y − z implies that x � y.

Proof. Let x, y, z ∈ E, 0E � z and x � y − z. Then

0E � z, y − z − x ∈ E+.

Noting that E+ is a positive cone, it follows that

y − x = (y − z − x) + z ∈ E+.

Thus, y − x ∈ E+, that is x � y.

The following topological properties relevant to semi-interior points in E-metric spaces de-
fined in [18].

Proposition 2.2. If x, y ∈ E, then y ≪ x implies y � x.

Proposition 2.3. If 0E � u≪ e holds for any e ∈ (E+)
�
, then u = 0E .

Proposition 2.4. [18] Let 0 ≤ λ < 1 be a constant, u ∈ E+ and u � λu. Then u = 0E .

Definition 2.5. [18] A sequence (yn) in E+ is said to be an e-sequence if for each 0E ≪ e,
there exists k ∈ N such that for all n > k, yn ≪ e.

It is easy to see that (yn) is an e-sequence if (yn) converges to 0E as n goes to infinity.

Proposition 2.6. Let 0 ≤ λ < 1 be a constant, (xn) and (yn) be two sequences in E+ satisfying

xn+1 � λxn + yn. (2.1)

Then (xn) is an e-sequence if (yn) is an e-sequence.

We now state the following definition of partial E-cone metric space.

Definition 2.7. Let X 6= φ and E be a ordered normed space with assumption that (E+)
� is

non-empty. A partial E-cone metric on the set X is a function pE : X ×X → E+ such that for
all x, y, z ∈ X;

(p1) 0E � pE(x, x) � pE(x, y),

(p2) x = y ⇐⇒ pE(x, x) = pE(x, y) = pE(y, y),

(p3) pE(x, y) = pE(y, x),

(p4) pE(x, y) � pE(x, z) + pE(x, y)− pE(z, z).

A partial E-cone metric space is a pair (X, pE) such that X is non-empty set and pE is a
partial E-cone metric on X.

It is clear that, if pE(x, y) = 0, then from (p1) and (p2), x = y. But if x = y, pE(x, y) may
not be equal to 0E .

Now we define the e-convergence and the e-Cauchy convergence criteria in the ordered
normed space E, with non-solid cone E+.

Definition 2.8. Let E be an ordered normed space with the assumption that (E+)
� is non-empty

and
(
X, pE

)
be a partial E-cone metric. Let (xn) be a sequence in X and x ∈ X . Then
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(i) A sequence (xn) is said to be e-converges to x if for every 0E ≪ e, there exists a natural
number n0 such that

pE (xn, x) ≪ e, for all n ≥ n0.

In this case, we write lim
n→∞

xn = x or xn
e→ x.

(ii) A sequence (xn) is said to be e-Cauchy sequence if for every 0E ≪ e, there exists a natural
number n0 such that

pE (xn, xm) ≪ e, for all n,m ≥ n0.

(iii)
(
X, pE

)
is e-complete if every e-Cauchy sequence is e-convergent.

3 FIXED POINT THEOREMS

In this section, we recall some known definitions and give some applications to fixed point theory
with respect to Hardy-Rogers type mappings on partial E-cone metric space.

Definition 3.1. [18] Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed pos-

itive cone E+such that (E+)
� 6= ∅, (zn) an e-sequence and T a self-map on X . Let x0 ∈ X and

xn+1 = Txn be the Picard’s iteration in X. The iteration procedure xn+1 = Txn is said to be
T -stable with respect to T if (xn) e-converges to a fixed point x of T , and

(
pE (xn+1, Txn)

)
is

an e-sequence, then (zn) e-converges to x.

Definition 3.2. [18] Let
(
X, pE

)
be a partial E-cone metric space with closed positive cone

E+such that (E+)
� 6= ∅. The mapping T : X → X is called Hardy-Rogers type on X if

pE (Tx, Ty) � α1p
E (x, y) + α2p

E (x, Tx) + α3p
E (y, Ty)

+α4p
E (x, Ty) + α5p

E (y, Tx) . (3.1)

for all x, y ∈ X , where αi ≥ 0 (i = 1, 2, 3, 4, 5) are constants and 0 ≤
5∑
i=1

αi < 1.

We begin with a simple, but useful theorem.

Theorem 3.3. Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed positive

cone E+such that (E+)
� 6= ∅ and (xn) a sequence in X satisfying

pE (xn, xn+1) � λpE (xn−1, xn) (n = 1, 2, ...) ,

where 0 ≤ λ < 1 is a constant. Then (xn) is an e-Cauchy sequence in X.

Proof. Suppose that (xn) is a contractive sequence in X. Then for some real number λ ∈ [0, 1) ,
we have

pE (xn, xn+1) � λpE (xn−1, xn) � λ2pE (xn−2, xn−1) � ... � λnpE (x0, x1) .

For any n,m ∈ N, we have

pE (xm, xn) � pE (xm, xm−1) + pE (xm−1, xm−2) + ...+ pE (xn+1, xn)

−
m−n−1∑
r=1

pE (xm−r, xm−r) .

Using Proposition 2.1, we have

pE (xm, xn) � pE (xm, xm−1) + pE (xm−1, xm−2) + ...+ pE (xn+1, xn)

�
(
λm−1 + λm−2 + ...+ λn

)
pE (x0, x1)

� λm
(

1− λn−m

1− λ

)
pE (x1, x0) .
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Let 0E ≪ e be given, choose ρ > 0 such that e− ρB+ ⊆ E+ and a natural number k1 such that
λm
(

1−λn−m

1−λ

)
pE (x1, x0) ∈ ρ

2B+ for any m,n ≥ k1. Therefore

e− λm
(

1− λn−m

1− λ

)
pE (x1, x0)−

ρ

2
B+ ⊆ e− ρB+ ⊆ E+.

Hence

pE (xm, xn) � λm
(

1− λn−m

1− λ

)
pE (x1, x0) ≪ e, for all n,m ≥ k1.

It follows that (xn) is an e-Cauchy sequence in X.

Theorem 3.4. Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed positive

cone E+such that (E+)
� 6= ∅. Let T : X → X be a Hardy-Rogers type mapping on X. Then T

has a unique fixed in X, and for each x ∈ X, the iterative sequence {Tnx}n>0 e−converges to
the unique fixed point.

Proof. We choose x0 ∈ X and n ≥ 1, consider the iterative sequence

xn+1 = Txn = Tn+1x0.

Using (3.1), on one hand, we have

pE (xn, xn+1) = pE (Txn−1, Txn)

� α1p
E (xn−1, xn) + α2p

E (xn−1, Txn−1) + α3p
E (xn, Txn)

+α4p
E (xn−1, Txn) + α5p

E (xn, Txn−1) .

� (α1 + α2) p
E (xn−1, xn) + α3p

E (xn, xn+1) + α4p
E (xn−1, xn+1)

+α5p
E (xn, xn)

� (α1 + α2) p
E (xn−1, xn) + α3p

E (xn, xn+1) + α5p
E (xn, xn)

+α4
[
pE (xn−1, xn) + pE (xn, xn+1)− pE (xn, xn)

]
.

� (α1 + α2 + α4) p
E (xn−1, xn) + (α3 + α4) p

E (xn, xn+1) (3.2)

+(α5 − α4) p
E (xn, xn) .

On the other hand, we obtain that

pE (xn, xn+1) = pE (Txn−1, Txn)

� α1p
E (xn−1, xn) + α2p

E (xn, Txn) + α3p
E (xn−1, Txn−1)

+α4p
E (xn, Txn−1) + α5p

E (xn−1, Txn)

� (α1 + α3) p
E (xn−1, xn) + α2p

E (xn, xn+1) + α4p
E (xn, xn)

+α5
[
pE (xn−1, xn) + pE (xn, xn+1)− pE (xn, xn)

]
.

� (α1 + α3 + α5) p
E (xn−1, xn) + (α2 + α5) p

E (xn, xn+1) (3.3)

+(α4 − α5) p
E (xn, xn) .

Adding up (3.2) and (3.3) yields

2pE (xn, xn+1) � (2α1 + α2 + α3 + α4 + α5) p
E (xn−1, xn)

+ (α2 + α3 + α4 + α5) p
E (xn, xn+1) .

Hence
pE (xn, xn+1) �

2α1 + α2 + α3 + α4 + α5

2− α2 − α3 − α4 − α5
pE (xn−1, xn) . (3.4)
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Since 0 ≤
5∑
i=1

αi < 1, we have α = 2α1+α2+α3+α4+α5
2−α2−α3−α4−α5

< 1.

Using equation(3.4) and Theorem 3.3 , then (xn) is an e-Cauchy sequence in X.
Since

(
X, pE

)
is an e-complete, then there exists x ∈ X such that (xn) e-converges to x.

In the following, we show that x is a fixed point of T.
Indeed, using (3.1) , we have

pE (Tx, x) � pE (Tx, xn) + pE (xn, x)− pE (xn, xn)

= pE (Tx, Txn−1) + pE (xn, x)

� α1p
E (x, xn−1) + α2p

E (x, Tx) + α3p
E (xn−1, Txn−1)

+α4p
E (x, Txn−1) + α5p

E (xn−1, Tx) + pE (xn, x)

� α1p
E (x, xn−1) + α2p

E (x, Tx) + α3

(
pE (xn−1, x) + pE (x, Txn−1)

−pE (x, x)

)
+α4p

E (x, xn) + α5
[
pE (xn−1, x) + pE (x, Tx)− pE (x, x)

]
+ pE (xn, x)

� α1p
E (x, xn−1) + α2p

E (x, Tx) + α3
[
pE (xn−1, x) + pE (x, Txn−1)

]
+α4p

E (x, xn) + α5
[
pE (xn−1, x) + pE (x, Tx)

]
+ pE (xn, x)

� (α1 + α3 + α5) p
E (xn−1, x) + (α2 + α5) p

E (Tx, x)

+ (1 + α3 + α4) p
E (xn, x) .

That means

pE (Tx, x) �
α1 + α3 + α5

1− α2 − α5
pE (xn−1, x) +

1 + α3 + α4

1− α2 − α5
pE (xn, x) , βn, (3.5)

where k1 =
α1+α3+α5
1−α2−α5

and k2 =
1+α3+α4
1−α2−α5

are positive numbers.
Since (xn) e-converges to x, then

(
pE (xn, x)

)
e-converges to 0E . Thus, (βn) also e-converges

to 0E . Therefore by (3.5) for any e ≫ 0E , there exists n1 ∈ N such that for all n > n1, ones
have

pE (Tx, x) ≪ e. (3.6)

By Proposition 2.3, pE (Tx, x) = 0E , i.e, x is a fixed point of T.
To prove that the fixed point x is unique, let y be another fixed of T . Then using (3.1), it

follows that

pE (x, y) = pE (Tx, Ty)

� α1p
E (x, y) + α2p

E (y, Ty) + α3p
E (x, Tx)

+α4p
E (y, Tx) + α5p

E (x, Ty)

= (α1 + α4 + α5) p
E (x, y) .

As 0 ≤ α1 + α4 + α5 ≤
5∑
i=1

αi < 1, by Proposition 2.4, we get

pE (x, y) = 0E .

Hence, x = y.

Theorem 3.5. Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed positive

cone E+such that (E+)
� 6= ∅. If T : X → X is a Hardy-Rogers type mapping on X , then the

Picard’s iteration is T -stable.

Proof. Let z be any fixed point of T and let (xn) be a sequence in X such that
(
pE (xn+1, Txn)

)
is an e-sequence.
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Using (3.1), we have

pE (Txn, z) = pE (Txn, T z)

� α1p
E (xn, z) + α2p

E (xn, Txn) + α3p
E (z, Tz)

+α4p
E (xn, T z) + α5p

E (z, Txn)

= α1p
E (xn, z) + α2p

E (xn, xn+1) + α3p
E (z, z)

+α4p
E (xn, z) + α5p

E (z, xn+1)

� α1p
E (xn, z) + α2

[
pE (xn, z) + pE (z, xn+1)− pE (z, z)

]
+α3p

E (z, z) + α4p
E (xn, z) + α5p

E (z, xn+1)

� (α1 + α2 + α4) p
E (xn, z) + (α2 + α5) p

E (z, xn+1)

+ (α3 − α2) p
E (z, z) . (3.7)

On the other hand we have

pE (Txn, z) = pE (z, Txn) = pE (Tz, Txn)

� α1p
E (z, xn) + α2p

E (z, Tz) + α3p
E (xn, Txn)

+α4p
E (z, Txn) + α5p

E (xn, T z)

= α1p
E (xn, z) + α2p

E (z, z) + α3p
E (xn, Txn)

+α4p
E (z, xn+1) + α5p

E (xn, z)

� α1p
E (xn, z) + α2p

E (z, z)

+α3
[
pE (xn, z) + pE (z, xn+1)− pE (z, z)

]
+α4p

E (z, xn+1) + α5p
E (xn, z)

� (α1 + α3 + α5) p
E (xn, z) + (α3 + α4) p

E (z, xn+1) (3.8)

+(α2 − α3) p
E (z, z) .

Adding up (3.7) and (3.8) , yields

2pE (Txn, z) � (2α1 + α2 + α3 + α4 + α5) p
E (xn, z)

+ (α2 + α3 + α4 + α5) p
E (z, xn+1) .

That means
pE (Txn, z) �

2α1 + α2 + α3 + α4 + α5

2− α2 − α3 − α4 − α5
pE (xn, z) ,

Now, since 0 ≤
5∑
i=1

αi < 1, we have α = 2α1+α2+α3+α4+α5
2−α2−α3−α4−α5

< 1, and

pE (Txn, z) � αpE (xn, z) .

Setting un = pE (xn, z) and wn = pE (xn+1, Txn) , we get

un+1 = pE (xn+1, z) � pE (xn+1, Txn) + pE (Txn, z)− pE (Txn, Txn)

� pE (xn+1, Txn) + pE (Txn, T z)

� pE (xn+1, Txn) + αpE (xn, z)

= αun + wn.

Since (wn) is an e-sequence, using Proposition 2.6, we deduce that (un) is an e-sequence.
Thus, (xn) converges to z as n→∞. This implies that the Picard’s iteration is T -stable.

Theorem 3.6. Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed positive

cone E+such that (E+)
� 6= ∅. If T : X → X is a Hardy-Rogers type mapping on X , then(

pE (xn, Txn)
)

is an e-sequence if and only if
(
pE (xn+1, Txn)

)
is an e-sequence.
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Proof. Suppose (xn) is a sequence in X. Put vn = pE (xn, Txn) and wn = pE (xn+1, Txn) .
If (vn) is an e-sequence, then

wn = pE (xn+1, Txn) � pE (xn+1, Txn+1) + pE (Txn+1, Txn)− pE (Txn+1, Txn+1)

� pE (xn+1, Txn+1) + pE (Txn+1, Txn)

� pE (xn+1, Txn+1) + α1p
E (xn+1, xn) + α2p

E (xn+1, Txn+1)

+α3p
E (xn, Txn) + α4p

E (xn+1, Txn) + α5p
E (xn, Txn+1)

� pE (xn+1, Txn+1) + α1
(
pE (xn+1, Txn) + pE (xn, Txn)− pE (Txn, Txn)

)
+α2p

E (xn+1, Txn+1) + α3p
E (xn, Txn) + α4p

E (xn+1, Txn)

+α5

(
pE (xn, Txn) + pE (Txn, xn+1) + pE (xn+1, Txn+1)

−pE (xn+1, xn+1)− pE (Txn, Txn)

)
� pE (xn+1, Txn+1) + α1

(
pE (xn+1, Txn) + pE (xn, Txn)

)
+α2p

E (xn+1, Txn+1) + α3p
E (xn, Txn) + α4p

E (xn+1, Txn)

+α5
(
pE (xn, Txn) + pE (Txn, xn+1) + pE (xn+1, Txn+1)

)
= (1 + α2 + α5) p

E (xn+1, Txn+1) + (α1 + α3 + α5) p
E (xn, Txn)

+ (α1 + α4 + α5) p
E (xn+1, Txn)

= (1 + α2 + α5) vn+1 + (α1 + α3 + α5) vn + (α1 + α4 + α5)wn.

It is obvious that

wn �
1 + α2 + α5

1− α1 − α4 − α5
vn+1 +

α1 + α3 + α5

1− α1 − α4 − α5
vn , γn,

where k3 =
1+α2+α5

1−α1−α4−α5
and k4 =

α1+α3+α5
1−α1−α4−α5

are positive numbers.
Since (vn) is an e-sequence, it follows that (vn) e-converges to 0E and so (γn) e-converges

to 0E . Thus, given e≫ 0E there existsK > 0 such thatwn � γn ≪ e.Hence (wn) e-converges
to 0E and (wn) is an e-sequence.

Conversely, if (wn) is an e-sequence, then for one thing, we have

vn = pE (xn, Txn) � pE (xn, Txn−1) + pE (Txn−1, Txn)− pE (xn, xn)

� pE (xn, Txn−1) + pE (Txn, Txn−1)

� pE (xn, Txn−1) + α1p
E (xn, xn−1) + α2p

E (xn, Txn)

+α3p
E (xn−1, Txn−1) + α4p

E (xn, Txn−1) + α5p
E (xn−1, Txn)

� pE (xn, xn) + α1
(
pE (xn, Txn−1) + pE (Txn−1, xn−1)− pE (Txn−1, Txn−1)

)
+α2p

E (xn, xn+1) + α3p
E (xn−1, xn) + α4p

E (xn, xn)

+α5

(
pE (xn−1, Txn−1) + pE (Txn−1, xn) + pE (xn, Txn)

−pE (Txn−1, Txn−1)− pE (xn, xn)

)
= (α2 + α5) p

E (xn, xn+1) + (α1 + α3 + α5) p
E (xn−1, xn)

+ (1 + α1 + α4 − α5) p
E (xn, xn)

= (α2 + α5) vn + (α1 + α3 + α5) vn−1 + (1 + α4 − α5)wn−1.

This implies

(1− α2 − α5) vn � (α1 + α3 + α5) vn−1 + (1 + α1 + α4 − α5)wn−1. (3.9)
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While

vn = pE (xn, Txn) � pE (xn, Txn−1) + pE (Txn−1, Txn)− pE (Txn−1, Txn−1)

� pE (xn, Txn−1) + pE (Txn−1, Txn)

� pE (xn, Txn−1) + α1p
E (xn−1, xn) + α2p

E (xn−1, Txn−1) + α3p
E (xn, Txn)

+α4p
E (xn−1, Txn) + α5p

E (xn, Txn−1)

� pE (xn, xn) + α1
(
pE (xn−1, Txn−1) + pE (Txn−1, xn)− pE (Txn−1, Txn−1)

)
+α2p

E (xn−1, xn) + α3p
E (xn, xn+1) + α5p

E (xn, xn)

+α4

(
pE (xn−1, Txn−1) + pE (Txn−1, xn) +4 p

E (xn, Txn)

−pE (xn, xn)− pE (Txn−1, Txn−1)

)
= (α3 + α4) p

E (xn, xn+1) + (α1 + α2 + α4) p
E (xn−1, xn) + (1 + α5 − α4) p

E (xn, xn)

= (α3 + α4) vn + (α1 + α2 + α4) vn−1 + (1 + α5 − α4)wn−1.

That means

(1− α3 − α4) vn � (α1 + α2 + α4) vn−1 + (1 + α5 − α4)wn−1. (3.10)

Adding (3.9) to (3.10) we get

vn �
2α1 + α2 + α3 + α4 + α5

2− α2 − α3 − α4 − α5
vn−1 +

2
2− α2 − α3 − α4 − α5

wn−1,

Now since 0 ≤ α = 2α1+α2+α3+α4+α5
2−α2−α3−α4−α5

< 1 using Proposition 2.6 we get that (vn) is an e-
sequence.

Theorem 3.7. Let
(
X, pE

)
be an e-complete partial E-cone metric space with closed positive

cone E+such that (E+)
� 6= ∅. Let T : X → X be a mapping satisfying

pE (Tx, Ty) � αpE (x, y) ,

for all x, y ∈ X and some α ∈ [0, 1). Then T has a unique fixed point in X , and for each x ∈ X,
the iterative sequence (Tnx)n≥0 converges to the fixed point of T.

Proof. The result follows from Theorem if α2 = α3 = α4 = α5 = 0.

Remark 3.8. Theorem 3.4 greatly generalizes the main theorems of [24]. As a matter of fact, if
we take α1 = α4 = α5 = 0 and α2 = α3 = α ∈

[
0, 1

2

)
in (3.1) then give us Theorem of Kannan

fixed point theorem; if take α1 = α2 = α3 = 0 and α4 = α5 = α ∈
[
0, 1

2

)
in (3.1) , then give us

Theorem Chatterjea fixed point theorem in partial E-cone metric space.
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