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Abstract If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for
any real r ≥ 1, Aziz [J. Approx. Theory, 55(1988), 232-239] proved the integral mean inequality{∫ 2π

0

∣∣1 + kneiθ
∣∣r dθ} 1

r

max
|z|=1
|p′(z)| ≥ n

{∫ 2π

0

∣∣p (eiθ)∣∣r dθ} 1
r

.

In this paper, we obtain an improved extension of the above inequality by using the polar deriva-
tive instead of the ordinary derivative and involving the leading coefficient and the constant term
of the polynomial.

1 Introduction and preliminaries

The problem of the extremal properties of polynomials piqued the interest of famous chemist
Mendeleev in the second half of the nineteenth century, who was looking for an upper bound of

max
−1≤x≤1

|p′(x)|, where p(x) was a quadratic polynomial of real variable x with real coefficients.

He was able to prove that max
−1≤x≤1

|p′(x)| ≤ 4, if −1 ≤ p(x) ≤ 1 for −1 ≤ x ≤ 1.

While working on a problem in Approximation Theory, Bernstein needed an upper bound es-
timate of maximum modulus of the derivative of a complex polynomial p(z) in terms of the
maximum modulus of p(z), which is an analogue of above Mendeleev’s problem in the complex
domain. In fact, he obtained his famous inequality known as Bernstein’s inequality as an imme-
diate consequence of an inequality concerning trigonometric polynomials proved by him [3]. On
the other hand, Paul Turán [18] was the first who estimated the lower bound for the maximum
modulus of the derivative of a polynomial in terms of the maximum modulus of the polynomial.
In fact, he proved that if p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1
|p′(z)| ≥ n

2
max
|z|=1
|p(z)|. (1.1)

Let p(z) be a polynomial of degree n over the set of complex numbers and for a real number
r > 0, we define the integral mean of p(z) by

‖p‖r =

{
1

2π

∫ 2π

0

∣∣p(eiθ)∣∣r dθ} 1
r

. (1.2)

It should be observed that for 1 ≤ r < ∞, ‖ · ‖r is a norm for Hardy space Hp (see Duren [6]).
For our convenience, we will retain the norm notation even if 0 < r < 1 when ‖ · ‖r is not a
genuine norm. If we take the limit as r →∞ in (1.2) and make use of the well-known fact from
the analysis [16, 17] that

lim
r→∞

{
1

2π

∫ 2π

0

∣∣p(eiθ)∣∣r dθ} 1
r

= max
|z|=1
|p(z)|,
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we can suitably denote
‖p‖∞ = max

|z|=1
|p(z)|.

Similarly, we can define

‖p‖0 = exp

{
1

2π

∫ 2π

0
log |p(eiθ)|dθ

}
,

and it follows easily that lim
r→0+

‖p‖r = ‖p‖0.

It would be of further interest that by taking the limit as r → 0+, the stated results on the integral
mean inequalities holding for r > 0, hold for r = 0 as well.
Inequality (1.1) of Turán [18] has been of considerable interest and applications, and it would be
of interest to seek its generalization for polynomials having all their zeros in |z| ≤ k, k > 0. The
case when 0 < k ≤ 1 was settled by Malik [12] and proved

‖p′‖∞ ≥
n

1 + k
‖p‖∞, (1.3)

while the case when k ≥ 1 by Govil [8] and obtained

‖p′‖∞ ≥
n

1 + kn
‖p‖∞. (1.4)

Equalities in (1.3) and (1.4) hold respectively for p(z) = (z + k)n, 0 < k ≤ 1 and
p(z) = zn + kn, k ≥ 1.
Inequality (1.4) has certain drawbacks; as we can see, its bound depends only on the zero with
maximum modulus, consider the polynomials p1(z) = (z − 2)6 and p2(z) = z5(z − 2) then
inequality (1.4) gives same bounds for p1(z) and p2(z) as

max
|z|=1
|p′1(z)| ≥

6
1 + 26 max

|z|=1
|p1(z)| and max

|z|=1
|p′2(z)| ≥

6
1 + 26 max

|z|=1
|p2(z)|,

even though p2(z) has only one zero on |z| = 2 while p1(z) has all its zeros on |z| = 2. Also the
extremal polynomial for inequality (1.4) is p(z) = zn + kn, k ≥ 1 and it should be possible to
obtain sharper bound when some coefficients of the polynomial are non-zero.
For the first time in 1984, Malik [11] extended inequality (1.1) into an integral mean version by
proving

‖1 + z‖r‖p′‖∞ ≥ n‖p‖r, (1.5)

where r > 0.
The result is sharp and equality holds for p(z) = (z + 1)n.
In 1988, Aziz [1] established an integral mean extension of inequality (1.3) and proved that if
p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, 0 < k ≤ 1, then for each r > 0,

‖1 + kz‖r‖p′‖∞ ≥ n‖p‖r. (1.6)

Equality in (1.6) holds for the polynomial p(z) = (αz + βk)n, where |α| = |β|.
It is worth noting that if we take the limit as r → ∞, we obtain inequality (1.3). Further, in
the same paper [1] the author also obtained the integral mean extension of inequality (1.4) by
proving the following result.

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for
each r ≥ 1,

‖1 + knz‖r‖p′‖∞ ≥ n‖p‖r. (1.7)

The result is sharp and equality holds for p(z) = αzn + βkn, |α| = |β|.

For a polynomial p(z) of degree n and a complex number α, let

Dαp(z) = np(z) + (α− z)p
′
(z)
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denote the polar derivative of the polynomial p(z) with respect to α.
Note that Dαp(z) is a polynomial of degree at most n−1, and it generalizes the ordinary deriva-
tive in the sense that

lim
α→∞

Dαp(z)

α
= p

′
(z).

Aziz and Rather [2] first extended inequality (1.3) to the polar derivative version and proved that
if p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, 0 < k ≤ 1 and for every
complex number α with |α| ≥ k

‖Dαp(z)‖∞ ≥ n
(
|α| − k
1 + k

)
‖p(z)‖∞. (1.8)

Further, in the same paper [2], they also proved a polar derivative extension of (1.4) with the
same assumption on p(z) and obtained

‖Dαp(z)‖∞ ≥ n
(
|α| − k
1 + kn

)
‖p(z)‖∞, (1.9)

where α is any complex number with |α| ≥ k.
Recently, Govil and Kumar [7] proved a generalization and improvement of inequality (1.9)
by incorporating the leading coefficient and the coefficient of the lowest degree term of the
polynomial.

Theorem 1.2. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n, is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≥ 1, then for every complex number α with |α| ≥ k,

‖Dαp‖∞ ≥
|α| − k
1 + kn

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
‖p‖∞. (1.10)

In literature, there exist several generalizations and improvements of inequality (1.6) con-
cerning polar derivative of a polynomial (see [4], [20] and [19]). A typical example is that of
Dewan et al. [4] where they proved the following integral mean extension of (1.8).

Theorem 1.3. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, 0 < k ≤ 1, then
for every complex number α with |α| ≥ k and each r > 0

‖1 + kz‖r‖Dαp‖∞ ≥ n(|α| − k)‖p‖r. (1.11)

The result is sharp and equality holds for p(z) = (z − k)n.

For about 19 years, the integral mean extension of inequality (1.9) had not been in the litera-
ture of polynomial inequalities, untill Rather and Bhat [14] obtained the corresponding integral
form of inequality (1.9). In this paper, we are able to prove the following result which not only
extends Theorem 1.2 to integral mean, but also gives an improvement as well as generalization
of Theorem 1.1 concerning polar derivative. More precisely, we prove.

Theorem 1.4. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≥ 1, then for every complex number α with |α| ≥ k and for each real number
r > 0,

‖Dαp‖r ≥
|α| − k
Er

A‖p‖r, (1.12)

where

A =
1
2

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
,

and

Er =

{∫ 2π
0 |1 + kneiθ|rdθ

} 1
r

{∫ 2π
0 |1 + eiθ|rdθ

} 1
r

.
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Remark 1.5. If we let r →∞ in (1.12) and note that Er → 1+kn
2 as r →∞, then (1.12) reduces

to (1.10) of Theorem 1.2.
Further, dividing both sides of (1.12) by |α| and letting |α| → ∞, we get the following interesting
result.

Corollary 1.6. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n, is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≥ 1, then for each r > 0,

‖p′‖r ≥
A

Er
‖p‖r, (1.13)

where A and Er are as defined in Theorem 1.4.

If we let r → ∞ in (1.13) and note the simple fact that Er → 1+kn
2 as r → ∞, we get the

following improvement and generalization of (1.4), which, in fact, is a result obtained by Govil
and Kumar ([7], Corollary 1.2).

Corollary 1.7. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≥ 1, then

‖p′‖∞ ≥
1

1 + kn

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
‖p‖∞. (1.14)

The result is sharp and equality in (1.14) holds for p(z) = zn + kn.

Putting s = 0, Corollary 1.7 further reduces to the following interesting result, which im-
proves (1.4) under the same hypotheses.

Corollary 1.8. If p(z) =
n∑
j=0

cjz
j is a polynomial of degree n having all its zeros in |z| ≤ k,

k ≥ 1, then

‖p′‖∞ ≥
1

1 + kn

{
n+

kn|cn| − |c0|
kn|cn|+ |c0|

}
‖p‖∞. (1.15)

The result is best possible and equality in (1.15) holds for p(z) = zn + kn.

Remark 1.9. It may be noted that as the polynomial p(z) is of degree n ≥ 1, the leading coeffi-
cient cn can not be zero. In fact, it is obvious that the inequalities (1.14) and (1.15) would give
improvements over the bound given by inequality (1.4). It is of interest to notice that if at least
one zero of the polynomial does not lie on |z| = k, then |cn|kn− |c0| > 0. It is worth noting that
for larger values of s > 0, inequality (1.14) provides a better bound than (1.15).

Example 1.10. Consider the polynomial p(z) = z3
(
z2 − 9

)
having all its zeros in |z| ≤ k = 3.

For this polynomial, we have max
|z|=1
|p(z)| = 10. Then it can be easily obtained that inequality

(1.4) gives max
|z|=1

∣∣∣p′
(z)
∣∣∣ ≥ 25

122
, while inequality (1.14) gives max

|z|=1

∣∣∣p′
(z)
∣∣∣ ≥ 40

122
and we have an

improvement of 60% over the bound obtained from inequality (1.4). Also by inequality (1.15),

max
|z|=1

∣∣∣p′
(z)
∣∣∣ ≥ 30

122
and an improvement of 20% over the bound given by (1.4) is obtained.

2 Lemmas

We shall need the following lemmas to prove Theorem 1.4. For a polynomial p(z) of degree n,
we will use p̃(z) = znp

( 1
z̄

)
. The first lemma is due to Rather et al. [15].
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Lemma 2.1. If (xj)∞j=1 is a sequence of real numbers such that 0 ≤ xj ≤ 1, j ∈ N, then

n∑
j=1

1− xj
1 + xj

≥
1−

∏n
j=1 xj

1 +
∏n
j=1 xj

, ∀ n ∈ N.

The following lemma is due to Malik [12].

Lemma 2.2. If p(z) is a polynomial having all its zeros in |z| ≤ k, 0 < k ≤ 1, then for |z| = 1,

|p̃
′
(z)| ≤ k|p

′
(z)|.

Lemma 2.3. If p(z) is a polynomial of degree n, then for every R ≥ 1 and r > 0,{∫ 2π

0

∣∣p (Reiθ)∣∣r dθ} 1
r

≤ Rn
{∫ 2π

0

∣∣p (eiθ)∣∣r dθ} 1
r

. (2.1)

As far as Lemma 2.3 is concerned, it is difficult to trace its origin. It was deduced from a
well-known result of Hardy [9], according to which for every function f(z) analytic in |z| < t0,
and for every r > 0, {∫ 2π

0

∣∣f (eiθ)∣∣r dθ} 1
r

is a non-decreasing function of t for 0 < t < t0. If p(z) is a polynomial of degree n, then
f(z) = znp

( 1
z̄

)
is again a polynomial, that is, an entire function and by Hardy’s result for r > 0,{∫ 2π

0

∣∣f (teiθ)∣∣r dθ} 1
r

≤

{∫ 2π

0

∣∣f (eiθ)∣∣r dθ} 1
r

,

for t = 1
R < 1. This is equivalent to (2.1).

Lemma 2.4. If p(z) = zs

n−s∑
j=0

cjz
j

 , 0 ≤ s ≤ n, is a polynomial of degree n having all its

zeros in |z| ≤ 1, then for |z| = 1,∣∣∣p′
(z)
∣∣∣ ≥ 1

2

{
n+ s+

|cn−s| − |c0|
|cn−s|+ |c0|

}
|p(z)|.

The above result can be obtained from a theorem of Dubinin [5]. Here, we present an alter-
native proof by using Lemma 2.1.

Proof of Lemma 2.4. Let p(z) = zs
n−s∑
j=0

cjz
j = zscn−s

n−s∏
j=0

(z − zj), 0 ≤ s ≤ n where

|zj | ≤ 1, j = 0, · · ·n− s. Then on |z| = 1, for which p(z) 6= 0,

<

(
zp

′
(z)

p(z)

)
= s+

n−s∑
j=0

<
(

z

z − zj

)
. (2.2)

Since |zj | ≤ 1, j = 0, · · · , n− s and straight forward calculations give

<
(

z

z − zj

)
≥ 1

1 + |zj |
, j = 0, · · · , n− s. (2.3)

Combining inequalities (2.2) and (2.3), we get

<

(
zp

′
(z)

p(z)

)
≥ s+

n−s∑
j=0

1
1 + |zj |

=
1
2

n+ s+
n−s∑
j=0

1− |zj |
1 + |zj |

 . (2.4)
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On applying Lemma 2.1, inequality (2.4) gives

<

(
zp

′
(z)

p(z)

)
≥ 1

2

(
n+ s+

1−
∏n−s
j=0 |zj |

1 +
∏n−s
j=0 |zj |

)

=
1
2

(
n+ s+

|cn−s| − |c0|
|cn−s|+ |c0|

)
,

and hence ∣∣∣∣∣zp
′
(z)

p(z)

∣∣∣∣∣ ≥ <
(
zp

′
(z)

p(z)

)
≥ 1

2

{
n+ s+

|cn−s| − |c0|
|cn−s|+ |c0|

}
,

which is equivalent to∣∣∣p′
(z)
∣∣∣ ≥ 1

2

{
n+ s+

|cn−s| − |c0|
|cn−s|+ |c0|

}
|p(z)|, for |z| = 1, p(z) 6= 0. (2.5)

Also, inequality (2.5) is trivially satisfied for p(z) = 0, and hence Lemma 2.4 is proved.

Lemma 2.5. If p(z) is a polynomial of degree n having no zero in |z| < 1, then for every R ≥ 1
and r > 0, {∫ 2π

0

∣∣p(Reiθ)∣∣r dθ} 1
r

≤ Er

{∫ 2π

0

∣∣p(eiθ)∣∣r dθ} 1
r

, (2.6)

where

Er =

{∫ 2π
0 |1 +Rneiθ|rdθ

} 1
r

{∫ 2π
0 |1 + eiθ|rdθ

} 1
r

. (2.7)

This lemma was proved by Boas and Rahman [10] for r ≥ 1. Later, Rahman and Schmeisser
[13] showed the validity for 0 < r < 1 as well.

3 Proof of the Theorem

Proof of Theorem 1.4. By hypothesis, p(z) has all its zeros in |z| ≤ k, k ≥ 1, then the polyno-
mial R(z) = p(kz) has all its zeros in |z| ≤ 1.
It is easy to see that for |z| = 1

|R̃
′
(z) | =

∣∣∣nR (z)− zR
′
(z)
∣∣∣ , (3.1)

where

R̃(z) = znR

(
1
z̄

)
.

Applying Lemma 2.2 to R(z), we have for |z| = 1∣∣∣R̃′
(z)
∣∣∣ ≤ ∣∣∣R′

(z)
∣∣∣ . (3.2)

Using (3.1) and (3.2), we have for
∣∣α
k

∣∣ ≥ 1 and |z| = 1,∣∣Dα
k
R(z)

∣∣ =
∣∣∣nR(z) + (α

k
− z
)
R

′
(z)
∣∣∣

≥
∣∣∣α
k

∣∣∣ |R′
(z)| −

∣∣∣nR (z)− zR
′
(z)
∣∣∣

=
∣∣∣α
k

∣∣∣ |R′
(z)| − |R̃

′
(z) |

≥
(∣∣∣α
k

∣∣∣− 1
)
|R

′
(z)|. (3.3)
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Applying Lemma 2.4 to R(z), we have for |z| = 1∣∣∣R′
(z)
∣∣∣ ≥ 1

2

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
|R(z)|. (3.4)

Combining (3.3) and (3.4), we get∣∣Dα
k
R (z)

∣∣ ≥ |α| − k
2k

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
|R(z)|.

Replacing R(z) by p(kz) in the above inequality, we obtain∣∣∣np(kz) + (α
k
− z
)
kp

′
(kz)

∣∣∣ ≥ |α| − k
k

A|p(kz)|, (3.5)

where

A =
1
2

{
n+ s+

kn−s|cn−s| − |c0|
kn−s|cn−s|+ |c0|

}
.

Inequality (3.5) is equivalent to∣∣∣np(kz) + (α− kz) kp
′
(kz)

∣∣∣ ≥ |α| − k
k

A|p(kz)|,

therefore for any r > 0, we have∣∣Dαp
(
keiθ

)∣∣r ≥ ( |α| − k
k

A

)r ∣∣p(keiθ)∣∣r , 0 ≤ θ < 2π,

and hence {∫ 2π

0

∣∣Dαp
(
keiθ

)∣∣r dθ} 1
r

≥ |α| − k
k

A

{∫ 2π

0

∣∣p(keiθ)∣∣r dθ} 1
r

. (3.6)

Since R(z) has all its zeros in |z| ≤ 1, R̃(z) is a polynomial of degree at most n having no zero
in |z| < 1. Applying Lemma 2.5 to R̃(z), we get{∫ 2π

0

∣∣R̃ (keiθ)∣∣r dθ} 1
r

≤ Er

{∫ 2π

0

∣∣R̃(eiθ)∣∣r dθ} 1
r

, (3.7)

where Er =
{∫ 2π

0 |1+kneiθ|rdθ}
1
r

{∫ 2π
0 |1+eiθ|rdθ}

1
r
.

Now it can be easily obtained that
∣∣R̃(keiθ)∣∣ = kn

∣∣p (eiθ)∣∣ and
∣∣R̃ (eiθ)∣∣ = ∣∣p (keiθ)∣∣.

With the above two relations, (3.7) gives

kn

{∫ 2π

0

∣∣p (eiθ)∣∣r dθ} 1
r

≤ Er

{∫ 2π

0

∣∣p (keiθ)∣∣r dθ} 1
r

. (3.8)

Since Dαp(z) is a polynomial of degree at most n − 1, applying Lemma 2.3 to Dαp(z) with
R = k ≥ 1, we have

1
kn−1

{∫ 2π

0

∣∣Dαp
(
keiθ

)∣∣r dθ} 1
r

≤

{∫ 2π

0

∣∣Dαp
(
eiθ
)∣∣r dθ} 1

r

. (3.9)

Using (3.9) in (3.6), we get

kn−1

{∫ 2π

0

∣∣Dαp
(
eiθ
)∣∣r dθ} 1

r

≥ |α| − k
k

A

{∫ 2π

0

∣∣p(keiθ)∣∣r dθ} 1
r

. (3.10)

Combining (3.8) and (3.10), we have{∫ 2π

0

∣∣Dαp
(
eiθ
)∣∣r dθ} 1

r

≥ |α| − k
Er

A

{∫ 2π

0

∣∣p (eiθ)∣∣r dθ} 1
r

.

This completes the proof of Theorem 1.4.
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Conclusion

For the class of polynomials having all its zeros in |z| ≤ k, 0 < k ≤ 1, there have been integral
mean extensions of Turán-type inequalities concerning polar derivative as well. In this paper,
for the same class of polynomials with k ≥ 1, we obtain integral analogue of inequality (1.2)
recently proved by Govil and Kumar [7] and our result implicates various existing known results
in the literature and gives the techniques for further extensions of related Turán-type inequalities.
Acknowledgement. The authors are very grateful to the referee for the valuable suggestions in
upgrading the paper in its present form.
Funding: The 1st author receives financial support from National Institute of Technology Ma-
nipur, India and the 2nd author from CSIR, India.

References
[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55, 232–239

(1988).

[2] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. In-
equal. Appl., 1, 231–238 (1998).

[3] S. Bernstein, Lecons sur les proprietes extremales et la meilleure approximation des functions analytiques
dune fonctions reele, Paris, (1926).

[4] K. K. Dewan, N. Singh, A. Mir and A. Bhat, Some inequalities for the polar derivative of a polynomial,
Southeast Asian Bull. Math., 34, 69–77 (2010).

[5] V. N. Dubinin, Applications of the Schwarz lemma to inequalities for entire functions with constraints on
zeros, J. Math. Sci., 143, 3069–3076 (2007).

[6] P. L. Duren, Theory of Hp spaces, Academic Press new York and London, 1970.

[7] N. K. Govil and P. Kumar, On sharpening of an inequality of Turán, Appl. Anal. Discrete Math., 13,
711–720 (2019).

[8] N.K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41, 543–546 (1973).

[9] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14, 269–
277 (1915).

[10] R. P. Boas Jr and Q. I. Rahman, Lp inequalities for polynomials and entire functions, Arch. Rational Mech.
Anal., 11, 34–39 (1962).

[11] M. A. Malik, An integral mean estimates for polynomials, Proc. Amer. Math. Soc., 91(2), 281–284 (1984).

[12] M. A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc., 1(2), 57–60 (1969).

[13] Q. I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory, 53, 26–32 (1988).

[14] N. A. Rather and F. A. Bhat, Inequalities for the polar derivative of a polynomial, Appl. Math. E-Notes,
17, 231–241 (2017).

[15] N. A. Rather, A. Iqbal and Ishfaq Dar, Inequalities for rational functions with prescribed poles,
Arxiv:2104.04226v1, 2021.

[16] W. Rudin, Real and complex analysis, Tata McGraw-Hill Publishing Company, 1977.

[17] A. E. Taylor, Introduction to functional analysis, John Wiley and Sons, New York, 1958.

[18] P. Turan, Uber die ableitung von polynomen, Compos. Math., 7, 89–95 (1939).

[19] A. Zireh, Integral mean estimates for polar derivative of polynomials, J. Interdiscip. Math., 21(2), 29–42
(2018).

[20] A. Zireh, E. Khojastehnezhad and S. R. Musawi, Integral mean estimates for the polar derivative of poly-
nomials whose zeros are within a circle, J. Inequal. Appl., 2013:307 (2013).

Author information
Thangjam Birkramjit Singh, Department of Mathematics, National Institute of Technology Manipur, Manipur-
795004, India.
E-mail: birkramth@gmail.com

Khangembam Babina Devi, Department of Mathematics, National Institute of Technology Manipur, Manipur-
795004, India.
E-mail: khangembambabina@gmail.com



Turán-type integral mean inequalities.... 93

Barchand Chanam, Department of Mathematics, National Institute of Technology Manipur, Manipur-795004,
India.
E-mail: barchand−2004@yahoo.co.in

Received: 2021-06-05

Accepted: 2023-03-26

WARNING: Author names too long for running head.
PLEASE supply a shorter form with \headlineauthor


	1 Introduction and preliminaries
	2 Lemmas
	3 Proof of the Theorem

